
HyperFORM –
Hyperlogs with FORM

Adam Kardos

in collaboration with

Sven Moch and Oliver Schnetz

Liverpool, UK, 2025, June 13th

Contents

• Introduction
• Hyperlogs
• Hyperlogs for loop integrals
• Gentle look at fibration basis
• Unit Driven Development (UDD)
• UDD in FORM
• HyperFORM
• Summary and Outlook

2 / 41

Introduction

3 / 41

Introduction

LHC puts out very precise results (uncertainty less than 1 % in some cases)!

4 / 41

Introduction

• Precision phenomenology is impossible without loop corrections
• Perturbative expansion of matrix element naturally involves loop corrections:

M = + + + . . .

+ + + . . .

+ + . . .

+ . . .

number of loops

final state
multiplicity

5 / 41

Introduction

• Several methods to reduce loop integrals to a basis (to masters)
• Several ways to evaluate remaining (master) loop integrals
• For a class of integrals Feynman parameter representation and hyperlogs are
working (well)

1 2 n

6 / 41

Emergence of hyperlogs

7 / 41

Emergence of hyperlogs

Feynman parametrization of loop integrals:

I =
eLϵγEΓ

(
ν − Ld

2

)∏N
i=1 Γ(νi)

(
N∏
i=1

∫ ∞

0
dxi

)
δ

(
1−

N∑
i=1

xi

)(
N∏
i=1

xνi−1
i

)
Uν− L+1

2
d

Fν− Ld
2

,

ν =

N∑
i=1

νi , d = 4− 2ϵ

U and F are graph polynomials, U related to spanning trees of the graph, while F
related to spanning 2-forests
For details see e.g.: Weinzierl: Feynman Integrals, chapter 3

8 / 41

Hyperlogs – parametric representation – examples

• Simple one-loop massless box diagram:

p1 p2

q2

q3

p3

q4

p4

q1

q1 = ℓ ,

q2 = ℓ− p1 ,
q3 = ℓ− p1 − p2 ,
q4 = ℓ− p1 − p2 − p3

ℓ: loop momentum

U = x1 + x2 + x3 + x4 ,

F = (p1 + p4)2x1x3 + (p1 + p2)2x2x4

9 / 41

Hyperlogs – parametric representation – examples

• Zig-zag 4:

U = x4x6x7x8 + x2x6x7x8 + x1x6x7x8 + x3x4x7x8+
+ x1x4x7x8 + x2x3x7x8 + x1x3x7x8 + x1x2x7x8+
+ x4x5x6x8 + x2x5x6x8 + x1x5x6x8 + x2x4x6x8+
+ x1x4x6x8 + x3x4x5x8 + x1x4x5x8 + x2x3x5x8+
+ x1x3x5x8 + x1x2x5x8 + x2x3x4x8 + x1x3x4x8+
+ x1x2x4x8 + x4x5x6x7 + x2x5x6x7 + x1x5x6x7+
+ x3x4x6x7 + x1x4x6x7 + x2x3x6x7 + x1x3x6x7+
+ x1x2x6x7 + x3x4x5x7 + x1x4x5x7 + x2x3x5x7+
+ x1x3x5x7 + x1x2x5x7 + x3x4x5x6 + x2x4x5x6+
+ x2x3x5x6 + x1x3x5x6 + x1x2x5x6 + x2x3x4x6+
+ x1x3x4x6 + x1x2x4x6 + x2x3x4x5 + x1x3x4x5+
+ x1x2x4x5

F = 1 10 / 41

Emergence of hyperlogs

Observations:
• The first graph (Symanzik) polynomial (U) is always linear in x’s
• The second graph (Symanzik) polynomial (F) is only linear in absence of
internal masses

11 / 41

Emergence of hyperlogs

• Assume the parametric representation is ϵ finite or a priori ϵ regularized:

Uν− L+1
2

d = Uν−2(L+1)
[
1 + ϵ(L+ 1) logU +O(ϵ2)

]
,

F
Ld
2
−ν = F2L−ν

[
1− ϵL logF +O(ϵ2)

]
, ν ∈ N

• Here we stick to the lowest order term in ϵ

12 / 41

Emergence of hyperlogs

• Keep graph polynomial exponents formal:(
N∏
i=1

∫ ∞

0
dxi

)
δ

(
1−

N∑
i=1

xi

)
1

UmFn

• Using the Chen-Wu theorem we can keep a subset of integration variables in
the Dirac-delta:(

N∏
i=1

∫ ∞

0
dxi

)
δ (1− xN)

