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1. Brief recap of evolution of the universe: assumptions and evidence 
supporting them - pointing out issues where they may occur.  

2. Planck and DESI evidence for dark energy. 

3. Theory approaches to Dark Energy and Modified Gravity. 

4. Hubble tension and Early Dark Energy  

5. Impact of GW discovery on late time cosmology. 

6. Dark Energy and the String Swampland 

7. Recent large z results if quasars can be standard candles 
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The Big Bang – (1sec  today) 
  The cosmological principle -- isotropy and homogeneity on large scales

• The expansion of the Universe 
v=H0d  

H0=73.04±1.04 km s-1  Mpc-1 

(Riess et al, 2022)  

H0=67.4±0.5 km s-1  Mpc-1 

(Planck 2018) 

Is there a local v global tension ? 

H =
ȧ

a

M. Betoule et al.: Joint cosmological analysis of the SNLS and SDSS SNe Ia.

sample �coh
low-z 0.12
SDSS-II 0.11
SNLS 0.08
HST 0.11

Table 9. Values of �coh used in the cosmological fits. Those val-
ues correspond to the weighted mean per survey of the values
shown in Figure 7, except for HST sample for which we use the
average value of all samples. They do not depend on a specific
choice of cosmological model (see the discussion in §5.5).
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Fig. 7. Values of �coh determined for seven subsamples of the
Hubble residuals: low-z z < 0.03 and z > 0.03 (blue), SDSS
z < 0.2 and z > 0.2 (green), SNLS z < 0.5 and z > 0.5 (orange),
and HST (red).

may a↵ect our results including survey-dependent errors in es-
timating the measurement uncertainty, survey dependent errors
in calibration, and a redshift dependent tension in the SALT2
model which might arise because di↵erent redshifts sample dif-
ferent wavelength ranges of the model. In addition, the fit value
of �coh in the first redshift bin depends on the assumed value
of the peculiar velocity dispersion (here 150km · s�1) which is
somewhat uncertain.

We follow the approach of C11 which is to use one value of
�coh per survey. We consider the weighted mean per survey of
the values shown in Figure 7. Those values are listed in Table 9
and are consistent with previous analysis based on the SALT2
method (Conley et al. 2011; Campbell et al. 2013).

6. ⇤CDM constraints from SNe Ia alone

The SN Ia sample presented in this paper covers the redshift
range 0.01 < z < 1.2. This lever-arm is su�cient to provide
a stringent constraint on a single parameter driving the evolu-
tion of the expansion rate. In particular, in a flat universe with
a cosmological constant (hereafter ⇤CDM), SNe Ia alone pro-
vide an accurate measurement of the reduced matter density
⌦m. However, SNe alone can only measure ratios of distances,
which are independent of the value of the Hubble constant today
(H0 = 100h km s�1 Mpc�1). In this section we discuss ⇤CDM
parameter constraints from SNe Ia alone. We also detail the rel-
ative influence of each incremental change relative to the C11
analysis.
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Fig. 8. Top: Hubble diagram of the combined sample. The dis-
tance modulus redshift relation of the best-fit ⇤CDM cosmol-
ogy for a fixed H0 = 70 km s�1 Mpc�1 is shown as the black
line. Bottom: Residuals from the best-fit ⇤CDM cosmology as
a function of redshift. The weighted average of the residuals in
logarithmic redshift bins of width �z/z ⇠ 0.24 are shown as
black dots.

6.1. ⇤CDM fit of the Hubble diagram

Using the distance estimator given in Eq. (4), we fit a ⇤CDM
cosmology to supernovae measurements by minimizing the fol-
lowing function:

�2 = (µ̂ � µ⇤CDM(z;⌦m))†C�1(µ̂ � µ⇤CDM(z;⌦m)) (15)

with C the covariance matrix of µ̂ described in Sect. 5.5 and
µ⇤CDM(z;⌦m) = 5 log10(dL(z;⌦m)/10pc) computed for a fixed
fiducial value of H0 = 70 km s�1 Mpc�1,13 assuming an unper-
turbed Friedmann-Lemaître-Robertson-Walker geometry, which
is an acceptable approximation (Ben-Dayan et al. 2013). The
free parameters in the fit are ⌦m and the four nuisance param-
eters ↵, �, M1

B and �M from Eq. (4). The Hubble diagram for
the JLA sample and the ⇤CDM fit are shown in Fig. 8. We find
a best fit value for ⌦m of 0.295 ± 0.034. The fit parameters are
given in the first row of Table 10.

For consistency checks, we fit our full sample excluding sys-
tematic uncertainties and we fit subsamples labeled according to
the data included: SDSS+SNLS, lowz+SDSS and lowz+SNLS.
Confidence contours for ⌦m and the nuisance parameters ↵, �
and �M are given in Fig. 9 for the JLA and the lowz+SNLS
sample fits. The correlation between ⌦m and any of the nuisance
parameters is less than 10% for the JLA sample.

The ⇤CDM model is already well constrained by the SNLS
and low-z data thanks to their large redshift lever-arm. However,
the addition of the numerous and well-calibrated SDSS-II data
to the C11 sample is interesting in several respects. Most impor-
tantly, cross-calibrated accurately with the SNLS, the SDSS-II
data provide an alternative low-z anchor to the Hubble diagram,
with better understood systematic uncertainties. This redundant

13 This value is assumed purely for convenience and using another
value would not a↵ect the cosmological fit (beyond changing accord-
ingly the recovered value of M1

B).

15

Betoule  et al 2014 Redshift 1 + z =
a0
a
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In fact the universe is accelerating !
Observations of distant 

supernova in galaxies indicate 
that the rate of expansion is 

increasing !  

Huge issue in cosmology -- what 
is the fuel driving this 

acceleration? 

We call it Dark Energy -- 
emphasises our ignorance! 

Makes up 70% of the energy 
content of the Universe



∇µTµν = 0
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Friedmann - the key 
bgd equation:

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2 +

Λ
3

a(t) depends on matter, ρ(t)=Σiρi -- sum of all matter contributions, rad, dust, 
scalar fields ...

Eqn of state parameters: w=1/3 – Rad dom: w=0 – Mat dom: w=-1– Vac dom

Eqns (Λ=0): 

Friedmann + 
Fluid energy 
conservation

€ 

H 2 ≡
˙ a 2

a2 =
8π
3

Gρ − k
a2

˙ ρ + 3(ρ + p) ˙ a 
a

= 0

applied to cosmology Gµν = 8πGTµν − Λgµν



Ω > 1↔ k = +1
Ω =1 ↔ k = 0

Ω < 1↔ k = −1
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A neat equation

€ 

ρc (t) ≡
3H 2

8πG
; Ω(t) ≡ ρ

ρc
Friedmann eqn

Critical density

Ωm - baryons, dark matter, neutrinos, electrons, 
radiation ... 

ΩΛ - dark energy ; Ωk - spatial curvature
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Standard Paradigm of Cosmology: hot Big Bang

In expanding space, densities of Matter & Radiation dilute

Radiation-Domination → Matter-Domination → Dark Energy Era

Swagat Saurav Mishra, CAPT, UoN Dark Energy : DESI DR2 & Braneworld
Credit: Swagat Mishra
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Bounds on H(z) -- Planck 2018 - (+BAO+lensing+lowE)

(Expansion rate) -- H0=67.66 ± 0.42 km/s/Mpc 

(radiation) -- Ωr = (8.5 ± 0.3) x 10-5 - (WMAP) 

(baryons) -- Ωb h2= 0.02242 ± 0.00014        

(dark matter) --  Ωch2= 0.11933 ± 0.00091 —-(matter) - Ωm = 0.3111 ± 0.0056 

(curvature) -- Ωk =0.0007 ± 0.0019 

(dark energy) -- Ωde = 0.6889 ± 0.0056  

(de eqn of state) -- 1+w = 0.028 ± 0.032 -- looks like a cosm const. 

