Coenraad Marinissen

c.marinissen@nikhef.nl

Nik|[hef




What are the polylogs!

e (Classical

* Harmonic

* Multiple

Properties of the polylogs
* Product algebra

* Singular behaviour
Numerical evaluation
Implementation

* Interface to GINaC

Conclusion and outlook



* Polylogs come in many different varieties:

Classical
=) Harmonic
Multiple

* Closely related to the (multiple) zeta values

=) Multiple zeta value datamine and FORM
=) Polylogs have a natural place in FORM

i Multiple zeta values §




* Recursive Integral representation:

X L'
Li(x) = J dt 1) with Liy(x) =
0 f 1 —x

* Series expansion:

OOxn

LiS(X) — _s
n=1 n

* Implemented in most commonly used software/packages/libraries:

Mathematica, Maple, mpfr, etc.



* Recursive Integral representation:

o a,€1{0,1,— 1}

H(a,ay,...,a:x) = J dt f () H(ay,...,at)
0

e Where we defined
1
Jo(x) = — fix) =

X 1 —x

foix) =

1 +x



* Recursive Integral representation:
. a;€{0,1, -1}

X

H(a,ay,...,a;x) = J dr f,(t) H(ay,...,a t)
0

e \Where we defined
1
filx) =— fix) =
X

Silx) =

/ . _e S —
H(l;x) = —log(1—x)  H(0:x) = log(x) H(-1;x) = log(1 + x)

And with more Indices:

| HO.1:x) = Liyw) HO,—1;x) = — Liy(—x) H(1,0;x) = — logxlog(l — x) + Liy(x)

6



* Recursive Integral representation:

. a;€{0,1,—1)

H(a,ay,...,a:x) = J dt f,(t) H(ay,...,d;t)
0

e Where we defined
1
Jo(x) = — fix) =

X 1 —x

foix) =

1 +x

* Series expansion (wrthout trailing zeroes)

x™M o1 1
I{S1 ,,,,, S(.X)= 2 e E
P

51 %2
n,- n
n>ny>..>n>0 1 2

B LH(0,0,1,0, - 1;x) = Hy_,(0)}

Compact notation ™




* Recursive integral representation: - g, €C

* Gl ..., ast)

G(a;, ay,...,a,Xx) —J dt

* with boundary conditions

G(x) =1 and G(ay,...,a;0) =
* Sum representation
. B XXt X
Li . Sp(xl, ey X)) = 2 s ﬁ
n>n,>...>n,>0 p
The two definitions are related:
( )
, 1 1
Lii . (x,...,x) = (=1G|0,....0,—,...,0,....0,
P X, X Xp
\ s,—1 s1—1 )




i Classical polylogs | Zeta values!

» Multiple zeta values]




* Express product of any two HPLs/MPLs as a linear combination of single
HPLs or MPLs:

H(a;x)H(b,c;x) = H(a,b,c;x)+ Hb,a,c;x)+ H(b,c,a;x)
* Thisis called a shuffle algebra.

10



* Express product of any two HPLs/MPLs as a linear combination of single
HPLs or MPLs:

H(a;x)H(b,c;x) = H(a,b,c;x)+ Hb,a,c;x)+ H(b,c,a;x)

* Thisis called a shuffle algebra.

* Minimal set of polylogs/basis

_}Z/I\’Iinimal:All other HPLs can be constructed from this set using the product algebra.

Irreducible: HPLs without divergences

Weight | Full basis Irreducible set Minimal set
1 3 3 3
2 9 1 3
3 27 12 8
4 81 36 18
5 243 108 48
6 729 324 116
7 2187 972 312
8 6561 2916 810




* The HPLs can have divergences in x =0 and x = 1,

* The divergent part can be extracted with the help of the above product

rules:
s [ ralliNG zEro
= x =0
H(sy, ..., Sp;x) — HQO,sy, ..., sp;x)

Sp;x) — ... — H(sy, ...,O,Sp;x)

Sp;X) — H(sp, 1,.. ,p,X)

;X)—...—H(Sl,.. p, ; X)

Leadig one

* One can similarly remove trailing zeroes for the multiple polylogs

12



* Use series expansion:

O n

Z x™M o] 1
P
nin

n>ny>..>n,>0 1 2 1y

xn”

RPN L)
B Z I ) P
o S \)) e Sp
n-n
n>ny>.>n,>0 1 T2 p

=) |x| <1and(s,x) # (1,1)

» | x| < 1and (sq,x) # (1,1)

=) |x;...x,| < 1and(s,x) # (1,1)

* Qutside range of convergence: transformation of the argument.

. (1 1 :
Li,(x) = — Li, ;) — - 5[10g(—)€)]

* Close to I:have to improve rate of convergence

Liy(x) = — Li,(1 —x) + ¢, — log(x)log(1 — x)

13



* Bernoulli substitution: “ Bernoull numbers

. | 1
Slow convergence in the range 5 < x| <1

=) Can do a similar transformation for the other classical polylogs and HPLs
* Holder convolution:

i 1 1
Gz =) G 1=zl =z 51-—)G I

P

=) Already used to improve the rate of convergence for the MZV's in
FORM.

