
QFT Problems

1. Lorentz transformations of fields

Some parts of this problem were worked out in lecture, but this problem fills in the gaps
in some of the derivations on the board.

(a) Consider the infinitesimal Lorentz transformation

Λ = I+ ωρσM
ρσ +O

(
ω2
ρσ

)
. (1)

Under this transformation the coordinate x transforms by an infinitesimal amount
δx:

x → x′ = Λx (2)

= x+ δx+O
(
ω2
ρσ

)
. (3)

Show that
δx = ωρσM

ρσx. (4)

What is this in index notation?

(b) Now consider a scalar field ϕ (x). As discussed in lectures, the field transforms
under the Lorentz transformation (1):

ϕ (x) → ϕ′ (x) = ϕ (x) + δϕ (x) +O
(
ω2
ρσ

)
. (5)

Show that
δϕ (x) = ωρσL

ρσϕ (x) , (6)

where

Lρσ = − (Mρσx) · ∂

∂x
. (7)

What is this in index notation?

From your answer to the latter question, using:

(Mρσ)µ ν = ησµδρν − ηρµδσν , (8)

show that

Lρσ = xσ ∂

∂xρ

− xρ ∂

∂xσ

. (9)

(c) Consider the infinitesimal translation

x → x′ = x− a. (10)

This means that the components of the four-vector a are infinitesimal, i.e. |aµ| ≪ 1.
This induces an infinitesimal transformation in the field ϕ:

ϕ (x) → ϕ′ (x) = ϕ (x) + δϕ (x) +O
(
a2
)
. (11)

Show that

δϕ (x) = aµ
∂

∂xµ
ϕ (x) .



From this we identify the generator of translations to be Pµ = ∂
∂xµ . Show that

[P µ, Lνρ] = ηµρP ν − ηµνP ρ, (12)

[P µ, P ν ] = 0. (13)

From this we see that, together with (10), Lρσ and P µ generate the Poincaré algebra!

2. Working with Noether’s theorem

Part 1. Consider the following action for two real scalar fields ϕ1 and ϕ2,

S =

∫
d4x

(
−1

2
∂µϕ1∂

µϕ1 −
1

2
∂µϕ2∂

µϕ2 −
1

2
m2ϕ2

1 −
1

2
m2ϕ2

2 − λ
(
ϕ2
1 + ϕ2

2

)2)
. (14)

(a) Derive the Euler-Lagrange equations of motion for the fields ϕ1 and ϕ2.

(b) Show that the action (15) is invariant under the continuous transformation

ϕ1 → ϕ′
1 = (cosα)ϕ1 − (sinα)ϕ2, (15)

ϕ2 → ϕ′
2 = (sinα)ϕ1 + (cosα)ϕ2, (16)

where α is a constant continuous parameter.

(c) Determine the current and charge associated to the symmetry given in part (b).

(d) Show that the current in part (c) is indeed conserved if the Euler-Lagrange equa-
tions of motion are satisfied.

Part 2: Another way to solve the same problem is to use the fact that a theory of two
real scalar fields with the same mass can be recast as a theory of a complex scalar field
ϕ, which you will show in the following.

We can assemble two real scalar fields ϕ1 and ϕ2, with the same mass m, into a single
complex scalar field ϕ = (ϕ1 + iϕ2) /

√
2. Show that the action (15) in terms of the

complex scalar field ϕ reads

S =

∫
d4x

(
−∂µϕ∂

µϕ∗ −m2ϕϕ∗ − 4λ (ϕϕ∗)2
)
. (17)

(a) Derive the Euler-Lagrange equations of motion for the field ϕ and its complex con-
jugate ϕ∗.

(b) Show that the action (18) is invariant under the continuous transformation

ϕ → ϕ′ = eiαϕ, ϕ∗ → (ϕ′)
∗
= e−iαϕ∗. (18)

where α is a constant continuous parameter. Show that this transformation is
equivalent to the transformation (16) considered in part 1.This question continues
on the next page.



(c) Determine the current and charge associated to the symmetry given in part 2 (c).

(d) Show that the current determined in part 2 (d) is equivalent to the current you
obtained in part 1 (c).