1

UmFn =

∫ ∞

0
dx1 · · · xN−1

1

UmFn

∣∣∣∣
xN=1

, m, n ≥ 1

Ũ = U|xN=1 , F̃ = F|xN=1

13 / 41

Emergence of hyperlogs

• Have to fix a σ integration order

xσ(1), xσ(2), . . . , xσ(N−1)

• Without internal masses both F and G are linear in all remaining xs∫ ∞

0
dx1 · · · xN−1

1

ŨmF̃n
=

∫ ∞

0
dx1 · · · xN−1

1(
Ũ1 + Ũ (1)xσ(1)

)m (
F̃1 + F̃ (1)xσ(1)

)n
• Integrand can be partial fractioned in xσ(1)
• Resulting integrand has polynomial in denominator with some k power(

G1 + G(1)xσ(1)
)−k{ k ≥ 2 rational function

k = 1 logarithm , G ∈ {Ũ , F̃}

14 / 41

Emergence of hyperlogs

Can we do something better than logarithms?
Hyperlogarithms!

• Special class of iterated integrals (Chen, The Annals of Mathematics 97 (2)
(1973) 217246)

Lωσw(z) =
∫ z

0

dz′
z′ − σ

Lw(z′) , L∅(z) = 1

• Fulfill shuffle relations:

Lw1(z)Lw2(z) = Lw1(z)� Lw2(z)

• See also the slides of Coenraad from yesterday

15 / 41

Emergence of hyperlogs

Hyperlogarithms:
• Special, one-dimensional Chen iterated path integrals
Chen, Transactions of the American Mathematical Society, Vol. 156, 359-379 (1971)

• These also called Goncharov polylogarithms,
A. B. Goncharov, Math. Research Letters. 5(4), 497 (1998), A. Goncharov, Multiple
polylogarithms and mixed Tate motives (2001)

• Can get harmonic polylogarithms if letters from {−1, 0, 1}
E. Remiddi, J. A. M. Vermaseren, Int.J.Mod.Phys. A15 (2000) 725–754

• As special cases we can get classical polylogarithms and multiple
polylogarithms

16 / 41

Emergence of hyperlogs

Hyperlogarithms:
• Most important developments were done by Francis Brown

– Annales scientifiques de l’Ecole Normale Superieure 42 (3) (2009) 371–489.
arXiv:math/0606419

– Communications in Mathematical Physics 287 (2009) 925–958. arXiv:0804.1660,
doi:10.1007/s00220-009-0740-5

– On the periods of some Feynman integrals, ArXiv e-print: arXiv:0910.0114

• Our treatment of loop integrals with hyperlogs closely follow:
E. Panzer, Computer Physics Communications, 188, 148–166 (2015)

What could be done with these constructs?

17 / 41

• With this definition first integration becomes:∫ ∞

0
dxσ(1)

∫ ∞

0
dxσ(2) · · ·

∫ ∞

0
dxσ(N−1)

R(xσ(2), . . . , xσ(N−1))

G1 + G(1)xσ(1)
=

=

∫ ∞

0
dxσ(1)

∫ ∞

0
dxσ(2) · · ·

∫ ∞

0
dxσ(N−1)

R(xσ(2), . . . , xσ(N−1))

G(1)

1

xσ(1) + G1/G(1)

=

∫ ∞

0
dxσ(2) · · ·

∫ ∞

0
dxσ(N−1)

R(xσ(2), . . . , xσ(N−1))

G(1)
Lω−G1/G

(1)
(∞)

• This form is not without problems...

18 / 41

∫ ∞

0
dxσ(2) · · ·

∫ ∞

0
dxσ(N−1)

R(xσ(2), . . . , xσ(N−1))

G(1)
Lω−G1/G

(1)
(∞)

19 / 41

∫ ∞

0
dxσ(2) · · ·

∫ ∞

0
dxσ(N−1)

R(xσ(2), . . . , xσ(N−1))

G(1)
Lω−G1/G

(1)
(∞)

• Only the full Feynman integral is finite individual terms can diverge

19 / 41

∫ ∞

0
dxσ(2) · · ·

∫ ∞

0
dxσ(N−1)

R(xσ(2), . . . , xσ(N−1))

G(1)
Lω−G1/G

(1)
(∞)

• Only the full Feynman integral is finite individual terms can diverge
• All upper integration limits are infinity (how to set up the iterated
integrations?)