14



' Tool/

GiNaC

ibrary : :

Robust

Polylogtools § mathematica §

Robust

HPL f Mathematica A

Direct Mathematica
code

handyG ', Fortran 90

Fast

FastGPL

Fast

15



* Coding from scratch is a lot of work and potentially error prone
=) Interface with GiNaC (C++)

* Build option: ./configure —-with-ginac Off by default?

* Checks if the GINaC library is already available on the system

16



* Coding from scratch is a lot of work and potentially error prone

=) Interface with GiNaC (C++)

* Build option: ./configure —-with-ginac

Off by default!

¢ Classical % Harmonic . Multiple

f Mathematical § | i I’
{ notation t 1

Ginac  § Li({s1,..,sp},{x1,.,xp})

FORM 1} b mpl_(1st_(s1,.,5p), st_(x1,.,xp)) §

=~

17



* Coding from scratch is a lot of work and potentially error prone
=) Interface with GiNaC (C++)

* Build option: ./configure —-with-ginac Off by default?

e Checks if the GINaC library is already avallable on the system

* Already reserved names: ftypes.h

. . 89

e New reserved names

=) hpl_andmpl_and lst_

18



EVALUATE

* bvaluate all polylogs:
Evaluate;
e Or evaluate one of the functions

Evaluate hpl_;

{Example:

#StartFloat 64

L F = 1in_(2,1)*hpl_(2,-1,0.5);
Evaluate;

Print;

.end

o
1.21627718215376320202e-01,;

F

#S
L

Y
Pr
. €

tartFloat 64

F = 1lin_(2,1)xhpl_(2,-1,0.5);
aluate hpl_;

int;

nd

7.39407862397919301042e-02x1in_(2,1);

19



* Etvaluate all polylogs:

=) Evaluate;

* In the compiler buffer we find:
ftypes.h

Hand Sides: e
3 4294967295 R

3 4294967294
3 4294967293

20



 Or evaluate one of the functions
=) Evaluate hpl_;

* In the compiler buffer we find:
ftypes.h

Left Hand Sides:
87 3 124

21



EVALUATE

* bvaluate all polylogs:
Evaluate;

e Or evaluate one of the functions
Evaluate hpl_;

 Would it be nice to also have Evaluate sin_;?

#StartFloat 64
L F = sin_(pi_)*cos_(pi_/2);
Evaluate sin_;
test_lin.frm Line 4 ——> cos_(pi_/2) should be a built in function that can be e

valuated numerically.
Print;
.end
Program terminating at test_lin.frm Line 5 —-—>

22



Evaluate all polylogs:

=) Evaluate;

Or evaluate one of the functions
=) Evaluate hpl_;
Would it be nice to also have Evaluate sin_;?

Or evaluate everything, except for one function not!

=) Evaluate;
NEvaluate mzv_;

23



* Interface/wrapper to connect to the c++ code of GINaC:

=) ginacwrapp.cc
* Connecting point between FORM and and the GINaC interface:

=) EvaluatePolylog();

Called fro Generator();

» Structure of EvaluatePolylog():

|. Locate a lin_, hpl_ormpl_ function
Actual translation to ct++/GINaC
Get argument and check for correctness s done here

3. Evaluate
=) CalculateLin(), CalculateHpl(), or CalculateMpl()

4. Put the new term together

=) Both real and imaginary part

24



ANALYTIC CONTINUATION

Use FORM's bulld in symbol i_ which already uses i_"2 = -1.

#StartFloat 64

L F=hpl (2,1,0,-0.5);
Evaluate;

Print;

.end

F =
1.47455223413830821651e-01%i_ - 1.33071522199035183362e-01;

Using integral representation, we can also go outside the range of where the
series representation converges.
Dangerous business, I.e. pick a branch

For now, copy the choice used for GiNaC.

Not implemented for the other mathematical functions which use the
mpfr-library

What about the dilog 1i2_/
25



For the polylogs:
* The mzv's need MaxVWeight. #StartFloat Precision, MaxWeight

=) Also for the polylogs?

* Allow both hpl_(s1,..,sp,x) as hpl_(lst_(s1,..,sp),x)?
* Wat to do with the dilog? Now implemented using mpfr.
* Also implement the multiple polylogs of Goncharov or the Nielsen polylogs?

=) gpl_(1lst_(al,..,as),x) and npl_(n,p,x)

26



For the polylogs:
* The mzv's need MaxVWeight. #StartFloat Precision, MaxWeight

=) Also for the polylogs?

* Allow both hpl_(s1,..,sp,x) as hpl_(lst_(s1,..,sp),x)?
* Wat to do with the dilog? Now implemented using mpfr.
* Also implement the multiple polylogs of Goncharov or the Nielsen polylogs?

=) gpl_(1lst_(al,..,as),x) and npl_(n,p,x)

More general:
* Precision in bits or digits!
* What to do with infinity?

=) tan_(pi_/2) is unaltered, mzv_(1,2) terminates the program.

* Merge some of the code with evaluate.h?

27



* Finish the GINaC interface for the polylogs
=) Also take imaginary arguments
=P Get ready for version 5.0.0

* |Implement finite field methods in FORM:
=) Native implementation: a lot of work
=) Interface to FiniteFlow (c++)

e Jest sulte
o Qutreach:

=) User side
=) Developers side

28



29



