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Introduction

LHC puts out very precise results (uncertainty less than 1 % in some cases)!
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Introduction

e Precision phenomenology is impossible without loop corrections

e Perturbative expansion of matrix element naturally involves loop corrections:

number of loops

+ + ... final state
multiplicity
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Introduction

 Several methods to reduce loop integrals to a basis (to masters])
 Several ways to evaluate remaining (master) loop integrals

e For aclass of integrals Feynman parameter representation and hyperlogs are
working (well)
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Emergence of hyperlogs
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Emergence of hyperlogs

Feynman parametrization of loop integrals:

LE’YEI‘ N N ul/—#d
| = / dx,) ) (1 - xi> ( x.”i_1> _
et 2 ) W) s
V= Z v, d=4-—2¢
i=1

U and F are graph polynomials, U related to spanning trees of the graph, while 7
related to spanning 2-forests
For details see e.g.: Weinzierl: Feynman Integrals, chapter 3
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Hyperlogs — parametric representation - examples

e Simple one-loop massless box diagram:

ql - 67
P b2 — /) —
“ a2 =/ —p1,
q3 = —p1 — p2,
a a3 Qs ={ —p1— p2 — P3
7 £: loop momentum
D4 b3

U= X1+ X9+ X3+ Xq,
F = (p1 + pa)*x1x3 + (p1 + P2)*XoX4
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Hyperlogs — parametric representation - examples

U = X4XgX7X8 + X2X6X7X8 + X1X6X7X8 + X3X4X7Xg+

+ X1X4X7X8 + X2X3X7Xg + X1X3X7Xg + X1X2X7X8+

+ X4X5X6X8 1 X2X5X6Xg + X1X5X6Xg + X2X4XgXg+

e Zig-zag 4: + X1X4XgXg + X3X4X5Xg + X1X4X5Xg + XoX3X5Xg+
+ X1X3X5Xg + X1X2X5Xg + X2X3X4Xg + X1X3X4Xg+
+ X1X2X4Xg + X4X5X6X7 + X2X5X6X7 + X1X5X6X7+
-+ X3X4XgX7 4 X1X4XgX7 + X2X3XgX7 + X1X3XgX7+
+ X1X2XgX7 + X3X4X5X7 + X1X4X5X7 + X2X3X5X7+
+ X1X3X5X7 + X1X2X5X7 + X3X4X5X6 + X2X4X5X6+

+ X2X3X5X6 + X1X3X5Xg + X1X2X5X6 + X2X3X4 X6+
+ X1X3X4Xg + X1X2X4Xg + X2X3X4X5 + X1X3X4 X5+
+ X1X2X4X5
F=1 10/41




Emergence of hyperlogs

Observations:
« The first graph (Symanzik) polynomial (/) is always linear in x’s

« The second graph (Symanzik) polynomial () is only linear in absence of
internal masses
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Emergence of hyperlogs

e Assume the parametric representation is ¢ finite or a priori ¢ regularized:

L+l

Y-S _ 2 [1 +e(L+1)logl + 0(62)] )
F*fu F2l-v [1 — el log F + 0(62)] , veN

e Here we stick to the lowest order termin e
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Emergence of hyperlogs

e Keep graph polynomial exponents formal:

e Using the Chen-Wu theorem we can keep a subset of integration variables in
the Dirac-delta:

N oo 1 o0 1
dx; | 6 (1 — = d —_—
(g/o X') (=0 g = [, X0t g

UZU|XN:1, ‘F:.F|

xN=1
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Emergence of hyperlogs

Have to fix a o integration order

Xg(1)) Xg(2)s + + + s Xg(N=1)

Without internal masses both F and G are linear in all remaining xs
1

o0 1 oo
dX1 XNl == / Xm “XN-1 — ~
/0 UmFn 0 <U1 + Uy (1 )>m (]—“1 _|_]-‘(1)XU(1)>n

Integrand can be partial fractioned in x,1)

Resulting integrand has polynomial in denominator with some k power

—k > 3 1 ~ o~
<G1+G(1)XU(1)> { k > 2 rational function C Gefl, B

k=1 logarithm
B0 | NIVERSITY of
N% DEBRECEN

14/ 41



Emergence of hyperlogs

Can we do something better than logarithms?
Hyperlogarithms!