If allow variation of form : w(z) = w0+ wa z/(1+z) then 
w0=-0.957 ± 0.08 and wa = -0.29 ± 0.31 (68% CL) — (Planck 2018+SNe+BAO) 

Important because distance measurements often rely on assumptions made about 
the background cosmology.

H2(z) = H2
0

(
Ωr(1 + z)4 + Ωm(1 + z)3 + Ωk(1 + z)2 + Ωde exp

(
3

∫ z

0

1 + w(z′)
1 + z′ dz′

))
See Keir’s 
nice talk 
yesterday  
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Model/Dataset !m H0 [km s→1 Mpc→1] 103!K w or w0 wa

!CDM

CMB 0.3169 ± 0.0065 67.14 ± 0.47 — — —

DESI 0.2975 ± 0.0086 — — — —

DESI+BBN 0.2977 ± 0.0086 68.51 ± 0.58 — — —

DESI+BBN+ω↑ 0.2967 ± 0.0045 68.45 ± 0.47 — — —

DESI+CMB 0.3027 ± 0.0036 68.17 ± 0.28 — — —

!CDM+”K

CMB 0.354+0.020
→0.023 63.3 ± 2.1 →10.7+6.4

→5.3 — —

DESI 0.293 ± 0.012 — 25 ± 41 — —

DESI+CMB 0.3034 ± 0.0037 68.50 ± 0.33 2.3 ± 1.1 — —

wCDM

CMB 0.203+0.017
→0.060 85+10

→6
— →1.55+0.17

→0.37 —

DESI 0.2969 ± 0.0089 — — →0.916 ± 0.078 —

DESI+Pantheon+ 0.2976 ± 0.0087 — — →0.914 ± 0.040 —

DESI+Union3 0.2973 ± 0.0091 — — →0.866 ± 0.052 —

DESI+DESY5 0.2977 ± 0.0091 — — →0.872 ± 0.039 —

DESI+CMB 0.2927 ± 0.0073 69.51 ± 0.92 — →1.055 ± 0.036 —

DESI+CMB+Pantheon+ 0.3047 ± 0.0051 67.97 ± 0.57 — →0.995 ± 0.023 —

DESI+CMB+Union3 0.3044 ± 0.0059 68.01 ± 0.68 — →0.997 ± 0.027 —

DESI+CMB+DESY5 0.3098 ± 0.0050 67.34 ± 0.54 — →0.971 ± 0.021 —

w0waCDM

CMB 0.220+0.019
→0.078 83+20

→6
— →1.23+0.44

→0.61 < →0.504

DESI 0.352+0.041
→0.018 — — →0.48+0.35

→0.17 < →1.34

DESI+Pantheon+ 0.298+0.025
→0.011 — — →0.888+0.055

→0.064 →0.17 ± 0.46

DESI+Union3 0.328+0.019
→0.014 — — →0.70 ± 0.11 →0.99 ± 0.57

DESI+DESY5 0.319+0.017
→0.011 — — →0.781+0.067

→0.076 →0.72 ± 0.47

DESI+(ω↑, εb, εbc)CMB 0.353 ± 0.022 63.7+1.7
→2.2 — →0.43 ± 0.22 →1.72 ± 0.64

DESI+CMB (no lensing) 0.352 ± 0.021 63.7+1.7
→2.1 — →0.43 ± 0.21 →1.70 ± 0.60

DESI+CMB 0.353 ± 0.021 63.6+1.6
→2.1 — →0.42 ± 0.21 →1.75 ± 0.58

DESI+CMB+Pantheon+ 0.3114 ± 0.0057 67.51 ± 0.59 — →0.838 ± 0.055 →0.62+0.22
→0.19

DESI+CMB+Union3 0.3275 ± 0.0086 65.91 ± 0.84 — →0.667 ± 0.088 →1.09+0.31
→0.27

DESI+CMB+DESY5 0.3191 ± 0.0056 66.74 ± 0.56 — →0.752 ± 0.057 →0.86+0.23
→0.20

DESI+DESY3 (3↑2pt)+Pantheon+ 0.3140 ± 0.0091 — — →0.870 ± 0.061 →0.46+0.33
→0.29

DESI+DESY3 (3↑2pt)+Union3 0.333 ± 0.012 — — →0.68 ± 0.11 →1.09+0.48
→0.39

DESI+DESY3 (3↑2pt)+DESY5 0.3239 ± 0.0092 — — →0.771 ± 0.068 →0.82+0.38
→0.32

w0waCDM+”K

DESI 0.357+0.041
→0.030 — →2 ± 56 →0.45+0.33

→0.17 < →1.43

DESI+CMB+Pantheon+ 0.3117 ± 0.0056 67.62 ± 0.60 1.1 ± 1.3 →0.853 ± 0.057 →0.54 ± 0.22

DESI+CMB+Union3 0.3273 ± 0.0086 65.98 ± 0.86 0.6 ± 1.3 →0.678 ± 0.092 →1.03+0.33
→0.29

DESI+CMB+DESY5 0.3193 ± 0.0056 66.82 ± 0.58 0.8 ± 1.3 →0.762 ± 0.060 →0.81 ± 0.24

TABLE V. Summary table of cosmological parameter constraints from DESI DR2 BAO (labelled in the table as ‘DESI’) in
combination with external datasets and priors, in ”CDM and various extended models. Results quoted for all parameters are
the marginalized posterior means and 68% credible intervals in each case where two-sided constraints are possible, or the 68%
upper limits when only one-sided constraints are possible.
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TABLE V. Summary table of cosmological parameter constraints from DESI DR2 BAO (labelled in the table as ‘DESI’) in
combination with external datasets and priors, in ”CDM and various extended models. Results quoted for all parameters are
the marginalized posterior means and 68% credible intervals in each case where two-sided constraints are possible, or the 68%
upper limits when only one-sided constraints are possible.

Recent developments — DESI (2024,2025) - arXiv:2503.14738

See 
Willem’s 
nice talk 
yesterday  

w(z) = w0 + wa z/(1+z) 

This apparent move towards phantom dark energy (w < -1) has generated a great deal of 
debate partly as it implies this can not be standard non minimally coupled quintessence .
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DESI 2025 - arXiv 2503.14738

w(z) = w0 + wa z/(1+z) 23

crosses to the regime w(z) < →1 [133] where the null
energy condition (NEC)—which requires that the en-
ergy density of dark energy not increase with the expan-
sion of the Universe—is violated. For single scalar-field
models of dark energy, this phantom crossing presents
severe theoretical di!culties [e.g., 134, 135]. However,
more complex models of dark energy, with multiple fields,
other dark energy internal degrees of freedom, or non-
minimal coupling, can evade these di!culties, as can
some modified gravity models, see, e.g., [136–140]. We
therefore adopt wide uniform priors on the parameters,
w0 ↑ U [→3, 1] and wa ↑ U [→3, 2], together with imposing
the condition w0+wa < 0 to enforce early matter domina-
tion. While other justifiable choices are possible, and the
values of Bayesian quantities such as the model evidence
will always depend on the particular choice used, we con-
sider this the minimal empirical approach. Whenever
the equation of state crosses the w = →1 boundary we
use the parametrized post-Friedmann (PPF) approach
of [141, 142] to include dark energy perturbations when
calculating CMB power spectra—however, as shown be-
low, the method of accounting for dark energy perturba-
tions does not play a major role, since simply applying
an early-Universe CMB prior on (ω→, εb, εc) largely re-
produces the same results on w0 and wa.