19 / 41

∫ ∞

0
dxσ(2) · · ·

∫ ∞

0
dxσ(N−1)

R(xσ(2), . . . , xσ(N−1))

G(1)
Lω−G1/G

(1)
(∞)

• Only the full Feynman integral is finite individual terms can diverge
• All upper integration limits are infinity (how to set up the iterated
integrations?)

• Next integration variable also in letter: iterated form is violated

19 / 41

Hyperlogs for loop integrals

20 / 41

Hyperlogs for loop integrals

Problem: Only the full Feynman integral is finite individual terms can diverge
• Introduce regularized limits
• Partially change the end-point

Lw(∞) =
∑
w1,w2

LΦ1/z(w1)(0) · Lreg∞0 (w2)(∞) , Φf(ωσ) = ωf(σ) − ωf(∞) , ω∞ = ∅

• Limits at infinity get replaced by regularized limits at infinity and/or replaced
by limits at zero

• Limits at zero can be (depending on word [w] and prefactors):
– expanded as a power series
– logarithmic singularities can be identified which should cancel in the final
result

21 / 41

Hyperlogs for loop integrals

Problem: All upper integration limits are infinity (how to set up the iterated
integrations?)
For an iterated integral we need:

· · ·
∫ xi+1

0
dxi

∫ xi

0

dxi−1

xi−1 − σ

∑
w′

Lw′(xi−1) : xi−1 /∈w′

• To set up iterated integrals we rely on the next solution

22 / 41

Hyperlogs for loop integrals

Problem: Next integration variable also in letter: iterated form is violated

Lω−G1/G
(1)
(∞) =

∑
w′

λ(w′)Lw′(xσ(2))

• Fibration basis is needed to turn hyperlogs at infinity inside-out to reveal
dependence on next integration variable

– Most complicated algorithm to implement
– Shuffle-regularization at zero
– Log-differentiation of letters and their differences
– Zero-limit in next integration variable avoiding singularities
– Rescaling of word in xσ(2)

23 / 41

Gentle look at fibration basis

24 / 41

Gentle look at fibration basis

• Important to continue the integration with next variable (t):

lim
z→∞

Lw(t)(z) =
∑
w′

λ(w′)Lw′(t)

• It is more important to be able to carry this out for reguralized limit hyperlogs:

lim
z→∞

Lreg∞0 (w(t))(z) =
∑
w′

λ(w′)Lw′(t)

• For regularized limit hyperlog we use Panzer’s notation as well:

lim
z→∞

Lreg∞0 (w(t))(z) = Reg
z→∞

Lw(z)

25 / 41

Gentle look at fibration basis

• We use the Panzer notation when words are explicit:

w = ωσ1ωσ2 · · ·ωσn

• The differentiation of a limit hyperlog w.r.t. variable t:

∂t Reg
z→∞

Lw(z) = −[∂t logσn] Reg
z→∞

Lωσ1 .../ωσn
(z)+

+

n−1∑
i=1

[∂t log(σi − σi+1)] ·
(

Reg
z→∞

Lω1···/ωσi+1
···ωn(z)− Reg

z→∞
Lω1···/ωσi

···ωn(z)
)

26 / 41

Gentle look at fibration basis

• The differentiation of a limit hyperlog w.r.t. variable t:

∂t Reg
z→∞

Lw(z) = −[∂t logσn] Reg
z→∞

Lωσ1 .../ωσn
(z)+

+

n−1∑
i=1

[∂t log(σi − σi+1)] ·
(

Reg
z→∞

Lω1···/ωσi+1
···ωn(z)− Reg

z→∞
Lω1···/ωσi

···ωn(z)
)

– Differential form has limit hyperlogs with words having one less letter
– t dependence is partially exposed (reduced words can still have
dependence on t)

⇒ Serves as an iterative way to construct fibration basis

26 / 41

Gentle look at fibration basis

• Differential form is given to define fibration basis in variable t
⇒ Integration constant has to be provided:

Reg
z→∞

Lw(t)(z) = C +
∑
w′

λ(w′)Lw′(t)

• Integration constant is defined as a regular t → 0 limit of the original limit
hyperlog:

C = Reg
t→0

Reg
z→∞

Lw(z)

27 / 41

Gentle look at fibration basis

• Integration constant is defined as a regular t → 0 limit of the original limit
hyperlog:

C = Reg
t→0

Reg
z→∞

Lw(z)

• The t → 0 limit is highly non-trivial:
– If last letter has a constant term t → 0 can be safely taken
– If leading term in last letter depends on t rescaling and/or shuffle
regularization is needed

