
Five-Loop Calculations with FORM

Andreas Maier

6 May 2025

Five-Loop calculations

Massive vacuum diagrams

• QCD decoupling
• Moments of vacuum polarisation
• Anomalous dimensions

Massless propagators

−→

• Gravitational potential

2 / 17

Setup
TOols for MUltiloop CAlculations

1 Generate diagrams: QGRAF (Fortran) [Nogueira 1991]

2 Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

3 Manipulate expressions: nucalc (FORM)
I Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]

I Insert Feynman rules (FORM)
I Compute traces (FORM)
I Expand in momenta/masses: series (FORM)
I Reduce tensor integrals: nucalc (FORM) or tide (Rust)
I Expand in ›: series (FORM)
I Cancel scalar products: nucalc (FORM)

4 Reduce to basis integrals: crusher + tinbox (C++)
5 Compute master integrals
6 Renormalise (FORM)

3 / 17

Setup
TOols for MUltiloop CAlculations

1 Generate diagrams: QGRAF (Fortran) [Nogueira 1991]

2 Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

3 Manipulate expressions: nucalc (FORM)
I Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]

I Insert Feynman rules (FORM)
I Compute traces (FORM)
I Expand in momenta/masses: series (FORM)
I Reduce tensor integrals: nucalc (FORM) or tide (Rust)
I Expand in ›: series (FORM)
I Cancel scalar products: nucalc (FORM)

4 Reduce to basis integrals: crusher + tinbox (C++)
5 Compute master integrals
6 Renormalise (FORM)

3 / 17

Setup
TOols for MUltiloop CAlculations

1 Generate diagrams: QGRAF (Fortran) [Nogueira 1991]

2 Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

3 Manipulate expressions: nucalc (FORM)
I Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]

I Insert Feynman rules (FORM)
I Compute traces (FORM)
I Expand in momenta/masses: series (FORM)
I Reduce tensor integrals: nucalc (FORM) or tide (Rust)
I Expand in ›: series (FORM)
I Cancel scalar products: nucalc (FORM)

4 Reduce to basis integrals: crusher + tinbox (C++)
5 Compute master integrals
6 Renormalise (FORM)

3 / 17

Setup
TOols for MUltiloop CAlculations

1 Generate diagrams: QGRAF (Fortran) [Nogueira 1991]

2 Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

3 Manipulate expressions: nucalc (FORM)
I Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]

I Insert Feynman rules (FORM)
I Compute traces (FORM)
I Expand in momenta/masses: series (FORM)
I Reduce tensor integrals: nucalc (FORM) or tide (Rust)
I Expand in ›: series (FORM)
I Cancel scalar products: nucalc (FORM)

4 Reduce to basis integrals: crusher + tinbox (C++)

5 Compute master integrals
6 Renormalise (FORM)

3 / 17

Setup
TOols for MUltiloop CAlculations

1 Generate diagrams: QGRAF (Fortran) [Nogueira 1991]

2 Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

3 Manipulate expressions: nucalc (FORM)
I Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]

I Insert Feynman rules (FORM)
I Compute traces (FORM)
I Expand in momenta/masses: series (FORM)
I Reduce tensor integrals: nucalc (FORM) or tide (Rust)
I Expand in ›: series (FORM)
I Cancel scalar products: nucalc (FORM)

4 Reduce to basis integrals: crusher + tinbox (C++)
5 Compute master integrals

6 Renormalise (FORM)

3 / 17

Setup
TOols for MUltiloop CAlculations

1 Generate diagrams: QGRAF (Fortran) [Nogueira 1991]

2 Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

3 Manipulate expressions: nucalc (FORM)
I Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]

I Insert Feynman rules (FORM)
I Compute traces (FORM)
I Expand in momenta/masses: series (FORM)
I Reduce tensor integrals: nucalc (FORM) or tide (Rust)
I Expand in ›: series (FORM)
I Cancel scalar products: nucalc (FORM)

4 Reduce to basis integrals: crusher + tinbox (C++)
5 Compute master integrals
6 Renormalise (FORM)

3 / 17

Which parts are hard?
Decoupling / gluon propagator

Step # Output Terms [106] CPU Time [1000 s]

Insert Feynman Rules 25 1
Compute Traces 5 21
Expand in q 23 4
Reduce Tensor Integrals 7 0.5
Expand in › 3 3
Cancel Scalar Products 2 1

4 / 17

Which parts are hard?
Gravitational potential beyond static sources

?