Our primary measure of the statistical significance of
preference for evolving dark energy from a given data
combination is based on ”ϑ

2

MAP
between the best-fit

#CDM and w0waCDM models for that combination. Be-
cause #CDM is nested within w0waCDM, correspond-
ing to w0 = →1, wa = 0, Wilks’ theorem [143] implies
that ”ϑ

2

MAP
should follow a ϑ

2 distribution with two
degrees of freedom under the assumption the null hypoth-
esis (#CDM model) holds, and assuming that errors are
Gaussian and correctly estimated. To translate ”ϑ

2

MAP

into familiar terms, we quote the corresponding frequen-
tist significance Nϖ for a 1D Gaussian distribution,

CDFω2

(
”ϑ

2

MAP
| 2 dof

)
=

1↓
2ϱ

∫ N

↑N
e
↑t2/2

dt , (22)

where the left hand side denotes the cumulative distribu-
tion of ϑ

2. We also compute the Deviance Information
Criterion (DIC) [144–147], which takes into account the
Bayesian complexity of the model and penalizes including
extra parameters.

A. Results

From DESI DR2 BAO alone, we obtain rather weak
constraints on the parameters

w0 = →0.48+0.35
↑0.17

wa < →1.34

}
DESI BAO, (23)

which mildly favor the w0 > →1, wa < 0 quadrant. The
upper bound on wa here is the 68% limit, and wa = 0
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DESI+CMB+Pantheon+

DESI+CMB+Union3

DESI+CMB+DESY5

DESI+CMB

FIG. 11. Results for the posterior distributions of w0 and
wa, from fits of the w0waCDM model to DESI in combina-
tion with CMB and three SNe datasets as labelled. We also
show the contour for DESI combined with CMB alone. The
contours enclose 68% and 95% of the posterior probability.
The gray dashed lines indicate w0 = →1 and wa = 0; the
!CDM limit (w0 = →1, wa = 0) lies at their intersection.
The significance of rejection of !CDM is 2.8ω, 3.8ω and 4.2ω

for combinations with the Pantheon+, Union3 and DESY5
SNe samples, respectively, and 3.1ω for DESI+CMB without
any SNe.

is not excluded at 95%. As was the case in DR1, BAO
data alone define a degeneracy direction in the w0-wa

plane, but they do not show a strong preference for dark
energy evolution: the improvement in ϑ

2

MAP
relative to

the #CDM case of w0 = →1, wa = 0 is equivalent to a
preference of just 1.7ϖ. Note that the posteriors in this
poorly constrained case are cut o$ by the priors, so the
marginalized means and limits quoted above are prior-
dependent.

The minimal extension we consider, beyond BAO data
alone, is to add a high-redshift constraint from the early
universe. This can be achieved by imposing CMB-derived
priors on ω→, εb and εbc, as described in Section IV.
These priors are independent of the late-time dark en-
ergy, and also marginalize over contributions such as the
late ISW e$ect and CMB lensing. Therefore, they pro-
vide us with an early time physics prior that can help
us set the sound horizon and is based solely on early-
Universe information. The result from this data combi-
nation is

w0 = →0.43 ± 0.22

wa = →1.72 ± 0.64

}
DESI+(ω→, εb, εbc)CMB. (24)

While this is still bounded by the wa > →3 prior at the
lower end, the posterior already clearly disfavors #CDM.
The ”ϑ

2

MAP
value decreases to →8.0, indicating a prefer-

w(z) = -1  
LCDM

24

ence for an evolving dark energy equation of state at the
2.4ω level.

Replacing these minimal early-Universe priors with the
full CMB information leads to only a small shift in the
maginalized posteriors

w0 = →0.42 ± 0.21

wa = →1.75 ± 0.58

}
DESI+CMB, (25)

showing that most of the information that the CMB pro-
vides on w(z) comes from its role in anchoring early-
Universe values of (ε→, ϑb, ϑbc) and thus limiting the free-
dom for models to fit the low-redshift data without an
evolving dark energy component. Nevertheless, when in-
cluding the full CMB information the !ϖ

2

MAP
decreases

to →12.5, corresponding to a 3.1ω preference for evolv-
ing dark energy. This change in the !ϖ

2

MAP
is driven

primarily by the inclusion of CMB lensing, the e”ect of
which is (by construction) not captured in the minimal
early-Universe priors (see Appendix A for further discus-
sion and a comparison of posteriors with di”erent choices
of CMB likelihoods).

SNe data alone provide a complementary degeneracy
direction in the w0-wa plane, as they measure w0 well
independently of wa, which is only weakly constrained.
The combination of SNe data with DESI BAO can there-
fore measure w0 and wa without having the posteriors
cut o” by the prior ranges we assumed. The marginal-
ized posterior results are listed in Table V and depend on
the choice of SNe dataset, with the significances of the
preference for the model over #CDM ranging from 1.7ω

to 3.3ω as summarized in Table VI.
However, as discussed in [38], the posterior for the

combination of DESI BAO and SNe alone allows quite
a wide range of posterior values of ϑm (or, equivalently,
ϑc). CMB information places extremely tight constraints
on ϑm that are largely independent of the late-time back-
ground model. Therefore, the full statistical power of the
data is achieved through the combination of the BAO,
CMB and SNe datasets, giving the maginalized posterior
results

w0 = →0.838 ± 0.055

wa = →0.62+0.22
↑0.19

}
DESI+CMB+
Pantheon+,

(26)

for the combination with the Pantheon+,

w0 = →0.667 ± 0.088

wa = →1.09+0.31
↑0.27

}
DESI+CMB
+Union3,

(27)

with Union3, and

w0 = →0.752 ± 0.057

wa = →0.86+0.23
↑0.20

}
DESI+CMB
+DESY5,

(28)

Datasets !ω
2

MAP Significance !(DIC)
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DESI+CMB →12.5 3.1ε →8.7

DESI+Pantheon+ →4.9 1.7ε →0.7

DESI+Union3 →10.1 2.7ε →6.0

DESI+DESY5 →13.6 3.3ε →9.3

DESI+DESY3 (3↑2pt) →7.3 2.2ε →2.8

DESI+DESY3 (3↑2pt)+DESY5 →13.8 3.3ε →9.1

DESI+CMB+Pantheon+ →10.7 2.8ε →6.8

DESI+CMB+Union3 →17.4 3.8ε →13.5

DESI+CMB+DESY5 →21.0 4.2ε →17.2
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value (defined as twice the negative log posterior at the max-
imum posterior point) for the best-fit w0waCDM model rela-
tive to the best #CDM model with w0 = →1, wa = 0, for fits
to di”erent combinations of datasets as indicated. The third
column lists the corresponding (frequentist) significance levels
given 2 extra free parameters, and the final column shows the
results for !(DIC) = DICw0waCDM → DIC!CDM. As a rule of
thumb, !(DIC) values < →5 indicate a ‘strong’ preference for
w0waCDM and values < →10 a ‘decisive’ preference [146].

with DESY5. The posteriors in these three cases, along
with the DESI+CMB posterior, are shown in Figure 11.
The !ϖ

2

MAP
values are →10.7, →17.4, and →21.0, corre-

sponding to preferences for the w0waCDM model over
#CDM at the 2.8ω, 3.8ω, and 4.2ω levels, for combina-
tion with Pantheon+, Union3 and DESY5 respectively.
These significances have all increased compared to the
values reported in [38] based on the DESI DR1 BAO re-
sults.

