Five-Loop Calculations with FORM

Andreas Maier

mEas=p
rAs

6 May 2025

Five-Loop calculations

Massive vacuum diagrams Massless propagators
® ® l
n | . '.
,’W@L‘ Lo i s
| & | e e
I /\ | A
¢ & & ® o T
* QCD decoupling e Gravitational potential

e Moments of vacuum polarisation
e Anomalous dimensions

2/17

© Generate diagrams: QGRAF (Fortran) mogueira 1991)

3/17

© Generate diagrams: QGRAF (Fortran) mogueira 1991)

@ Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

3/17

© Generate diagrams: QGRAF (Fortran) mogueira 1991)

@ Identify diagram families: autopsy or dynast (Rust),

based on nauty and Traces (C) ckay, Piperno 2014]
©® Manipulate expressions: nucalc (FORM)

>

Y vV vV VvV VY

Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]
Insert Feynman rules (FORM)

Compute traces (FORM)

Expand in momenta/masses: series (FORM)

Reduce tensor integrals: nucalc (FORM) or tide (Rust)

Expand in e: series (FORM)

Cancel scalar products: nucalc (FORM)

3/17

© Generate diagrams: QGRAF (Fortran) mogueira 1991)

@ Identify diagram families: autopsy or dynast (Rust),

based on nauty and Traces (C) ckay, Piperno 2014]
©® Manipulate expressions: nucalc (FORM)

>

Y vV vV VvV VY

Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]
Insert Feynman rules (FORM)

Compute traces (FORM)

Expand in momenta/masses: series (FORM)

Reduce tensor integrals: nucalc (FORM) or tide (Rust)

Expand in e: series (FORM)

Cancel scalar products: nucalc (FORM)

O Reduce to basis integrals: crusher + tinbox (C++)

3/17

© Generate diagrams: QGRAF (Fortran) mogueira 1991

@ Identify diagram families: autopsy or dynast (Rust),
based on nauty and Traces (C) [McKay, Piperno 2014]

©® Manipulate expressions: nucalc (FORM)

>

Y vV vV VvV VY

Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]
Insert Feynman rules (FORM)

Compute traces (FORM)

Expand in momenta/masses: series (FORM)

Reduce tensor integrals: nucalc (FORM) or tide (Rust)

Expand in e: series (FORM)

Cancel scalar products: nucalc (FORM)

O Reduce to basis integrals: crusher + tinbox (C++)
© Compute master integrals

3/17

© Generate diagrams: QGRAF (Fortran) mogueira 1991

@ Identify diagram families: autopsy or dynast (Rust),

based on nauty and Traces (C) [McKay, Piperno 2014]

©® Manipulate expressions: nucalc (FORM)

>

Y vV vV VvV VY

Calculate colour factors: color (FORM) [van Ritbergen, Schellekens, Vermaseren 1998]
Insert Feynman rules (FORM)

Compute traces (FORM)

Expand in momenta/masses: series (FORM)

Reduce tensor integrals: nucalc (FORM) or tide (Rust)

Expand in e: series (FORM)

Cancel scalar products: nucalc (FORM)

O Reduce to basis integrals: crusher + tinbox (C++)
© Compute master integrals
0O Renormalise (FORM)

3/17

Which parts are hard?

Step # Output Terms [10°] CPU Time [1000 s]
Insert Feynman Rules 25 1

Compute Traces 5 21

Expandin g 23 4

Reduce Tensor Integrals 7 0.5

Expand in e 3 3

Cancel Scalar Products 2 1

4/17

Which parts are hard?

Step # Output Terms [10°] CPU Time [1000 s]
Insert Feynman Rules 76 2?7

Expand in e 6 2292

Expand in velocity 2 ?7?

Resolve energy integrals 1 < 583

Cancel Scalar Products 2 < 120

Hardest family so far does not finish within a few months

5/17

Gravitational potential

o ¥ o bty PRI [1 4 O va(1:)?)]
° Evaluate energy integrals:

/(gp;)d plePolti=t) . §(M(¢ —)

¢ Repeated integration by parts in t; — single integral

dd 1
/dt / ; (x1 t)—Xz(t))\/(q',xa(t),Va(t),aa(t)""

2ﬂ-d1

Time-consuming integration by parts over dummy variables

6/17

Traces

Index relabelling via graph canonisation . symbolicay
Parallelisation diagnostics

Quality of life, especially encapsulation

7/17

Traces

@ Traces with odd number of v vanish
© Replace y,v* — 6}, p> — p?
© Find pairs -y, - - -y* or p- - - p with minimum distance.

» Repeatedly anticommute until next to each other
> Apply rule 2.

Can generate large intermediate expressions:
25-10° terms — 361 - 10° terms — 5 - 106 terms

8/17

Traces

* More fine-grained control, e.g. setting p - g — 0 after anticommuting

9/17

Traces

* More fine-grained control, e.g. setting p - g — 0 after anticommuting
e Sort early, sort often!

9/17

Traces

* More fine-grained control, e.g. setting p - g — 0 after anticommuting
e Sort early, sort often!