 Special class of iterated integrals (Chen, The Annals of Mathematics 97 (2]
(1973) 217246)

Logw(z) = /OZdZ/Lw(Z/% Ly(z) =1

Z —0o
o Fulfill shuffle relations:
LW1 (Z)sz (Z) = I—W1 (Z) L LW2 (Z)

e See also the slides of Coenraad from yesterday
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Emergence of hyperlogs

Hyperlogarithms:

e Special, one-dimensional Chen iterated path integrals
Chen, Transactions of the American Mathematical Society, Vol. 156, 359-379 (1971)
e These also called Goncharov polylogarithms,
A. B. Goncharov, Math. Research Letters. 5(4), 497 (1998), A. Goncharov, Multiple
polylogarithms and mixed Tate motives (2001)
» Can get harmonic polylogarithms if letters from {—1,0,1}
E. Remiddi, J. A. M. Vermaseren, Int.J.Mod.Phys. A15 (2000) 725-754
e As special cases we can get classical polylogarithms and multiple
polylogarithms
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Emergence of hyperlogs

Hyperlogarithms:

e Most important developments were done by Francis Brown

- Annales scientifiques de 'Ecole Normale Superieure 42 (3] (2009) 371-489.
arXiv:math/0606419

- Communications in Mathematical Physics 287 (2009) 925-958. arXiv:0804.1660,

doi:10.1007/s00220-009-0740-5
- On the periods of some Feynman integrals, ArXiv e-print: arXiv:0910.0114

e Our treatment of loop integrals with hyperlogs closely follow:
E. Panzer, Computer Physics Communications, 188, 148-166 (2015)

What could be done with these constructs?
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e With this definition first integration becomes:

o ~ 0 R(Xp(2)s -+ Xo(N=1))
dxg' dXO' e dXU - -
/0 (1) / @) /0 N=D776, 4 60x, )
R(XO—(Z)v cees XO‘(N—l)) 1
= d d . d _
/0 XO’(l) / X / XU(N 1) G(l) XD’(l) + Gl/G(l)

R(Xp(2)s - - - > Xo(N=1))
:/0 Xo(2) - /0 Xo(n-1) 0 L g, (50)

e This form is not without problems...
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> > R(Xo(2)s - - s Xa(N=1))
/O dXg(2) - /O dXg(N-1) 0 Lo g e (90)
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> > R(Xo(2)s - - s Xa(N=1))
A dXU(Q) e /0 dXO‘(N*l) G(l) Lw—Gl/G(l) (OO)

e Only the full Feynman integral is finite individual terms can diverge
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- o0 R(Xs(2)s - - - Xo(N-1))
/0 dxo(2) . /0 dxo(N—l) G(l) L""LGl/G(U (OC)

e Only the full Feynman integral is finite individual terms can diverge

« All upper integration limits are infinity (how to set up the iterated
integrations?)
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~ oo R(X5(2)s - - - Xo(N-1))
/0 dXp(2) - /0 dXo(N-1) G Lo g, 00 (%)

e Only the full Feynman integral is finite individual terms can diverge

« All upper integration limits are infinity (how to set up the iterated
integrations?)

e Next integration variable also in letter: iterated form is violated
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Hyperlogs for loop integrals
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Hyperlogs for loop integrals

Problem: Only the full Feynman integral is finite individual terms can diverge
¢ Introduce regularized limits
e Partially change the end-point

Z |—<I>1/Z W1) ’ Lreg 80 (w )(OO) ;o Pr(ws) = Wi(g) — W(oo) y  Woo = 0

W1,W2
 Limits at infinity get replaced by regularized limits at infinity and/or replaced
by limits at zero
« Limits at zero can be (depending on word [w] and prefactors):

- expanded as a power series
- logarithmic singularities can be identified which should cancel in the final
result
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Hyperlogs for loop integrals

Problem: All upper integration limits are infinity (how to set up the iterated
integrations?)
For an iterated integral we need:

Xi+1 dx;
/0 dXiL X 1I—10' ZLW/ X| 1 : X]_1¢W/

/

e To set up iterated integrals we rely on the next solution
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Hyperlogs for loop integrals

Problem: Nextintegration variable also in letter: iterated form is violated
— W)
L“’_Gl/e(l) (c0) = Z A
W/

e Fibration basis is needed to turn hyperlogs at infinity inside-out to reveal
dependence on next integration variable
- Most complicated algorithm to implement
Shuffle-regularization at zero
Log-differentiation of letters and their differences
Zero-limit in next integration variable avoiding singularities
- Rescaling of word in X, ()
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Gentle look at fibration basis
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Gentle look at fibration basis

