FORM usage in pySECDEC

Vitaly Magerya (CERN)
Liverpool, 2025

mailto:vitaly.magerya@cern.ch

Plan of the talk

% Describe how we use FORM in pySECDEC.
« Describe how we would like to use it.
% Ask if there are better ways.

* Compile a wishlist.

Quantities of interest in high-energy physics: scattering amplitudes.
We compute these via:

« Feynman diagrams: /7 =~~~ + «/»<%>«/» + M@«A + .

* Feynman integrals: .# = C1— — + C2—<[>— + C3_<}>_ + C4_&_ + ..
« 1BP reduction: /7 = C{—~O— + Cy— [>— + C4—— + .

% Feynman integral evaluation: —<>— =7

< Sector decomposition: pySECDEC, FIESTA, SECTOR_DECOMPOSITION, etc.

< Numerical differential equations: DIFFExP, AMFLOW, SeaSyde, LINE, AMPRED, etc.
* Mellin-Barnes representation: MB, AMBRE, etc.

* Tropical sampling: FEYNTROP, MOMTROP.

* Etc.

https://github.com/gudrunhe/secdec
https://bitbucket.org/feynmanIntegrals/fiesta/
https://particlephysics.uni-mainz.de/weinzierl/sector_decomposition/
https://arxiv.org/abs/2006.05510
https://gitlab.com/multiloop-pku/amflow
https://github.com/TommasoArmadillo/SeaSyde
https://github.com/line-git/line
https://gitlab.com/chenwenphy/ampred
https://mbtools.hepforge.org/
http://prac.us.edu.pl/~gluza/ambre/
https://github.com/michibo/feyntrop
https://github.com/alphal00p/momtrop

Sector decomposition

1 1 —1+¢
I = (Feynman parameterization) = f dxf dy (3x2 + 5y2 + 7x2y2) =7
0 0

How to evaluate?
% Expand the integrand in € and integrate each order numerically?
= Not possible: the integrand diverges when both x,y — 0.
Solution: [Heinrich '08; Binoth, Heinrich '00]
1. Isolate the divergence in x and i with sector decomposition:

I:f...x(ﬁ(x>y)+6(y>x))= foldxfoydy---+f01dyfo‘vdx---

Sector 1 Sector 2
* Normally done via geometric sector decomposition. [Bogner, Weinzierl '07; Kaneko, Ueda, '09; Schlenk, Zirke "16]

2. Rescale the integration region in each sector back to a hypercube:

=Xz =l+e

1 1
Sector1' = fo dxf0 dz x71#2¢ (3 + 522 + 7x272)
——

Divergent Finite

3. Subtract the divergence.

https://arxiv.org/abs/0803.4177
https://arxiv.org/abs/hep-ph/0004013
https://arxiv.org/abs/0709.4092
https://arxiv.org/abs/0908.2897
https://arxiv.org/abs/1601.03982

Divergence subtraction

3. Subtract the divergence, e.g.
1 1 1
fo dex Mk I(x, e) = fo dx x—1+ke (I(x, e)—1(0,¢)) +f0 dx x5 (0, €),

Finite _1
=5 10,¢)

so that Sector 1 becomes
1 1 142 2 2 9 -1+¢ 5 -1+¢ 1 1 o\~
Jydx [dzat 2 (34522 +72%22) —(34522) |+ - [dz (3+52%)
4. Expand the integrand in ¢, e.g.:
e ey 11 1
R (1) -0 = (— - —)e°+

1+e

T x\J®) J0)

klogx (1 11, l(log](x)_log](O)))
Ty (1<x)](0))8 2\ T " TJo)T
+@(£2).

5. Integrate each term in & numerically.

Contour deformation

. u)
I = (Feynman parameterization) = fd"x —
Fﬁ(x,) +1i0

Problem: can’t integrate numerically if F = O inside the integration region.
Solution: deform X into the complex plane to escape the pole:

7 (7 +iA())
Ix

. Ed
XX+ ZA(?) and d'X — d"™%

F—F+iAd,F=NJ2F—i N 03 + 7(Af),
ImF — AdF - N O3F + 0 (N).
Choose A to enforce the +i0 prescription (Im F > 0): A=Ax 1-x) ng(FE) .

* A chosen heuristically: small enough so that Im F > 0, but big enough to improve convergence.

* Main computational cost: the evaluation of the Jacobian.

PYSECDEC

pYSECDEC: a Python library for numerically evaluating parametric integrals via sector decomposition and
Randomized Quasi-Monte Carlo integration. [Heinrich et al '23, 21, 18, '17]

* Homepage: github.com/gudrunhe/secdec

* Installation: python3 -m pip install pySecDec.
* Primary use case:

* Evaluating a weighted sum of integrals many times at different kinematic points.
* Mode of operation:

* a user defines a weighted sum of integrals;

< pySECDEC prepares an integration library;

* the user calls the integration library to get the value of the sums at given kinematic points.
* Other use cases:

* Evaluating a single integral.

< Expanding an integral in a small kinematic parameter (expansion by regions).

Demo: pysecdec-example.py.

https://arxiv.org/abs/2305.19768
https://arxiv.org/abs/2108.10807
https://arxiv.org/abs/1811.11720
https://arxiv.org/abs/1703.09692
https://github.com/gudrunhe/secdec

FORM use workflow

User input

Python code
Sector decomposition; subtraction; expansion; contour deformation.

Integrand expression skeleton (.h files)

FORM wrapper
Workspace auto-adjustment.

form.set

FORM code
Expansion of integrand expressions; expression optimization.

Optimized integrand expressions (. info files)

Python code
ForM expression parsing; textual common subexpression elimination.