27 / 41

Gentle look at fibration basis

To implement an efficient integration method using hyperlogs several non-trivial
algorithms are needed, including

• Nested data-structures to hold polynomial and rational function letters
• Letters are forming words
• Have to detect variable dependence in function arguments
• Shuffling of argument lists
• Eliminating arguments
• Rescaling of arguments
• Selective differentiation and integration of terms
• Wanted the code to be updatable for a long time

⇒ Most sophisticated software development is selected

28 / 41

Unit Driven Development

29 / 41

Unit Driven Development

Idea:
• Completely modular design
• Re-usable, as generic as possible routines
• Motto:

If description of routine needs more than a single sentence it does too much
=⇒ break it to smaller ones

• Algorithms are not etched to stone, need to be updatable
⇒ Functionality should be tested separately
⇒ Unit driven development philosophy is adopted

30 / 41

Unit Driven Development

Red light

Green lightRefactor

31 / 41

Unit Driven Development

Red light

Green lightRefactor

Red light:
• Start with an empty routine
• Create the unit test first

– Specify an input
– Define what output we would like to see

• With an empty routine the test will first fail
”red light”

31 / 41

Unit Driven Development

Red light

Green lightRefactor

Green light:
• Implement a suitable algorithm
• Tweak it until the unit passes test

⇒ It does the desired functionality

31 / 41

Unit Driven Development

Red light

Green lightRefactor

Refactor:
• If performance is not satisfactory change the
algorithm, improve the code

• It is safe to touch the routine because we will
always see when we break functionality!

31 / 41

UDD in FORM

32 / 41

UDD in FORM

• Using check.rb provided with FORM slightly personalized

• Each routine receives its own unit test file
• Create an empty routine
• Implement a bunch of tests
• They will fail
• Implement functionality and test

33 / 41

UDD in FORM
• Using check.rb provided with FORM slightly personalized
• Each routine receives its own unit test file

• Create an empty routine
• Implement a bunch of tests
• They will fail
• Implement functionality and test

33 / 41

UDD in FORM

• Using check.rb provided with FORM slightly personalized
• Each routine receives its own unit test file
• Create an empty routine

• Implement a bunch of tests
• They will fail
• Implement functionality and test

33 / 41

UDD in FORM
• Using check.rb provided with FORM slightly personalized
• Each routine receives its own unit test file
• Create an empty routine
• Implement a bunch of tests

• They will fail
• Implement functionality and test

33 / 41

UDD in FORM

• Using check.rb provided with FORM slightly personalized
• Each routine receives its own unit test file
• Create an empty routine
• Implement a bunch of tests
• They will fail

• Implement functionality and test

33 / 41

UDD in FORM
• Using check.rb provided with FORM slightly personalized
• Each routine receives its own unit test file
• Create an empty routine
• Implement a bunch of tests
• They will fail
• Implement functionality and test

33 / 41

HyperFORM

34 / 41

HyperFORM

• All algorithms are implemented in FORM
• All major algorithms from
E. Panzer, Computer Physics Communications, 188, 148–166 (2015)

• Can treat ϵ-finite integrals
• ϵ regularization is also possible, uses: E. Panzer, JHEP 03 (2014) 071

• Expansion of non-integer exponents
• Integration using the basis on rational functions and hyperlogs
• Series expansion of hyperlogs
• Taking limits of hyperlogs
• Conversion (when possible) to MZVs

35 / 41

HyperFORM

36 / 41

HyperFORM – Benchmarking

Use zig-zag diagrams for benchmarking:
• ϵ-finite
• Fibration basis generation is the key algorithm

⇒ Finite multiloop diagrams are ideal to check performance

37 / 41

HyperFORM – benchmark on zig-zags

Original implementation of E. Panzer,
Computer Physics Communications,
188, 148–166 (2015) is in Maple as
HyperInt

HyperInt [s] HyperFORM [s]
Z3 0.8 0.05
Z4 1.5 0.3
Z5 54 17
Z6 103000 29000

Z3 =

Z4 =

Z5 =

Z6 =

38 / 41

Summary and Outlook

39 / 41

Summary and Outlook

• Integration routines implemented in FORM using hyperlogs
• All key algorithms are present to be useful for Feynman integral calculations
• Generating fibration basis is highly non-trivial with many essential
manipulations:

– Shuffle regularization
– Differentiation
– Integration
– Rescaling
– Solving multiple equations
– Back substitution

• Performance is convincing, there are a couple of ideas to implement...

40 / 41

Thank you for your attention!

41 / 41