The deviance information criterion (DIC) values
for the combination of DESI+CMB with Pantheon+,
Union3 and DESY5 SNe are !(DIC) ↑ DICw0wa →
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indicate preferences for the w0waCDM model consis-
tent with those obtained from the !ϖ

2

MAP
values above.

Again, the changes in the !(DIC) values obtained here
with DESI DR2 BAO data compared to the DR1 values
reported in [38] show that the preference for w0waCDM
has increased with the additional data. Further details
on the calculation of DIC values are given in [49].

The pivot redshift zp at which w(z) in this
parametrization is best constrained by the data depends
on the particular combination of datasets used. For
DESI+CMB, zp = 0.53 and wp = w(zp) = →1.024 ±
0.043: this is a lower pivot redshift and a tighter con-
straint on wp than that found for the same combina-
tion with DR1 BAO in [38], reflecting the additional
constraining power of the DR2 BAO results. For the
DESI+CMB+DESY5 combination, we find zp = 0.31
and wp = →0.954±0.024, indicating a mild preference for
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ence for an evolving dark energy equation of state at the
2.4ω level.

Replacing these minimal early-Universe priors with the
full CMB information leads to only a small shift in the
maginalized posteriors

w0 = →0.42 ± 0.21

wa = →1.75 ± 0.58

}
DESI+CMB, (25)

showing that most of the information that the CMB pro-
vides on w(z) comes from its role in anchoring early-
Universe values of (ε→, ϑb, ϑbc) and thus limiting the free-
dom for models to fit the low-redshift data without an
evolving dark energy component. Nevertheless, when in-
cluding the full CMB information the !ϖ
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decreases

to →12.5, corresponding to a 3.1ω preference for evolv-
ing dark energy. This change in the !ϖ
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MAP
is driven

primarily by the inclusion of CMB lensing, the e”ect of
which is (by construction) not captured in the minimal
early-Universe priors (see Appendix A for further discus-
sion and a comparison of posteriors with di”erent choices
of CMB likelihoods).

SNe data alone provide a complementary degeneracy
direction in the w0-wa plane, as they measure w0 well
independently of wa, which is only weakly constrained.
The combination of SNe data with DESI BAO can there-
fore measure w0 and wa without having the posteriors
cut o” by the prior ranges we assumed. The marginal-
ized posterior results are listed in Table V and depend on
the choice of SNe dataset, with the significances of the
preference for the model over #CDM ranging from 1.7ω

to 3.3ω as summarized in Table VI.
However, as discussed in [38], the posterior for the

combination of DESI BAO and SNe alone allows quite
a wide range of posterior values of ϑm (or, equivalently,
ϑc). CMB information places extremely tight constraints
on ϑm that are largely independent of the late-time back-
ground model. Therefore, the full statistical power of the
data is achieved through the combination of the BAO,
CMB and SNe datasets, giving the maginalized posterior
results
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2.8σ deviation 
from LCDM

3.8σ deviation 
from LCDM

4.2σ deviation 
from LCDM25

a deviation from w = →1 at the best-measured redshift.
As the other two SNe datasets are slightly less constrain-
ing than DESY5, the pivot redshifts for combinations
with them are slightly larger, as are the uncertainties on
wp, but the results for all choices of DESI+CMB+SNe
are mutually consistent.

These results sharpen the preference already seen in
[38] for an evolving equation of state for dark energy: al-
though the statistical significances from all data depend
somewhat on the choice of SNe dataset included, even the
weakest of them (the DESI+CMB+Pantheon+ combina-
tion) is still nearly 3ω, and the significance is 3.1ω even
when excluding all SNe data altogether (DESI+CMB).
In all cases, the favored w(z) shows a phase of w > →1 at
low redshifts and a phantom crossing to w < →1 above
redshifts z ↑ 0.4. Within the w0waCDM model, the
necessity of such a crossing and the redshift at which
it occurs is determined by the requirement to match
the precise CMB measurement of ε→ together with !m

[148]. The details of the recovered form of w(z) and
the w0, wa parameter values naturally depend on the
choice of parametrization. The accompanying paper [49]
explores various other parametrizations of w(z) beyond
eq. (9), and non-parametric reconstruction methods, that
exhibit a similar behavior. Reference [49] also performs
binned reconstruction of w(z) without assuming a func-
tional form for the equation of state and finds a consistent
picture, as shown in Figure 12. The lowest redshift bin
shown in the figure favors a value of w > →1 at high sig-
nificance [49], inconsistent with the ”CDM expectation
w = →1.

The apparent preference for phantom crossing to
w(z) < →1 at intermediate redshifts, and the conse-
quent violation of the NEC, is thus rather independent of
parametrization choices made in the analysis (see, e.g.,
[149] using DR1 data for non-parametric results). How-
ever, the equation of state is not directly observable, and
we only observe quantities, such as distances, that de-
pend indirectly on w(z). In some circumstances it may
therefore be possible to construct particular models that
provide reasonable fits to the low-redshift data while still
respecting w(z) ↓ →1 at all z ([150, 151] provide explicit
examples, but [152] discusses the general limitations of
such models in fitting DESI+CMB data). The support-
ing paper [49] examines several NEC-respecting models
of dark energy evolution and finds that while they can
somewhat outperform ”CDM, they have low #(DIC) val-
ues relative to w0waCDM for the combination of DESI,
CMB and SNe data, indicating a preference for phantom
crossing.

Table V gives a more complete list of the results for
other parameters when fitting this model to di$erent
combinations of data. It is worth noting that allowing
w(z) to vary does not help resolve the so-called Hub-
ble tension [153], since in w0waCDM the recovered H0

is lower than the Planck ”CDM value. Although not
discussed here, [46] showed that allowing evolving dark
energy also does not a$ect the value of the S8 parameter
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FIG. 12. Comparison of the constraints on the equation of
state of dark energy using the CPL parametrization and a bin-
ning reconstruction approach, using DESI+CMB+DESY5.
The solid green line shows the best-fit w(z) based on w0 and
wa inference and the green contours around it represent the
68% and 95% confidence intervals. We also show in blue the
constraints from the binning approach [49], with the hori-
zontal bars indicating the bin width (which is fixed) and the
vertical bars representing the 1ω error. Additionally, we in-
clude in gray the 1D posterior for each binning parameter.
The !CDM limit corresponds to the horizontal gray dashed
line.

determined from DESI data, which remains consistent
with values from the CMB.

B. The nature of the evidence for evolving dark
energy

The Hubble diagrams in Figure 13 illustrate the na-
ture of the evidence for evolving dark energy and its
dependence on the adopted datasets. The upper pan-
els show the isotropic, perpendicular, and parallel BAO
measurements (ϑiso, ϑ↑, and ϑ||), which are normalized
to the predictions of the Planck ”CDM cosmology. The
lower panels plot µ → µfid, the distance modulus relative
to the fiducial Planck ”CDM prediction, for the three
SNe datasets (noting again that for uncalibrated SNe,
the distance modulus is only known to an arbitrary con-
stant o$set). Our procedure for creating binned data
points from the SNe data is described in Section IVC.
Because the fiducial SNe absolute magnitude is unknown,
all data points are free to move up or down together by
the same amount in µ, and we have chosen the normal-
ization such that error-weighted mean of µ→µfid is equal
to zero. Equivalently, any model curve in these panels
can be shifted up or down by a constant #µ, and we
have normalized them to match the weighted mean of
the data.