Step # Output Terms [106] CPU Time [1000 s]

Insert Feynman Rules 76 ???
Expand in › 6 ???
Expand in velocity 2 ???
Resolve energy integrals 1 < 583
Cancel Scalar Products 2 . 120

Hardest family so far does not finish within a few months

5 / 17

Gravitational potential
Energy integrals

• ∝
R
dti

ddp
(2ı)d

e i ~p~xa(ti)−ip0ti
ˆ
1 +O

`
va(ti)

2
´˜

• Evaluate energy integrals:Z
dp0
(2ı)d

pn0e
ip0(ti−tj) −→ ‹(n)(ti − tj)

• Repeated integration by parts in ti −→ single integralZ
dt

Z
dd−1q

(2ı)d−1
e i ~q(x1(t)−x2(t)) V

`
~q; xa(t); va(t); aa(t); : : :

´
Time-consuming integration by parts over dummy variables

6 / 17

My Wishlist

• Traces
• Index relabelling via graph canonisation [cf. Symbolica]

• Parallelisation diagnostics
• Quality of life, especially encapsulation

7 / 17

Traces
Built-in rules

1 Traces with odd number of ‚ vanish
2 Replace ‚—‚— → ‹—— ; =p2 → p2

3 Find pairs ‚— · · · ‚— or =p · · · =p with minimum distance.
I Repeatedly anticommute until next to each other
I Apply rule 2.

Can generate large intermediate expressions:
25 · 106 terms → 361 · 106 terms → 5 · 106 terms

8 / 17

Traces
Potential Improvements

• More fine-grained control, e.g. setting p · q → 0 after anticommuting

• Sort early, sort often!
• Rotate to canonical form: tr(‚—2 · · · ‚—n‚—1) → tr(‚—1 · · · ‚—n)
,→ facilitate cancellations between different terms

• Work on multiple traces in same term concurrently
• Order of traces (“label”) in same term is irrelevant
• Work towards uniform length of traces in different terms: start with longest

traces
• Interleave index renumbering: ‚—‚ȷ‚— − ‚‚ȷ‚

 = 0

9 / 17

Traces
Potential Improvements

• More fine-grained control, e.g. setting p · q → 0 after anticommuting
• Sort early, sort often!

• Rotate to canonical form: tr(‚—2 · · · ‚—n‚—1) → tr(‚—1 · · · ‚—n)
,→ facilitate cancellations between different terms

• Work on multiple traces in same term concurrently
• Order of traces (“label”) in same term is irrelevant
• Work towards uniform length of traces in different terms: start with longest

traces
• Interleave index renumbering: ‚—‚ȷ‚— − ‚‚ȷ‚

 = 0

9 / 17

Traces
Potential Improvements

• More fine-grained control, e.g. setting p · q → 0 after anticommuting
• Sort early, sort often!
• Rotate to canonical form: tr(‚—2 · · · ‚—n‚—1) → tr(‚—1 · · · ‚—n)
,→ facilitate cancellations between different terms

• Work on multiple traces in same term concurrently
• Order of traces (“label”) in same term is irrelevant
• Work towards uniform length of traces in different terms: start with longest

traces
• Interleave index renumbering: ‚—‚ȷ‚— − ‚‚ȷ‚

 = 0

9 / 17

Traces
Potential Improvements

• More fine-grained control, e.g. setting p · q → 0 after anticommuting
• Sort early, sort often!
• Rotate to canonical form: tr(‚—2 · · · ‚—n‚—1) → tr(‚—1 · · · ‚—n)
,→ facilitate cancellations between different terms

• Work on multiple traces in same term concurrently
• Order of traces (“label”) in same term is irrelevant

• Work towards uniform length of traces in different terms: start with longest
traces

• Interleave index renumbering: ‚—‚ȷ‚— − ‚‚ȷ‚
 = 0

9 / 17

Traces
Potential Improvements

• More fine-grained control, e.g. setting p · q → 0 after anticommuting
• Sort early, sort often!
• Rotate to canonical form: tr(‚—2 · · · ‚—n‚—1) → tr(‚—1 · · · ‚—n)
,→ facilitate cancellations between different terms

• Work on multiple traces in same term concurrently
• Order of traces (“label”) in same term is irrelevant
• Work towards uniform length of traces in different terms: start with longest

traces
• Interleave index renumbering: ‚—‚ȷ‚— − ‚‚ȷ‚

 = 0

9 / 17

Index Renumbering

Lots of dummy indices / variables:
• Feynman rules for vector and tensor boson vertices
• Time integrals in gravitational potential
• Loop momenta

Full canonisation in FORM:
If there are N sets of dummy indices all N! permutations are tried. This can
be very costly [...]