3. Many harmonic oscillators

(This problem is “half-way” between quantum field theory and quantum mechanics). A
system of N decoupled complex simple harmonic oscillators with frequencies ωc, c =
1, . . . , N , has action

S =

∫
dt

N∑
c=1

(
q̇c (t) q̇

⋆
c (t)− ω2

c qc (t) q
⋆
c (t)

)
, (19)

and Euler-Lagrange equations of motion

q̈c (t) + ω2
c qc (t) = 0, q̈⋆c (t) + ω2

c q
⋆
c (t) = 0, c = 1, . . . , N. (20)

In the lectures we saw that their general solution can be written as

qc (t) =
1√
2ωc

[
ac e

−iωct + b⋆c e
iωct

]
, (21)

q⋆c (t) =
1√
2ωc

[
bc e

−iωct + a⋆c e
iωct

]
. (22)

From the above Lagrangian formulation of the complex Harmonic oscillator, show that
the corresponding Hamiltonian takes the form

H =
N∑
c=1

q̇c (t) q̇
⋆
c (t) + ω2

c qc (t) q
⋆
c (t) . (23)

Show that upon canonical quantisation the Hamiltonian takes the following form in
terms of ac, a

†
c and bc, b

†
c:

Ĥ =
N∑
c=1

ωc

[
âcâ

†
c + b̂†cb̂c

]
=

N∑
c=1

ωc

[
â†câc + b̂†cb̂c + 1

]
. (24)

4. Canonical quantization of the complex scalar field

From the lectures we saw that the Hamiltonian of the complex scalar field takes the form

H =

∫
d3x⃗

[
ϕ̇⋆ϕ̇+ ∇⃗ϕ⋆ · ∇⃗ϕ+m2ϕ⋆ϕ

]
, (25)

and ϕ admits the decomposition

ϕ (t, x⃗) =

∫
d3k

(2π)3
1√
2ωk⃗

[
ak⃗ e

ik⃗·x⃗−iω
k⃗
t + b⋆

k⃗
e−ik⃗·x⃗+iω

k⃗
t
]
, (26)

where ω2
k⃗
= |⃗k|2 +m2. Show that:



ϕ⋆ (t, x⃗) =

∫
d3k

(2π)3
1√
2ωk⃗

[
bk⃗ e

ik⃗·x⃗−iω
k⃗
t + a⋆

k⃗
e−ik⃗·x⃗+iω

k⃗
t
]
, (27)

∇⃗ϕ (t, x⃗) =

∫
d3k

(2π)3
1√
2ωk⃗

[
i⃗k ak⃗ e

ik⃗·x⃗−iω
k⃗
t − i⃗k b⋆

k⃗
e−ik⃗·x⃗+iω

k⃗
t
]
, (28)

∇⃗ϕ⋆ (t, x⃗) =

∫
d3k

(2π)3
1√
2ωk⃗

[
i⃗k bk⃗ e

ik⃗·x⃗−iω
k⃗
t − i⃗k a⋆

k⃗
e−ik⃗·x⃗+iω

k⃗
t
]
, (29)

ϕ̇ (t, x⃗) =

∫
d3k

(2π)3
(−i)

√
ωk⃗

2

[
ak⃗ e

ik⃗·x⃗−iω
k⃗
t − b⋆

k⃗
e−ik⃗·x⃗+iω

k⃗
t
]
, (30)

ϕ̇ ⋆ (t, x⃗) =

∫
d3k

(2π)3
(−i)

√
ωk⃗

2

[
bk⃗ e

ik⃗·x⃗−iω
k⃗
t − a⋆

k⃗
e−ik⃗·x⃗+iω

k⃗
t
]
. (31)

Promote the above to operators through the procedure of canonical quantisation. Choos-
ing the order of the operators as they appear in the Hamiltonian (26), show that

Ĥ =

∫
d3k

(2π)3
ωk⃗

[
â†
k⃗
âk⃗ + b̂k⃗b̂

†
k⃗

]
, (32)

Show that

Ĥ =

∫
d3k

(2π)3
ωk⃗

[
â†
k⃗
âk⃗ + b̂†

k⃗
b̂k⃗ + (2π)3 δ(3) (0)

]
. (33)

5. Real scalar fields

We worked out canonical quantization in excruciating detail for the complex scalar field.
However forinteractions we will study the real scalar field. Repeat the process of canon-
ical quantization for the real scalar field with action