Standard minimally coupled 
quintessence has -1 < w(z) <1 

DESI indicates DE is getting 
weaker today than in LCDM  

Evidence of evolution and a 
phantom like crossing around 
z~0.5 - not same as phantom DE
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Before we get too excited building models of dynamical dark energy 

The main evidence, although still not that significant, seems to emerge with the SN data 
being included - but questions over inconsistencies between the DESY and Pantheon 
analysis. Pantheon is consistent with Planck LCDM whereas DESY doesn’t appear to 
be. The low-z samples appear to be driving much of the evidence, and we require new 
low-z surveys to settle this. 

We need to make sure we understand the systematics of the SN data in particular the 
Union 3 and DESY 5 samples. Efstathiou 2024,2025; Cortes and Liddle 2024,2025 

From a theory standpoint, this is 
unusual behaviour of the energy 

density (f(z)), rising to a max then 
decreasing again.  

Maybe a sign it isn’t simple 
Quintessence, but what we are seeing 

is an effective energy density from 
modified gravity or mixed dark 

energy/dark matter

Inference from DESI DR2 : CPL & Beyond

Preference for Evolving/Dynamical Dark Energy at z < 1.5

DE is phantom-like in past, phantom–divide crossing at z → 0.45

[DESIExtendedDE [arXiv:2503.14743]]

Beyond CPL

Results are Robust &

Independent of CPL

& Any specific Parametrisation

Swagat Saurav Mishra, CAPT, UoN Dark Energy : DESI DR2 & Braneworld

DESI 2025 - arXiv 2503.14738
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The acceleration has not been forever -- pinning down the 
turnover will provide a very useful piece of information.

Help address cosmic coincidence problem ! A region 
hopefully EUCLID along with DESI will also be able to 

probe in the coming years

Huterer 2010
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Different approaches to Dark 
Energy include amongst many:

A true cosmological constant -- but why this value - CCP ? 

Time dependent solutions arising out of evolving scalar fields -- 
Quintessence/K-essence. 

Modifications of Einstein gravity leading to acceleration today. 

Anthropic arguments. 

Perhaps GR but Universe is inhomogeneous. 

Hiding the cosmological constant -- its there all the time but just 
doesn’t gravitate and something else is driving the acceleration. 

Yet to be proposed ...
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Brief reminder why the cosmological constant is regarded as a problem?

The CC gravitates in General 
Relativity:

Now:

Just as well because anything much bigger than we have and the 
universe would have looked a lot different to what it does look like - 

Pauli realised this nearly one hundred years ago. In fact structures 
would not have formed in it.  
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zero point energies of each particle

contributions from phase transitions in the early universe
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Estimate what the vacuum energy should be :

+
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zero point energies of each particle

For many fields (i.e. leptons, quarks, gauge fields etc...):

< ρ> =
1
2

∑

fields

gi

∫ Λi

0

√
k2 + m2

d3k

(2π)3
!

∑

fields

giΛ4
i

16π2

where gi are the dof of the field (+ for bosons, - for fermions).
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contributions from phase transitions in the early universe
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Quantum Gravity cut-off fine tuning to 120 decimal places

SUSY cut-off fine tuning to 60 decimal places
EWK phase transition fine tuning to 56 decimal places

QCD phase transition fine tuning to 44 decimal places
Muon

electron fine tuning to 36 decimal places

Observed value of the effective cosmological 
constant today !
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String - theory -- where are the realistic models?
`No go’ theorem: forbids cosmic acceleration in cosmological solutions 

arising from compactification of pure SUGR models where internal space is time-
independent, non-singular compact manifold without boundary --[Gibbons] 

Avoid no-go theorem by relaxing conditions of the theorem.
1. Allow internal space to be time-dependent scalar fields (radion) 

2. Brane world set up require uplifting terms to achieve de Sitter vacua hence accn
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s
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AdS minimum Metastable dS minimum

Example of stabilised scenario: Metastable de Sitter string vacua in TypeIIB string 
theory, based on stable highly warped IIB compactifications with NS and RR three-

form fluxes. [Kachru, Kallosh, Linde and Trivedi 2003] 

Metastable minima arises from adding positive energy of anti-D3 brane in warped 
Calabi-Yau space.
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The String Landscape approach
Type IIB String theory compactified from 10 dimensions to 4.  

Internal dimensions stabilised by fluxes. Assumes natural AdS vacuum 
uplifted to de Sitter vacuum through additional fluxes ! 

Many many vacua ~ 10500 ! Typical separation ~ 10-500 Λpl 

Assume randomly distributed, tunnelling allowed between vacua --> separate 
universes .  

Anthropic : Galaxies require vacua < 10-118 Λ pl [Weinberg] Most likely to find 
values not equal to zero! 

Landscape gives a realisation of the multiverse picture.  

There isn’t one true vacuum but many so that makes it almost impossible to find our 
vacuum in such a Universe which is really a multiverse. 

So how can we hope to understand or predict why we have our particular particle content 
and couplings when there are so many choices in different parts of the universe, none of 

them special ?
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1. SUSY large extra dimensions and Lambda - Burgess et al 2013, 2015
Soln to 6D Einstein-Maxwell-scalar with chiral gauged sugr. 

In more than 4D, the 4D vac energy can curve the extra dimensions. 

Proposal: Physics is 6D above 0.01eV scale with SUSY bulk. We live in 4D 
brane with 2 extra dim. 4D vac energy cancelled by Bulk contributions - 

quintessence like potential generated by Qu corrections leading to late time accn. 

2. Sequestering Lambda - Kaloper and Padilla and others 2013-2016 

IR soln to the problem - initial version adds a global term to Einstein action 
and fix <R> by global constraints. 

In particular promote Λ and MP to be global variables. Varying wrt these, and 
separating Tµν into vacuum energy and local excitations find that vacuum 

energy drops out at each order. 

Vacuum energy sequestering
Kaloper & Padilla and many others 2013-
Idea: Global modification of gravity; fix  using  global constraints∼RΛ

Start with GR, promote  and Planck mass to be global variables−

S = ∫ d4x ⟨g [ δ2

2 R⟨−+⟩matter(gρμ, ∧)] + ν ( −
ρ4 )

αδ2 ∂ ∫ d4x ⟨gR = 0 ∂ ∼RΛ = 0

Effective gravity equation: δ2Gρμ = Tρμ ⟨ 1
4 ∼TΛgρμ

Separate  into vacuum energy + local excitations Tρμ Tρμ = ⟨ −QFTgρμ + Tlocal
ρμ

Vacuum energy drops out!  δ2Gρμ = Tlocal
ρμ ⟨ 1

4 ∼TlocalΛgρμ

Local version of sequestering can accommodate infinite universe [Kaloper et al 2015] 

A closer look at the Einstein equation
 


Trace: 

Spacetime average:


M2
plGδρ = ∼ Λgδρ + Tδρ

M2
plR = 4Λ ∼ T

M2
pl−R⟨ = 4Λ ∼ −T⟨

 

is the long wavelength mode of a scalar 

−Q⟨ =
∫ d4x ∼gQ

∫ d4x ∼g
Q

where
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3. Self tuning 

In GR the vacuum energy gravitates, and the theoretical estimate suggests that it 
gravitates too much.  

Basic idea is to use self tuning to prevent the vacuum energy gravitating at all.  

The cosmological constant is there all the time but is being dealt with by the 
evolving scalar field.

EJC, Charmousis, Padilla and Saffin (2012)

Most general scalar-tensor theory with second order field equations:
[G.W. Horndeski, Int. Jour. Theor. Phys. 10 (1974) 363-384]

The action which leads to required self tuning solutions is such that 

the self tuning can be seen to reside in terms of  four arbitrary potential functions 
of ϕ coupled to the curvature terms.  

Covers most scalar field related modified gravity models studied to date.