Alternative: graph canonisation [cf. Symbolica]

Ti2i3i1Ti3i2i1 →
i2

i3
i1

T (3)

T (2)

T (1)

T (3)

T (2)

T (1)

→
i1

i2
i3

T (3)

T (2)

T (1)

T (3)

T (2)

T (1)

→ Ti1i2i3Ti2i1i3

10 / 17

Index Renumbering

Lots of dummy indices / variables:
• Feynman rules for vector and tensor boson vertices
• Time integrals in gravitational potential
• Loop momenta

Full canonisation in FORM:
If there are N sets of dummy indices all N! permutations are tried. This can
be very costly [...]

Alternative: graph canonisation [cf. Symbolica]

Ti2i3i1Ti3i2i1 →
i2

i3
i1

T (3)

T (2)

T (1)

T (3)

T (2)

T (1)

→
i1

i2
i3

T (3)

T (2)

T (1)

T (3)

T (2)

T (1)

→ Ti1i2i3Ti2i1i3

10 / 17

Parallelisation
Debugging

• Straightforward parallelisation one of the most important (T)FORM features
• moduleoption annotations needed for dollar variables:

FORM will veto the use of multiple threads/processors for modules in which
dollar variables obtain values [...]

I Helpful diagnostics: which dollar variables block parallel execution?
I on parallel diagnostics;?

11 / 17

Parallelisation
Better encapsulation

Need extra code to execute procedure with dollar variables in parallel
l foo =
#include− large_expression
;
bracket ‘F’,ep;
.sort
keep brackets;
#call expand(‘F’,ep,‘CUT’)
∗ ...maybe more code here ...
#call parallel
.sort

• Breaks encapsulation: users should not have to care about internal dollar
variables

• Nonlocality: moduleoption code far away from actual dollar variables, harder to
understand and get right

Ideas:
• Allow moduleoption local $...; and similar earlier in module?
• Alternative: make local etc. part of dollar variable declaration?
,→ next slides

12 / 17

Parallelisation
Better encapsulation

Need extra code to execute procedure with dollar variables in parallel
l foo =
#include− large_expression
;
bracket ‘F’,ep;
.sort
keep brackets;
#call expand(‘F’,ep,‘CUT’)
∗ ...maybe more code here ...
#call parallel
.sort

• Breaks encapsulation: users should not have to care about internal dollar
variables

• Nonlocality: moduleoption code far away from actual dollar variables, harder to
understand and get right

Ideas:
• Allow moduleoption local $...; and similar earlier in module?
• Alternative: make local etc. part of dollar variable declaration?
,→ next slides

12 / 17

Quality of Life
Encapsulation

Example from nucalc code:
#do i=1,‘$num‘P’’

#$reduction‘i’ = [nucalcReduceScalarProducts::sp](‘P’‘i’,‘P’‘i’) − [nucalcReduceScalarProducts::sp](‘$‘P’‘i’’,‘$‘P’‘i’’);
#inside $reduction‘i’

id [nucalcReduceScalarProducts::sp]([nucalcReduceScalarProducts::p]?,[nucalcReduceScalarProducts::q]?) = [nucalcReduceScalarProducts::p].[nucalcReduceScalarProducts::q];
#do L1={‘?L’}

#do L2={‘?L’}
id ‘L1’.‘L2’ = [nucalcReduceScalarProducts::sp](‘L1’, ‘L2’);

#enddo
#enddo

#endinside
#enddo

#define EQS "$reduction1"
#do i=2,‘$num‘P’’

#redefine EQS "‘EQS’,$reduction‘i’"
#enddo

#call RSPSolveLinear([nucalcReduceScalarProducts::sp],‘EQS’)

• Evil hack: Perl script creating package-local variable name from [:sp] etc.
• Manual prefix for package-internal procedure: RSPSolveLinear
• Both original and generated code hard to read

13 / 17

Quality of Life
Encapsulation

#package PACKAGE

∗ code here

#endpackage

and then
• name mangling

#package PACKAGE

symbols x,y,z;

#procedure PROC
#endprocedure

#define $var (local)

#endpackage

#call PACKAGE@PROC
#importprocedure PROC = PACKAGE@PROC
#call PROC

14 / 17

Quality of Life
Encapsulation

#package PACKAGE

∗ code here

#endpackage

and then
• name mangling
• or new keyword for internal objects, cf. static in C/C++
,→ hard to implement for variables

15 / 17

Quality of Life
Asking for the Moon

Support for Language Server Protocol

FORM as a library

16 / 17

Conclusions

• FORM is a central ingredient in five-loop setup:
I Colour factors
I Feynman rules, index contractions
I Traces
I Series expansions
I : : :

• Looking forward to future developments

17 / 17

