
Towards FORM 5: Status Update

FORM Developers Workshop 2025, Liverpool

Josh Davies

11th June, 2025

Introduction

Progress this year:
• Deprecations
• Bug fixes/changes
• New features

Required for FORM 5 release: (this summer?)
• Test and fix the diagram generator
• Test and fix floating-point mode
• Thorough testing of everything else!

Exercises/Ideas:
• Easier, things we could fix/add this week
• Harder, things to think about longer term (FORM 5.1?)

New repository location: https://github.com/form-dev/form
• old link forwards to new (https://github.com/vermaseren/form)

1/17

https://github.com/form-dev/form
https://github.com/vermaseren/form

Deprecations
Features which will be present in FORM 5 release, but with “deprecated” status.

To our knowledge these are not used, and are a maintenance burden – maybe removed completely?

• Native Windows support: [#623]
• Windows Subsystem for Linux (WSL) exists

• 32-bit system support: [#624]
• various tests already fail for 32-bit builds and are skipped
• “real physics problems” are all run on 64-bit machines

• ParFORM: [#625]
• various tests already fail for ParFORM and are skipped
• test suite under valgrind already disabled for ParFORM (slow)
• TFORM scales better, and modern CPUs already out-scale TFORM

• Checkpoint mechanism: [#626]
• current state is almost certainly buggy, not well tested

Use of these features in FORM 5 prints a warning:
• Silence with FORM IGNORE DEPRECATION=1 env. var. or -ignore-deprecation cmd opt.
• If you use any of these features regularly, comment on the corresponding issue!

2/17

https://github.com/vermaseren/form/issues/623
https://github.com/vermaseren/form/issues/624
https://github.com/vermaseren/form/issues/625
https://github.com/vermaseren/form/issues/626

Bug fixes/changes
Various fixes:
• sorting related [#513] [#527] [#529] [#565] [#593]
• Load-ing save files [#594]
• pattern matching [#583] [#601]
• misc [#289] [#532]

Notable changes:
• Optimizer no longer requires output to fit in workspace [#535]

• extra memory allocated if necessary, no need to set huge workspace

• multirun mode always used, and uses more PID digits [#591]
• xformxxx.sc0 −→ xform1234567.sc0
• -M cmd. opt. does nothing

• Fortran literal float suffix corrected [#584]
• gfortran: (Real*8): the integer 2147483648 is too large
• −→ integers ≥ 231 have a .D0 suffix

These fixes/changes (except #591) are in 5.0 and 4.3.2. branches.
3/17

https://github.com/vermaseren/form/pull/513
https://github.com/vermaseren/form/pull/527
https://github.com/vermaseren/form/pull/529
https://github.com/vermaseren/form/pull/565
https://github.com/vermaseren/form/pull/593
https://github.com/vermaseren/form/pull/594
https://github.com/vermaseren/form/pull/583
https://github.com/vermaseren/form/pull/601
https://github.com/vermaseren/form/pull/289
https://github.com/vermaseren/form/pull/532
https://github.com/vermaseren/form/pull/535
https://github.com/vermaseren/form/pull/591
https://github.com/vermaseren/form/pull/584

New features (I)
Sort buffer reallocation: (request: Markus Loechner, Zurich Workshop) [#537]
• Reallocate LargeBuffer and SmallBuffer – reduce Resident Set Size

• possible due to split allocations of various buffers [#529]

• #sortreallocate – now, before starting this module
• On sortreallocate; – at the start of every module
✓ Useful when running with memory constraints
✘ Potentially noticeable performance impact (On: 10%? “it depends”?)

Small MINCER test:

4/17

https://github.com/vermaseren/form/pull/537
https://github.com/vermaseren/form/pull/529

New features (II)

Zstandard compression support: (idea: Vitaly Magerya, Zurich Workshop) [#541]
• Uses zlibWrapper, very little code modification [Facebook: zlibWrapper]
• On Compress,zstd; – new default behaviour
• On Compress,gzip; – old default behaviour, uses zlib
• Simple (best case) benchmark: 8% faster, 6% smaller sort file

• additional benefit if sort files are on slow HDD?