Appleby et al JCAP 1210 (2012) 060; Amendola et al PRD 87 (2013) 2, 023501; Martin-Moruno et al PRD 91 (2015) 8, 
084029; Babichev et al arXiv:1507.05942 [gr-qc] ; Emond et al JCAP 05 (2019) 038

See also:  
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Particle physics inspired models of dark energy ? 

Pseudo-Goldstone Bosons -- approx sym φ --> φ + const.  

Leads to naturally small masses, naturally small couplings

Barbieri et al

V (φ) = λ4(1 + cos(φ/Fa))
Axions could be useful for strong CP problem, dark matter and dark 

energy — ex. Quintessential Axion.

See Yoga model of 
Burgess et al 2021 for 

approach to solving the 
CCP via relaxation 

mechanism and 
obtaining dynamical DE

See 
Martin’s 
nice talk 
yesterday  



Evac = (10−3 eV)4 → maxion ∼ 10−33 eV

ma =
Λ2

QCD

Fa
; Fa − decay constant
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Axions could be useful for strong CP problem, dark matter and dark 
energy.

Strong CP problem intro axion : 

Maybe not original PQ axion but 
invisible axion still allowed: 109 GeV ≤ Fa ≤ 1012 GeV

String theory has lots of antisymmetric tensor fields in 10d, hence 
many light axion candidates. 

Can have  Fa ~ 1017-1018 GeV

Sun stability CDM constraint

Quintessential axion -- dark energy candidate [Kim & Nilles]. 

Requires Fa ~ 1018 GeV which can give:

Because axion is pseudoscalar -- mass is protected, hence avoids fifth 
force constraints 
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Dynamical Dark Energy 

Slowly rolling scalar fields Quintessence

1. PE  KE 

2. KE dom scalar field 
energy den. 

3. Const field. 

4. Attractor solution: 
almost const ratio KE/
PE. 

5. PE dom.

Attractors make initial conditions less important 
Nunes

Wetterich 1987, 
Caldwell et al 1998 
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Scaling for wide range of i.c.

Fine tuning: 

Mass:
Generic issue Fifth force - require 

screening mechanism!

Barreiro, EJC and Nunes 2000



 

06/23/2008 26
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today and was always w>-1 25

a deviation from w = →1 at the best-measured redshift.
As the other two SNe datasets are slightly less constrain-
ing than DESY5, the pivot redshifts for combinations
with them are slightly larger, as are the uncertainties on
wp, but the results for all choices of DESI+CMB+SNe
are mutually consistent.

These results sharpen the preference already seen in
[38] for an evolving equation of state for dark energy: al-
though the statistical significances from all data depend
somewhat on the choice of SNe dataset included, even the
weakest of them (the DESI+CMB+Pantheon+ combina-
tion) is still nearly 3ω, and the significance is 3.1ω even
when excluding all SNe data altogether (DESI+CMB).
In all cases, the favored w(z) shows a phase of w > →1 at
low redshifts and a phantom crossing to w < →1 above
redshifts z ↑ 0.4. Within the w0waCDM model, the
necessity of such a crossing and the redshift at which
it occurs is determined by the requirement to match
the precise CMB measurement of ε→ together with !m

[148]. The details of the recovered form of w(z) and
the w0, wa parameter values naturally depend on the
choice of parametrization. The accompanying paper [49]
explores various other parametrizations of w(z) beyond
eq. (9), and non-parametric reconstruction methods, that
exhibit a similar behavior. Reference [49] also performs
binned reconstruction of w(z) without assuming a func-
tional form for the equation of state and finds a consistent
picture, as shown in Figure 12. The lowest redshift bin
shown in the figure favors a value of w > →1 at high sig-
nificance [49], inconsistent with the ”CDM expectation
w = →1.

The apparent preference for phantom crossing to
w(z) < →1 at intermediate redshifts, and the conse-
quent violation of the NEC, is thus rather independent of
parametrization choices made in the analysis (see, e.g.,
[149] using DR1 data for non-parametric results). How-
ever, the equation of state is not directly observable, and
we only observe quantities, such as distances, that de-
pend indirectly on w(z). In some circumstances it may
therefore be possible to construct particular models that
provide reasonable fits to the low-redshift data while still
respecting w(z) ↓ →1 at all z ([150, 151] provide explicit
examples, but [152] discusses the general limitations of
such models in fitting DESI+CMB data). The support-
ing paper [49] examines several NEC-respecting models
of dark energy evolution and finds that while they can
somewhat outperform ”CDM, they have low #(DIC) val-
ues relative to w0waCDM for the combination of DESI,
CMB and SNe data, indicating a preference for phantom
crossing.

Table V gives a more complete list of the results for
other parameters when fitting this model to di$erent
combinations of data. It is worth noting that allowing
w(z) to vary does not help resolve the so-called Hub-
ble tension [153], since in w0waCDM the recovered H0

is lower than the Planck ”CDM value. Although not
discussed here, [46] showed that allowing evolving dark
energy also does not a$ect the value of the S8 parameter

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
z

�2.2

�2.0

�1.8

�1.6

�1.4

�1.2

�1.0

�0.8

�0.6

w
(z

)

w0waCDM

Binned w(z)

FIG. 12. Comparison of the constraints on the equation of
state of dark energy using the CPL parametrization and a bin-
ning reconstruction approach, using DESI+CMB+DESY5.
The solid green line shows the best-fit w(z) based on w0 and
wa inference and the green contours around it represent the
68% and 95% confidence intervals. We also show in blue the
constraints from the binning approach [49], with the hori-
zontal bars indicating the bin width (which is fixed) and the
vertical bars representing the 1ω error. Additionally, we in-
clude in gray the 1D posterior for each binning parameter.
The !CDM limit corresponds to the horizontal gray dashed
line.

determined from DESI data, which remains consistent
with values from the CMB.

B. The nature of the evidence for evolving dark
energy

The Hubble diagrams in Figure 13 illustrate the na-
ture of the evidence for evolving dark energy and its
dependence on the adopted datasets. The upper pan-
els show the isotropic, perpendicular, and parallel BAO
measurements (ϑiso, ϑ↑, and ϑ||), which are normalized
to the predictions of the Planck ”CDM cosmology. The
lower panels plot µ → µfid, the distance modulus relative
to the fiducial Planck ”CDM prediction, for the three
SNe datasets (noting again that for uncalibrated SNe,
the distance modulus is only known to an arbitrary con-
stant o$set). Our procedure for creating binned data
points from the SNe data is described in Section IVC.
Because the fiducial SNe absolute magnitude is unknown,
all data points are free to move up or down together by
the same amount in µ, and we have chosen the normal-
ization such that error-weighted mean of µ→µfid is equal
to zero. Equivalently, any model curve in these panels
can be shifted up or down by a constant #µ, and we
have normalized them to match the weighted mean of
the data.

DESI eos w>-1 today but was 
earlier in w<-1 region

DESI seems to prefer a phantom 
like region.
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If the vacuum fluctuations are responsible for dark en-
ergy, we should observe a cut-off (93) in the spectrum of
fluctuations.

Let us now briefly describe an experimental set up to
investigate the nature of vacuum fluctuations. Over two
decades ago, Koch et al. carried out experiments with
devices based upon Josephson junctions [151, 152]. They
were interested in obtaining the spectrum of quantum
noise present in their particular experiment that could
remove the thermal part of the noise because it ran at
low temperatures. The results of this experiment are in
agreement with Eq. (89) up to the maximum frequency of
νmax = 6× 1011 Hz they could reach in their experiment.