* Rotate to canonical form: tr(yu, - - - Yun Y1) = tr(Vus - Vuun)
— facilitate cancellations between different terms

9/17

Traces

More fine-grained control, e.g. setting p - ¢ — 0 after anticommuting
Sort early, sort often!

Rotate to canonical form: tr(vu, - - YunYur) = tr(Vus - Vuun)
— facilitate cancellations between different terms

Work on multiple traces in same term concurrently
Order of traces (“label”) in same term is irrelevant

9/17

Traces

More fine-grained control, e.g. setting p - ¢ — 0 after anticommuting
Sort early, sort often!

Rotate to canonical form: tr(vu, - - YunYur) = tr(Vus - Vuun)
— facilitate cancellations between different terms

Work on multiple traces in same term concurrently
Order of traces (“label”) in same term is irrelevant

e Work towards uniform length of traces in different terms: start with longest
traces

e Interleave index renumbering: v,v,Y* — 1.7,7 =0

9/17

Index Renumbering

Lots of dummy indices / variables:
e Feynman rules for vector and tensor boson vertices
¢ Time integrals in gravitational potential
® Loop momenta

Full canonisation in FORM:
If there are N sets of dummy indices all N! permutations are tried. This can

be very costly [...]

10/17

Index Renumbering

Lots of dummy indices / variables:
e Feynman rules for vector and tensor boson vertices
¢ Time integrals in gravitational potential
® Loop momenta

Full canonisation in FORM:
If there are N sets of dummy indices all N! permutations are tried. This can

be very costly [...]
Alternative: graph canonisation (et symbolica)

7D 7D 71 71
Tizi3i1Ti3i2i1 - 7—(2) i3 7—(2) — 7G) i2 T = Ti1i2i3Ti2i1i3
7G) & '1 LTe 7O 3 L 70)

10/17

Parallelisation

e Straightforward parallelisation one of the most important (T)FORM features

* moduleoption annotations needed for dollar variables:
FORM will veto the use of multiple threads/processors for modules in which

dollar variables obtain values [...]

» Helpful diagnostics: which dollar variables block parallel execution?
» on parallel diagnostics;?

11/17

Parallelisation

Better encapsulation

Need extra code to execute procedure with dollar variables in parallel

1 foo =
#include- large_expression

bracket ‘F’,ep;
.sort

keep brackets;

* Breaks encapsulation: users should not have to care about internal dollar
variables

* Nonlocality: moduleoption code far away from actual dollar variables, harder to
understand and get right

12/17

Parallelisation

Better encapsulation

Need extra code to execute procedure with dollar variables in parallel

1 foo =
#include- large_expression

bracket ‘F’,ep;
.sort

keep brackets;

#call expand(‘F’,ep, ‘CUT")

* ...maybe more code here ...
#call parallel

.sort

* Breaks encapsulation: users should not have to care about internal dollar
variables
* Nonlocality: moduleoption code far away from actual dollar variables, harder to
understand and get right
ldeas:
¢ Allow moduleoption local $...; and similar earlier in module?
¢ Alternative: make local etc. part of dollar variable declaration?

< next slides
12/17

Quality of Life

Encapsulation

Example from nucalc code:

#do i=1, ‘$num‘P’’
#$reduction’i’ = [nucalcReduceScalarProducts::sp](‘P’‘i’,‘P'‘i") - [nucalcReduceScalarProducts::sp](‘$‘P’‘i’’, $‘P"‘i"");
#inside $reduction‘i’
id [nucalcReduceScalarProducts::sp]([nucalcReduceScalarProducts::pl?, [nucalcReduceScalarProducts::ql]?) = [nucalcReduceScalarProd
#do L1={‘?L"}
#do L2={'7L"}
id ‘L1’.‘L2" = [nucalcReduceScalarProducts::sp]l(‘Ll’, ‘L2");
#enddo
#enddo
#endinside
#enddo

#define EQS "$reductionl"
#do 1=2, ‘$num‘P’’

#redefine EQS "‘EQS’,$reduction‘i’"
#enddo

#call RSPSolvelinear([nucalcReduceScalarProducts::sp], ‘EQS’)

¢ Evil hack: Perl script creating package-local variable name from [:sp] etc.
e Manual prefix for package-internal procedure: SolveLinear
¢ Both original and generated code hard to read

Quality of Life

Encapsulation

#package PACKAGE
* code here

#endpackage

and then
® name mangling

#package PACKAGE
symbols x,y,z;

#procedure PROC
#endprocedure

#define $var (local)
#endpackage
#call PACKAGE@PROC

#importprocedure PROC = PACKAGE@PROC
#call PROC

Quality of Life

Encapsulation

#package PACKAGE
* code here

#endpackage

and then
* name mangling

e or new keyword for internal objects, cf. static in C/C++
— hard to implement for variables

15/17

16/17

Conclusions

e FORM is a central ingredient in five-loop setup:

» Colour factors

» Feynman rules, index contractions
» Traces

» Series expansions

>

¢ |Looking forward to future developments

17/17