Read-only TableBases: (by: Florian Herren, Zurich Workshop) [#531]
• TableBase "name.tbl" open, readonly;

• Can now open files without write permissions
• provide read-only TableBase access to collaborators
• protect large, expensive TableBase from yourself!

Numerical evaluation of constants: (by: Florian Lorkowski, Zurich Workshop) [#532]
• Arbitrary-precision evaluation of e (ee), γE (em), π (pi) using MPFR library

5/17

https://github.com/vermaseren/form/pull/541
https://github.com/facebook/zstd/tree/dev/zlibWrapper
https://github.com/vermaseren/form/pull/531
https://github.com/vermaseren/form/pull/532

New features (III)
Backtracing: [#526]
• Effort to ease debugging, particularly for crashes of long-running jobs.
• On backtrace; – on by default, if enabled at compile time

• use eu-addr2line or addr2line to print stack on crash (elfutils)

• Small performance impact, ∼1%
• -g -fno-omit-frame-pointer, -rdynamic, form binary 2.5MB → 13MB
• Not enabled by default, needs: configure --enable-backtrace

• My recommendation: always enable for long-running jobs!

Program terminating at gcd-simple.frm Line 10 -->
Terminate called from polywrap.cc:156 (poly_gcd)
Backtrace:
0: TerminateImpl at startup.c:1870:10
1: poly_gcd at polywrap.cc:158:32
2: GCDfunction3 at ratio.c:1205:2
3: GCDfunction at ratio.c:1061:6
4: Generator at proces.c:4012:9
5: CatchDollar at dollar.c:112:6
6: PreProcessor at pre.c:1129:26
7: main at startup.c:1746:2

6/17

https://github.com/vermaseren/form/pull/526

New features (IV)
FLINT interface v1: This week: Fix on macOS [#644]
• Interface to Fast Library for Number Theory [FLINT]
• Implements most (so far) of the poly class functionality

• PolyRatFun, FactArg, FactDollar, div , rem , mul , gcd , inverse
• still missing: Expression factorization (Factorize), Modulus mode.

• On flint; (default)
• Great performance, esp. for multivariate:

• forcer test reduction, ep-exact
• 753s → 521s (1.5x)

• mbox1l (1-loop box, vars: d , q12, q13, q33,m2)
• mbox1l(2,2,2,1): 3.0s → 1.2s (2.5x)
• mbox1l(3,2,2,2): 54s → 4.0s (14x)
• mbox1l(3,3,2,2): 221s → 7.7s (29x)

• [Takahiro’s polybench]

• Developed and tested with FLINT >= v3.0.1
✓ Ubuntu 24.04, ✘ Ubuntu 20.04
☞ Debian 12, ☞ OpenSUSE Leap 15.6 Fe

rm
at

FL
IN

T

FO
RM

M
at

he
m

at
ic
a

re
FO

RM

Si
ng

ul
ar

Sy
m

bo
lic

a

10 3

10 2

10 1

100

101

102

E
la

p
se

d
 t

im
e
 (

s)

nontrivial-gcd (uniform, # vars = 5, max degrees = 40, max # terms = 60)

7/17

https://github.com/vermaseren/form/pull/644
https://flintlib.org/
https://github.com/tueda/polybench

Diagram Generation
Interface to the GRACE generator of Toshiaki Kaneko [Comput. Phys. Commun. 92 (1995) 127-152]
• re-programmed as a C++ library

FORM-style syntax to use it: [Manual]
• Define a Model containing Particle and Vertex

• Particle particlename[,antiparticlename][,<sign><number>][,external];

• Vertex particle1,...,particlen:coupling;

Model PHI3;
Particle phi,1;
Vertex phi,phi,phi:g;

EndModel;

Model QCD;
Particle qua,QUA,-2;
Particle gho,GHO,-1;
Particle glu,+3;
Vertex qua,QUA,glu:g;
Vertex gho,GHO,glu:g;
Vertex glu,glu,glu:g;
Vertex glu,glu,glu,glu:gˆ2;

EndModel;