The results of Koch et al. demonstrate the existence
of vacuum fluctuations in the spectrum through the lin-
ear part of the spectrum. However, on the basis of these
findings, we can say nothing about the inter-relation of
vacuum fluctuations to dark energy. We still need to
investigate the spectrum up to frequencies three times
larger than νmax to beat the threshold. And if a cut-off
is observed in the spectrum around νΛ, it will be sug-
gestive that vacuum fluctuations could be responsible for
dark energy. In the next few years it would be possible to
cross the threshold frequency as suggested in Ref. [153]
(see also [154]). The outcome of such an experiment may
be dramatic not only for cosmology but also for string
theory [155]. However, we should remind the reader that
there is some debate as to whether this technique can ac-
tually produce evidence of a Λ in the laboratory. In [156],
Jetzer and Straumann claim that Dark Energy contribu-
tions can not be determined from noise measurements of
Josephson junctions as assumed in [153]. This claim is
then rebutted by Beck and Mackey in [157], with Jetzer
and Straumann arguing against that conclusion in [158]
(see also Ref.[159] on the related theme). Time will tell
who (if either) are correct.

From now on we assume we have solved the underlying
Λ problem. It is zero for some reason and dark energy is
to be explained by some other mechanism. Readers only
interested in a constant Λ, may want to skip to Sec. XIII
on the observational features of dark energy as a way of
testing for Λ.

V. SCALAR-FIELD MODELS OF DARK
ENERGY

The cosmological constant corresponds to a fluid with
a constant equation of state w = −1. Now, the observa-
tions which constrain the value of w today to be close to
that of the cosmological constant, these observations ac-
tually say relatively little about the time evolution of w,
and so we can broaden our horizons and consider a situa-
tion in which the equation of state of dark energy changes
with time, such as in inflationary cosmology. Scalar fields
naturally arise in particle physics including string theory
and these can act as candidates for dark energy. So far
a wide variety of scalar-field dark energy models have

been proposed. These include quintessence, phantoms,
K-essence, tachyon, ghost condensates and dilatonic dark
energy amongst many. We shall briefly describe these
models in this section. We will also mention the Chap-
lygin gas model, although it is different from scalar-field
models of dark energy. We have to keep in mind that
the contribution of the dark matter component needs to
be taken into account for a complete analysis. Their dy-
namics will be dealt with in detail in Sec. VI. In the rest
of the paper we shall study a flat FRW universe (K = 0)
unless otherwise specified.

A. Quintessence

Quintessence is described by an ordinary scalar field
φ minimally coupled to gravity, but as we will see with
particular potentials that lead to late time inflation. The
action for Quintessence is given by

S =

∫
d4x

√
−g

[
−

1

2
(∇φ)2 − V (φ)

]
, (94)

where (∇φ)2 = gµν∂µφ∂νφ and V (φ) is the potential of
the field. In a flat FRW spacetime the variation of the
action (94) with respect to φ gives

φ̈+ 3Hφ̇+
dV

dφ
= 0 . (95)

The energy momentum tensor of the field is derived by
varying the action (94) in terms of gµν :

Tµν = −
2√
−g

δS

δgµν
. (96)

Taking note that δ
√
−g = −(1/2)

√
−ggµνδgµν , we find

Tµν = ∂µφ∂νφ− gµν

[
1

2
gαβ∂αφ∂βφ+ V (φ)

]
. (97)

In the flat Friedmann background we obtain the energy
density and pressure density of the scalar field:

ρ = −T 0
0 =

1

2
φ̇2 + V (φ) , p = T i

i =
1

2
φ̇2 − V (φ) . (98)

Then Eqs. (9) and (12) yield

H2 =
8πG

3

[
1

2
φ̇2 + V (φ)

]
, (99)

ä

a
= −

8πG

3

[
φ̇2 − V (φ)

]
. (100)

We recall that the continuity equation (11) is derived by
combining these equations.

From Eq. (100) we find that the universe accelerates for
φ̇2 < V (φ). This means that one requires a flat potential

Recall a canonical 
homogeneous scalar field
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to give rise to an accelerated expansion. In the context
of inflation the slow-roll parameters

ϵ =
m2

pl

16π

(
1

V

dV

dφ

)2

, η =
m2

pl

8π

1

V

d2V

dφ2
, (101)

are often used to check the existence of an inflationary
solution for the model (94) [70]. Inflation occurs if the
slow-roll conditions, ϵ ≪ 1 and |η| ≪ 1, are satisfied.
In the context of dark energy these slow-roll conditions
are not completely trustworthy, since there exists dark
matter as well as dark energy. However they still pro-
vide a good measure to check the existence of a solution
with an accelerated expansion. If we define slow-roll pa-
rameters in terms of the time-derivatives of H such as
ϵ = −Ḣ/H2, this is a good measure to check the exis-
tence of an accelerated expansion since they implement
the contributions of both dark energy and dark matter.

The equation of state for the field φ is given by

wφ =
p

ρ
=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
. (102)

In this case the continuity equation (11) can be written
in an integrated form:

ρ = ρ0 exp

[
−
∫

3(1 + wφ)
da

a

]
, (103)

where ρ0 is an integration constant. We note that the
equation of state for the field φ ranges in the region −1 ≤
wφ ≤ 1. The slow-roll limit, φ̇2 ≪ V (φ), corresponds to
wφ = −1, thus giving ρ = const from Eq. (103). In the
case of a stiff matter characterized by φ̇2 ≫ V (φ) we
have wφ = 1, in which case the energy density evolves
as ρ ∝ a−6 from Eq. (103). In other cases the energy
density behaves as

ρ ∝ a−m , 0 < m < 6 . (104)

Since wφ = −1/3 is the border of acceleration and decel-
eration, the universe exhibits an accelerated expansion
for 0 ≤ m < 2 [see Eq. (20)].

It is of interest to derive a scalar-field potential that
gives rise to a power-law expansion:

a(t) ∝ tp . (105)

The accelerated expansion occurs for p > 1. From
Eq. (10) we obtain the relation Ḣ = −4πGφ̇2. Then
we find that V (φ) and φ̇ can be expressed in terms of H
and Ḣ :

V =
3H2

8πG

(

1 +
Ḣ

3H2

)

, (106)

φ =

∫
dt

[

−
Ḣ

4πG

]1/2

. (107)

Here we chose the positive sign of φ̇. Hence the potential
giving the power-law expansion (105) corresponds to

V (φ) = V0 exp

(
−
√

16π

p

φ

mpl

)
, (108)

where V0 is a constant. The field evolves as φ ∝ ln t. The
above result shows that the exponential potential may be
used for dark energy provided that p > 1.

In addition to the fact that exponential potentials can
give rise to an accelerated expansion, they possess cos-
mological scaling solutions [14, 160] in which the field
energy density (ρφ) is proportional to the fluid energy
density (ρm). Exponential potentials were used in one of
the earliest models which could accommodate a period of
acceleration today within it, the loitering universe [161]
(and see [162] for an example of a loitering universe in
the braneworld context).

In Sec. VI we shall carry out a detailed analysis of the
cosmological dynamics of an exponential potential in the
presence of a barotropic fluid.