S =

∫
d4x

(
−1

2
(∂µϕ∂

µϕ)− 1

2
m2ϕ2

)
(34)

In particular, verify that the Fourier expansion for the field operator takes the form:

ϕ(x⃗, t) =

∫
d3k

(2π)3
1√
2ωk⃗

(
ak⃗e

−iω
k⃗
t+ik⃗·x⃗ + a†

k⃗
eiωk⃗

t−ik⃗·x⃗
)

(35)

and prove to yourself that the commutation relation of the creation operator ak⃗ is:

[ak⃗, a
†
k⃗′
] = (2π)3δ(3)(k⃗ − k⃗′), (36)

and that the normal ordered Hamiltonian is simply

: H :=

∫
d3k

(2π)3
ωk⃗a

†
k⃗
ak⃗ (37)

There are no b’s any more as there is no longer a conserved charge associated with
particle numbers (note that the action no longer has a U(1) symmetry). Thus there is
only one type of particle, which is created by a†

k⃗
acting on the vacuum |0⟩.



6. Momentum of single-particle eigenstates

The conserved Noether charge associated to symmetry under spatial translations x⃗ →
x⃗ + b⃗ is the momentum of a field configuration, which for a real scalar field took the
following form.

P⃗ = −
∫

d3x⃗ ϕ̇∇⃗ϕ. (38)

Show that, upon canonical quantisation, the normal ordered expression for the corre-
sponding operator in terms of creation and annihilation operators reads:

P⃗ =

∫
d3k⃗′

(2π)3
k⃗′ a†

k⃗′
ak⃗′ , (39)

Show that a particle created by a†
k⃗
indeed has momentum k⃗.

7. Real scalar fields

(a) Show that the time ordered product T (ϕ (x1)ϕ (x2)) and the normal ordered prod-
uct : ϕ (x1)ϕ (x2) : are both symmetric under the interchange of x1 and x2. Take ϕ
to be a real scalar field. Deduce that the Feynman propagator Gϕ (x1, x2) has the
same symmetry property.

(b) Consider the following action for two real scalar fields ϕ (x) and Φ (x) of mass m
and M respectively,

S =

∫
d4x

(
−1

2
∂µϕ ∂

µϕ− 1

2
m2ϕ2 − 1

2
∂µΦ ∂µΦ− 1

2
M2Φ2

)
. (40)

The Feynman propagators for the fields ϕ and Φ are given by:

Gϕ (x, y) =

∫
d4k

(2π)4
eik·(x−y) −i

k · k +m2 − iϵ
, (41)

GΦ (x, y) =

∫
d4k

(2π)4
eik·(x−y) −i

k · k +M2 − iϵ
. (42)

Show that∫
d4z Gϕ (x, z)Gϕ (z, y) =

∫
d4k

(2π)4
eik·(x−y)

(
−i

k · k +m2 − iϵ

)2

, (43)

and similarly for Φ (x) (You do not need to do this for both fields as the computation
is identical). Hence show that the following general result holds:∫

d4z1 d
4z2 . . . d4zN−1 d

4zN Gϕ (x, z1)Gϕ (z1, z2) . . . Gϕ (zN−1, zN)Gϕ (zN , y)

=

∫
d4k

(2π)4
eik·(x−y)

(
−i

k · k +m2 − iϵ

)N+1

. (44)

(c) Using Wick’s theorem, evaluate the expression

0⟨0|T {ϕ (x1) Φ (x2)ϕ (x3) Φ (x4) Φ (x5) Φ (x6)} |0⟩0, (45)

in terms of Feynman propagators Gϕ (x, y) and GΦ (x, y). Hint: note that there is
no contraction between ϕ and Φ.



(d) Evaluate the expression:

0⟨0|T {ϕ (x1)ϕ(x2) . . . ϕ (x99) Φ (x100) Φ (x101) Φ (x102) Φ (x103)} |0⟩0. (46)

Explain how you arrived to the answer.

8. Diagrammology

(a) What are the symmetry factors for the following Feynman diagrams?

(b) Consider the vacuum-to-vacuum amplitude in λϕ4 theory:

0⟨0|T
{
exp

[
−iλ

4!

∫
d4x′ ϕ4

I (x
′)

]}
|0⟩0. (47)

Using Wick’s theorem, identify the different contributions up to and including
O (λ2).