 Important to continue the integration with next variable (t):

lim Ly Z)\W)L

Z—00

e |tis more important to be able to carry this out for reguralized limit hyperlogs:

zlggo Lreg (w(t)) Z)\(W w(t

e For regularized limit hyperlog we use Panzer’s notation as well:

lim Lreg (w (t))(z) = Reg LW(Z)

27700 z—00
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Gentle look at fibration basis

e We use the Panzer notation when words are explicit:

W = walw@ e wan

e The differentiation of a limit hyperlog w.r.t. variable t:

O Reg Lw(z) = —[d logon] Reg Ly, g (2)+
Z— 00

Z—00

Z— 00

n—1
+ Z[at IOg(O'i — O’H_l)} . <1:i,eg Lwl“"7bm+1"'w"(z) — Reg Lwl...épgl.‘.wn(Z))
— 7300 i i
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Gentle look at fibration basis

e The differentiation of a limit hyperlog w.r.t. variable t:

O Reg Lw(z) = —[d logon] Reg Ly, g (2)+
Z— 00

Z—00

Z—00

n—1
+ Z[at log(ai — Ui—i—l)} . <P33g L“"l“"vbo<+1""‘"”(z) — Reg Lwl...é/,gl...wn(Z))
1 7300 i i

- Differential form has limit hyperlogs with words having one less letter
- t dependence is partially exposed (reduced words can still have

dependence on t)
= Serves as an iterative way to construct fibration basis
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Gentle look at fibration basis

 Differential form is given to define fibration basis in variable t
= Integration constant has to be provided:

Reg Ly (2) =C+ > A"y (1)

z—00 ;
w

* Integration constant is defined as a regular t — 0 limit of the original limit
hyperlog:

C = Reg Reg Lw(2)

t—0 z—o0
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Gentle look at fibration basis

* Integration constant is defined as a regular t — 0 limit of the original limit
hyperlog:

C = Reg Reg Lw(2)
t—0 z—o0
e The t — 0 limit is highly non-trivial:
- If last letter has a constant term t — 0 can be safely taken
- If leading term in last letter depends on t rescaling and/or shuffle
regularization is needed
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Gentle look at fibration basis

To implement an efficient integration method using hyperlogs several non-trivial
algorithms are needed, including

e Nested data-structures to hold polynomial and rational function letters
e Letters are forming words

e Have to detect variable dependence in function arguments

e Shuffling of argument lists

e Eliminating arguments

e Rescaling of arguments

 Selective differentiation and integration of terms

» Wanted the code to be updatable for a long time

=- Most sophisticated software development is selected

UNIVERSITY of
DEBRECEN

?@f
N#\

28/41




Unit Driven Development
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Unit Driven Development

ldea:
e Completely modular design
e Re-usable, as generic as possible routines
e Motto:

If description of routine needs more than a single sentence it does too much
—> break it to smaller ones

» Algorithms are not etched to stone, need to be updatable
= Functionality should be tested separately
= Unit driven development philosophy is adopted
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Unit Driven Development

Red light

@

Refactor Green light
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Unit Driven Development

Red light

Red light:
e Start with an empty routine
e Create the unit test first
- Specify an input

- Define what output we would like to see
\/‘ e With an empty routine the test will first fail
"red light”

Refactor Green light
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Unit Driven Development

Red light

Green light:
e Implement a suitable algorithm
e Tweak it until the unit passes test

\/‘ = It does the desired functionality

Refactor Green light
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Unit Driven Development

Red light

Refactor:

e |f performance is not satisfactory change the
algorithm, improve the code

* |tis safe totouch the routine because we will
\/‘ always see when we break functionality!

Refactor Green light
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UDD in FORM
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UDD in FORM

e Using check.rb provided with FORM slightly personalized
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UDD in FORM
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Using check.rb provided with FORM slightly personalized

Each routine receives its own unit test file

sToRatFunc. frm

CollectHlogsForFibrationBa
ConstructExpre!

ConvertDetailedRatFuncs. frm
essionWithExtras.