8/17

https://doi.org/10.1016/0010-4655(95)00122-6
https://www.nikhef.nl/~form/maindir/documentation/reference/html/manual.html#x1-36300021

Diagram Generation (II)
Generate diagrams using

diagrams_(model,set_of_input_particles,set_of_output_particles,
set_of_external_momenta,set_of_internal_momenta,
number_of_loops_or_coupling_constants,options)

For e.g.:

Vector Q1,...,Q7,p0,...,p21;
Set QQ:Q1,...,Q7;
Set pp:p1,...,p21;
Set empty:;
Local test = diagrams_(QCD, {glu,glu}, empty,

QQ, pp,
2, ‘OnePI_’+‘NoTadpoles_’+‘Symmetrize_’);

test =
- topo_(1)*node_(1,1,glu(-Q1))*node_(2,1,glu(-Q2))*

node_(3,g,qua(-p2),QUA(-p1),glu(Q1))*
node_(4,g,qua(p1),QUA(p2),glu(Q2))

+ ...
9/17

Diagram Generation (III)

There are some issues with the generator which have not been looked into closely over the last year.

E.g. when no options are given, one-loop tadpoles are not generated (but two-loop are).

Workshop Exercise: experiment with the generator!

• what works and what does not?
• what is the translation between qgraf and FORM options?
• useful info:

• Takahiro Ueda’s diagrammatica: draw topologies [Diagrammatica]
• FORM’s interface: sources/diawrap.cc : GenDiagrams
• grcc’s options: sources/grcc.cc : optDef
• automatic comparison of FORM and qgraf: [Takahiro’s qgraf.frm]

10/17

https://tueda.github.io/diagrammatica/?g=NQAgjA9ALAVALgewA4IPoAowEoYDsEAmAphmADTkC0AitnoSegEwVk1M77EYDMZA5mVpCWlJHS6MoAsuLZJRSHpwYYArDIXzpYtSu7oAbJr5JpSPQChQkWIhQYO9A%2BSq19jFm6eTeM4WJUCh4Y0oJyWmLKzowa4XxiOhYhRv4sZrJWNhBM8Mho6NG%2BmKw0EqrMpdQ%2BFXyCAXJiNQZhskEJZilxsukdejEYxvXp5lngOXkO6FAprmzuA5XeKXVCQUHNUmlt8kUV3ZEZuilDsqajWEA
https://github.com/tueda/form/commit/bca12a204489d69c779d4b77e223cc27107cc4a2

Floating-point mode

FORM 5 has support for arbitrary precision floating-point evaluation of coefficients.
• Enable with #startfloat precision(bits),mzv-weight

• Evaluate triggers numerical evaluation of
• ee , em , pi
• mzv , mzvhalf , euler
• sqrt , ln , li2 , gamma , agm , sin , cos , tan , asin , acos , atan , sinh , cosh , tanh ,
asinh , acosh , atanh

• lin , hpl , mpl : (not yet merged) See Coenraad’s talk

• ToFloat evaluates rational numbers in floating-point
• ToRational attempts to reconstruct rationals from floating-point

Still to do:
• atan2

• add test cases for all of these functions
• problems with evaluation at low precision -> try to fix this week

11/17

Testing
FORM has a test suite in the check directory (Jens Vollinga, Takahiro Ueda).
• Includes examples from the manual, new features, scripts reproducing (fixed) bugs.
• After making changes, run tests locally with make check.
• Runs on GitHub’s CI runners on commit: Ubuntu, macOS, Windows

• form, tform under valgrind, + coverage statistics.

The tests could be much more comprehensive!
• Add you own tests! See check/user.frm.

• Add fold containing your code *--#[GitHub username Test name :, and some assertions.
• Particularly scripts with tricky performance optimizations, or use rarely-used features.

☞ Should be fast-running, a few seconds at most. 30s under valgrind.

• Package authors should add tests! See check/extra directory.
• Ensure your package is not broken by future FORM modifications.

Contributing: (tests and code changes)
• Work on your own fork. Iterate there, push --force, etc.
• Create a clean pull request back into form-dev/form.