Integrand code (.cpp and . cu files)

C++ and CUDA compilers

Integration library 8

Optimizing expressions

] = 2x%y + 3xy? + log(Zx + 3y4)

How to optimize this expression for evaluation speed?
Current approach:
* Use #format 0<n> and #optimize <expr> on each argument, and then the whole expression,
one at a time.
* Read in the result, dropping whitespace and “; _+=" sequences.
* Seeprinting-example.frm.
* Setting #:ContinuationLines to O helps with “; _+=" (FORM 5!).
* Find “pow (x,n)"” (via regular expressions) and expand into sequences of multiplications.
* Eliminate common subexpressions on textual basis.
< l.e. transform “x1=<text>;"” and “x2=<text>;” into “x1=<text>;x2=x1;".

« Clean up and write out C++.

RAT2C: a Python program to convert one or more rational expressions into C using FORM.
* Same FORM output parsing & textual common subexpression elimination as in pySECDEC.
* Homepage: github.com/magv/rat2c
* Example:

$ git clone https://github.com/magv/rat2c
$ echo 'x+y*x"2/2+z*x"3/y' | ./rat2c/rat2c -04 -WiG -
#define inv(z) ((double)l1/(double) (x))
#define quo(n,d) ((double) (n)/(doudble)(d))
void
function(
double *result,
const double x,
const double y,
const double z)
{

double tmpl = inv(y);

double tmp2 = x*z*tmpl;

tmpl = quo(1,2)*y+tmp2;

tmp2 = x*tmpl;

tmpl = 1+tmp2;

result[0] = x*tmpl;
}

Demo: rat2c-example.sh. 10

https://github.com/magv/rat2c

New FORM use workflow

User input
Python code FORM code
Sector decomposition; subtraction; expansion; contour deformation. Expansion of integrand expressions; expression optimization.

Python code
Proper expression parsing, further optimization
(CSE, complex expansion, constant folding, copy propagation,
DCE, instruction fusion, vectorization).

Integrand code (. cpp and . cu files)

C++ and CUDA compilers

Integration library

1

FORM as a library: #fromExternal and friends

FORM in slave mode:
% Start it with extra input and output pipes and a -pipe <r>,<w> argument.
* Read “<form pid>\n" from the output pipe.
% Write “<form pid>,<your pid>\n" back into the input pipe, and wait.
* In the FORM code, do #setExternal "PIPE1_', and then loop #fromExternal+.
 Each statement you write into the write pipe will be executed.
« Each #toExternal statement will write into the output pipe (which you should read from).
Implementations:
% github.com/tueda/python-form (Python);
* feyncalc.org/formlink (Matematica);
* pyform.py (Python, to become part of pySECDEC).
Demo: pyform-example.py.

12

https://github.com/tueda/python-form
http://www.feyncalc.org/formlink/

Optimizing expressions, the new way

J =2x%y + 3xy? + log(2x + 3y4)
How to optimize this expression for evaluation speed?
New approach:
* Define an expression. Use ArgToExtraSymbol to remember arguments of all functions.
* Use #format 0<n> and #optimize <expr> on the current expression.
* Read out all newly defined extra symbols, and repeat for each of them.
Once the FORM part is done:
* Parse the resulting expressions, splitting them into individual arithmetic operations.

 Eliminate common subexpressions, fold constants, propagate copies, fuse multiply-add sequences,
expand complex expressions, vectorize.

* \Write out C++.

Demo: codeopt-example.py.

13

How well does this work for us?

Operation count for different expressions:

00 01 02 03 04 Via minors
4-loop massive banana, F 90 45 36 34 33
7-loop massive banana, F 312 99 82 65 69
4-loop massive banana, 82F/z9x,-/8xj 321 236 213 220 221
7-loop massive banana, 0721:/83(1'/836]' 2725 1265 1170 1408 1356
4x4 matrix determinant 60 40 28 31 29 28
5x5 matrix determinant 320 125 75 119 84 75
6x6 matrix determinant 1950 336 186 381 227 186
7x7 matrix determinant 13692 833 441 2461 735 441

Demo: opcount-example.py.

1%

First priority:
* Make sure all buffers are auto-resizable, so no restarts are needed.
% Never, ever, crash because of reasons that can be fixed automatically.

Really useful:

% Efficient input of very long expressions without manual massaging.
Would be nice:

% |deas to improve nested multi-expression code optimization?

* Away to run .clear while in slave mode.

% Control over the printed line breaks and whitespace.

« A way to print a subrange of extra symbols.

* Awaytorun#do x = {1,2} with one or zero items.

15

Bonus: FORM usage in ALIBRARY

ALIBRARY: a Matematical library for computing Feynman amplitudes.

% Interface to QGRAF (diagrams), FEYNSON (diagram symmetries), GRAPHVIZ (diagram plotting), FORM
(Dirac traces, index contraction, scalar product expansion, etc), COLOR.H (color tensor sums), KIRA or
FIRE+LIRERED (IBP), pySECDEC.

* Homepage: github.com/magv/alibrary
FORM usage method:
* Export from Mathematica to FORM, run FORM code, import the result back.
Inside FORM code each transformation:
* finds unique factors it will act upon (putInside + argToExtraSymbol);
% hides the rest of the expression (pushHide), leaving only a sum of the unique factors;
* transforms the unique factors (traceN, docolor (), etc);
%« creates a table for unique factor mapping (via fillExpression);
%« puts the transformed factors back into the original expression (popHide + id).

See: unigbegin() and uniqgend() in library.frm.

Demo: alibrary-example.m (also photon-propagator.m). 1

https://github.com/magv/alibrary
https://github.com/magv/alibrary/blob/master/library.frm
https://magv.github.io/alibrary/examples/photon-propagator.html