CreateFunctionEx
LELT]

VRTvar. frm

DetermineMinAndMaxFunctionIndices

Decompo:

DetermineUs eTerms. frm
rmineUsedVa
DetermineZeroLimitsForFibrationBa

UNIVERSITY of
DEBRECEN

frm

is.frm

DissectExprWithArgNumber . frm

FromHarmonic
FromLimitHlc
FromLinfToLone. frm
FromLoneToHarmonic. frm
HyperExpand. frm
IncludeTagInExpr

ve.frm

oLetterRatFun. frm

ectVarDepFunctions. frm

LimInfToLim:

LimitsToH1o;

sions.frm
NonNumericArgsTo! ymbol:
PartingForLimitDiff
RegularizeAndDifferentiateForFibrationB:
RevealVarLo;
ShuffleRegularizeAtInfinity.frm
ShuffleRegularizeAtZero. frm

impli fyDiffLogDi ffFuncs. frm
simplify. frm

Simpli fyLimi tHy
SimplifyRatFuncA s.frm

RatFuncsNumeric. frm
prs.frm
stituteToExprsWithExtrasAndTable. frm
TagTerms. frm
TakeZeroLimitInLimitHlog. frm
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UDD in FORM

e Using check.rb provided with FORM slightly personalized
e Each routine receives its own unit test file
e Create an empty routine

FromL meth

Numbers (ExprID,ReglLinfFuncID,LinfFuncID)
mbers start;

A"?‘fgf» UNIVERSITY of
¥¥{ DEBRECEN
33/41



UDD in FORM
e Using check.rb provided with FORM slightly personalized
e Each routine receives its own unit test file
e Create an empty routine
Implement a bunch of tests

*{{{ FromLimitHL oNumbers_1

,,mbol 4@

cfunction RegLinf;
cfunction Linf;

local F = RegLinf(-a);

#call FromLimitHlogsToNumbers(F,ReglLinf,Linf)
print

=~ expr(
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UDD in FORM

e Using check.rb provided with FORM slightly personalized

e Each routine receives its own unit test file
e Create an empty routine

e Implement a bunch of tests

They will fail

ished in 0.1011722

0 assertions, 12 failures, 0 errors, 0 pendings,

, 296.52 assertions/s
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UDD in FORM

e Using check.rb provided with FORM slightly personalized
e Each routine receives its own unit test file

e Create an empty routine

e Implement a bunch of tests

They will fail

e Implement functionality and test

$ ./check.rb FromLimitHlogs

ToNumbers. frm

Check /[home/adam/sciapps/bin/form

FORM 5.0.0-beta.l (Mar 7 2025, v5.0.0-beta.1-122-g638f84b) Run: Sun Jun 8 ©
3382025

Loaded suite ./check

Started

Finished in ©.108981223 seconds.

30 assertions, © failures, O errors, 0O pendings, 0 or ions, 0 noti

AT

T

UNIVERSITY of ,
% DEBRECEN 137.64 tests/s, 275.28 rtions/s
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HyperFORM
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HyperFORM

NP
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All algorithms are implemented in FORM

All major algorithms from
E. Panzer, Computer Physics Communications, 188, 148-166 (2015)

Can treat e-finite integrals

e regularization is also possible, uses: E. Panzer, JHEP 03 (2014) 071
Expansion of non-integer exponents

Integration using the basis on rational functions and hyperlogs
Series expansion of hyperlogs

Taking limits of hyperlogs

Conversion (when possible] to MZVs
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HyperFORM
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User-defined
integrand

e

v

Internal format

Rewveal variable
dependence

Explicit
regularization

v

Convert to
MZVs, HPLs

v

Partial
fractioning

v

Integration
in variable

Taking limits

36/41



HyperFORM - Benchmarking

Use zig-zag diagrams for benchmarking:
e c-finite
e Fibration basis generation is the key algorithm
= Finite multiloop diagrams are ideal to check performance
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HyperFORM - benchmark on zig-zags

Original implementation of E. Panzer, 23 = @

Computer Physics Communications
188, 148-166 (2015) is in Maple as

HyperInt Zs= @

HyperInt [s] | HyperFORM [s]

Zs 0.8 0.05 Z: =
Z, 15 0.3
Z; 54 17

Zg 103000 29000
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Summary and Outlook
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Summary and Outlook

e Integration routines implemented in FORM using hyperlogs
e All key algorithms are present to be useful for Feynman integral calculations

e Generating fibration basis is highly non-trivial with many essential
manipulations:

Shuffle regularization
Differentiation

Integration

Rescaling

Solving multiple equations
Back substitution

e Performance is convincing, there are a couple of ideas to implement...
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Thank you for your attention!