• Each merge needs to “work properly” (for easy bisecting), CI helps enforce this.
12/17

Exercises/Ideas: Easier (probably?)
Fix ranperm (t,?a) when t is a tensor.
• ranperm (t,1,2,3) -> t(20 ,2,20 ,3,20 ,1)

Fix or forbid replace (fun,tens) at compiler level and runtime (from dollar var)
• f(i1,i2,i3) -> t(?,i1,?,i2,?,i3)

Fix [#615]: sum does not trigger repeat.
• Do any other statements not set RepPoint?

ModuleOption statistics;
• Enable statistics printing for single module only.

On InParallel;
• Multi-module InParallel; (which is hard to use)

On humanstats; (suggest refactoring existing stats code first snprintf?)

Time = 0.00 sec Generated terms = 1234567890 (1.2G)
test Terms in output = 1234 (1.2K)

Bytes used =123456789000 (115GiB)

13/17

https://github.com/form-dev/form/issues/615

Exercises/Ideas: Easier (probably?)

User-defined kind label for C print mode: C++11 has [user-defined literals].
• Format C, kind;

#printmeminfo. Currently I use:
• #pipe echo "#message Current RSS: $(($(ps -o rss= ‘PID ’)/1024))M"

Fix [#627] Particle definition can be overwritten as function. If with symbol:
• test.frm Line 5 --> f has been declared as a function already

Fix [#612] why doesn’t #timeout work properly with tform?
• This causes Github CI jobs to fail occasionally.

Fix [#646] Evaluate on mzv , euler with no arguments crashes.

Fix [#267] Crash in Transform f addargs(1,last); if f appears with no arguments.
• Bonus: missing mutex UNLOCK in RunPermute.

Fix [#445] Tensors with 0 for argument vanish.

14/17

https://en.cppreference.com/w/cpp/language/user_literal.html
https://github.com/form-dev/form/issues/617
https://github.com/form-dev/form/issues/612
https://github.com/form-dev/form/issues/646
https://github.com/form-dev/form/issues/267
https://github.com/form-dev/form/issues/445

Exercises/Ideas: Easier (probably?)
Fix [#633] formatting of FactArg for negative vector arguments.

• f(-p) -> f(p,-1,1)

Fix [#642] putfirst with negative arguments.
• crashes or produces nonsense

Fix [#631] builtin macros destroy ?a, why? Note ?a appears explicitly in the source...

#procedure foo(?a)
#message ‘toupper_(abc)’
#message ‘?a’

#endprocedure

#call foo(1,2,3)
.end

˜˜˜ABC
foo Line 3 ==> Undefined preprocessor variable ?a

15/17

https://github.com/form-dev/form/issues/633
https://github.com/form-dev/form/issues/642
https://github.com/form-dev/form/issues/631

Exercises/Ideas: Harder, longer term. Not for 5.0. But 5.1?
Parallelize Local G = F; and loading from spectators.
• This can be a large performance bottleneck for large expressions.

Compress the scratch files (zlib, zstd).
• Complication due to Bracket index.

• Disable if an index is created? Do this first?
• Compress each bracket’s content (possibly poor performance?)

Remove/improve MAXSUBEXPRESSIONS limitation?
• Annoying when loading enormous text files.

#includemma load Mathematica-format text files directly?

Factorized PolyRatFun? FactPolyRatFun? PolyFactFun?
• Factorizing denominators has been beneficial for IBP reduction (FIRE+Symbolica).
• Saves on MaxTermSize budget.
• fprf(num, lst (den1,pow1), lst (den2,pow2), ...) ?

Facilities for rational reconstruction from samples over prime fields. #startreconstruct ...
16/17

Conclusions

There has been a lot of development over the last year!

FORM is still widely used, and will continue to be!
• used directly for computation, by many people
• used by a variety of packages
• new packages are still being developed which use FORM

The workshops are driving some participation in development from the wider community.
• We should continue to hold them annually!

There is still a list of things to do, for the release of FORM 5 (this summer?).

• Let’s try to resolve at least some this week!

17/17

	Introduction
	