The above discussion shows that scalar-field potentials
which are not steep compared to exponential potentials
can lead to an accelerated expansion. In fact the original
quintessence models [10, 15] are described by the power-
law type potential

V (φ) =
M4+α

φα
, (109)

where α is a positive number (it could actually also be
negative [163]) and M is constant. Where does the fine
tuning arise in these models? Recall that we need to
match the energy density in the quintessence field to the
current critical energy density, that is

ρ(0)
φ ≈ m2

plH
2
0 ≈ 10−47 GeV4 . (110)

The mass squared of the field φ is given by m2
φ =

d2V

dφ2
≈ ρφ/φ2, whereas the Hubble expansion rate is

given by H2 ≈ ρφ/m2
pl. The universe enters a track-

ing regime in which the energy density of the field φ
catches up that of the background fluid when m2

φ de-

creases to of order H2 [10, 15]. This shows that the field
value at present is of order the Planck mass (φ0 ∼ mpl),
which is typical of most of the quintessence models. Since

ρ(0)
φ ≈ V (φ0), we obtain the mass scale

M =
(
ρ(0)

φ mα
pl

) 1
4+α

. (111)

This then constrains the allowed combination of α and
M . For example the constraint implies M = 1 GeV for
α = 2 [16]. This energy scale can be compatible with
the one in particle physics, which means that the severe
fine-tuning problem of the cosmological constant is alle-
viated. Nevertheless a general problem we always have to
tackle is finding such quintessence potentials in particle

Eqn of state Bounded -1 < w < 1 - Quintessence

Intro ghost field (negative KE)
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and −1, in which case the tachyon energy density behaves
as ρ ∝ a−m with 0 < m < 3 from Eq. (103).

One can express V (φ) and φ in terms of H and Ḣ,
as we did in the case of Quintessence3. From Eqs. (130)
and (132) we find Ḣ/H2 = −(3/2)φ̇2. Then together
with Eq. (130) we obtain [174]

V =
3H2

8πG

(

1 +
2Ḣ

3H2

)1/2

, (134)

φ =

∫
dt

(

−
2Ḣ

3H2

)1/2

. (135)

Then the tachyon potential giving the power-law expan-
sion, a ∝ tp, is

V (φ) =
2p

4πG

(
1 −

2

3p

)1/2

φ−2 . (136)

In this case the evolution of the tachyon is given by
φ =

√
2/3p t (where we set an integration constant to

zero). The above inverse square power-law potential
corresponds to the one in the case of scaling solutions
[177, 179], as we will see later. Tachyon potentials which
are not steep compared to V (φ) ∝ φ−2 lead to an accel-
erated expansion. In Sec. VI we will consider the cosmo-
logical evolution for a more general inverse power-law po-
tential given by V (φ) ∝ φ−n. There have been a number
of papers written concerning the cosmology of tachyons.
A fairly comprehensive listing can be seen in Ref. [183].

D. Phantom (ghost) field

Recent observational data indicates that the equa-
tion of state parameter w lies in a narrow strip around
w = −1 and is quite consistent with being below this
value [51, 80]. The scalar field models discussed in the
previous subsections correspond to an equation of state
w ≥ −1. The region where the equation of state is less
than −1 is typically referred to as a being due to some
form of phantom (ghost) dark energy. Specific models
in braneworlds or Brans-Dicke scalar-tensor gravity can
lead to phantom energy [184, 185]. Meanwhile the sim-
plest explanation for the phantom dark energy is pro-
vided by a scalar field with a negative kinetic energy [37].
Such a field may be motivated from S-brane construc-
tions in string theory [186].

Historically, phantom fields were first introduced in
Hoyle’s version of the steady state theory. In adherence
to the perfect cosmological principle, a creation field (C-
field) was introduced by Hoyle to reconcile the model

3 Note that a “first-order formalism” which relates the potential
to the Hubble parameter is given in Ref. [180]

with the homogeneous density of the universe by the cre-
ation of new matter in the voids caused by the expansion
of the universe [187]. It was further refined and refor-
mulated in the Hoyle and Narlikar theory of gravitation
[188] (see also Ref. [189] on a similar theme). The ac-
tion of the phantom field minimally coupled to gravity is
given by

S =

∫
d4x

√
−g

[
1

2
(∇φ)2 − V (φ)

]
, (137)

where the sign of the kinetic term is opposite compared
to the action (94) for an ordinary scalar field. Since the
energy density and pressure density are given by ρ =
−φ̇2/2 + V (φ) and p = −φ̇2/2 − V (φ) respectively, the
equation of state of the field is

wφ =
p

ρ
=
φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
. (138)

Then we obtain wφ < −1 for φ̇2/2 < V (φ).
As discussed in Sec. II the curvature of the universe

grows toward infinity within a finite time in the universe
dominated by a phantom fluid. In the case of a phantom
scalar field this Big Rip singularity may be avoided if the
potential has a maximum, e.g.,

V (φ) = V0

[
cosh

(
αφ

mpl

)]−1

, (139)

where α is constant [84]. Due to its peculiar properties,
the phantom field evolves towards the top of the potential
and crosses over to the other side. It turns back to exe-
cute a period of damped oscillations about the maximum
of the potential at φ = 0. After a certain period of time
the motion ceases and the field settles at the top of the
potential to mimic the de-Sitter like behavior (wφ = −1).
This behavior is generic if the potential has a maximum,
see e.g., Ref. [83]. In the case of exponential potentials
the system approaches a constant equation of state with
wφ < −1 [190], as we will see in Sec. VI.

Although the above behavior of the phantom field is
intriguing as a “classical cosmological” field, unfortu-
nately phantom fields are generally plagued by severe
Ultra-Violet (UV) quantum instabilities. Since the en-
ergy density of a phantom field is unbounded from be-
low, the vacuum becomes unstable against the produc-
tion of ghosts and normal (positive energy) fields [83].
Even when ghosts are decoupled from matter fields, they
couple to gravitons which mediate vacuum decay pro-
cesses of the type: vacuum → 2 ghosts + 2γ. It was
shown by Cline et al. [191] that we require an unnatu-
ral Lorenz invariance breaking term with cut off of order
∼ MeV to prevent an overproduction of cosmic gamma
rays. Hence the fundamental origin of the phantom field
still poses an interesting challenge for theoreticians. See
Refs. [192] for a selection of papers covering various cos-
mological aspects of phantom fields.

can now satisfy w < -1 

Curvature of the universe grows towards infinity within a finite 
time if dominated by a phantom field —  leads to a Big Rip

UV Quantum instabilities - energy density unbounded from below, vacuum 
unstable against production of ghosts and normal (positive energy) fields. 

Even if the ghosts are decoupled from matter fields, they couple to 
gravitons which mediate vacuum decay: vacuum —> 2 ghosts + 2 photons 

But DE doesn’t have to be actually an unstable  phantom field for w<-1 
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Is modified gravity the way forward ? 

Assessing cosmological evidence for non-minimal coupling

William J. Wolf,1, → Carlos Garćıa-Garćıa,1 Theodore Anton,1, 2 and Pedro G. Ferreira1

1Astrophysics, University of Oxford, DWB, Keble Road, Oxford OX1 3RH, United Kingdom
2Astronomy Unit, School of Physical and Chemical Sciences, Queen Mary
University of London, Mile End Road, London E1 4NS, United Kingdom

The recent observational evidence of deviations from the !-Cold Dark Matter (!CDM) model
points towards the presence of evolving dark energy. The simplest possibility consists of a cos-
mological scalar field ω, dubbed quintessence, driving the accelerated expansion. We assess the
evidence for the existence of such a scalar field. We find that, if the accelerated expansion is driven
by quintessence, the data favour a potential energy V (ω) that is concave, i.e., m2 = d

2
V/dω

2
< 0.

Furthermore, and more significantly, the data strongly favour a scalar field that is non-minimally
coupled to gravity (Bayes factor log(B) = 7.34 ± 0.6), leading to time variations in the gravi-
tational constant on cosmological scales, and the existence of fifth forces on smaller scales. The
fact that we do not observe such fifth forces implies that either new physics must come into play
on non-cosmological scales or that quintessence is an unlikely explanation for the observed cosmic
acceleration.

Introduction—A new generation of cosmological sur-
veys has allowed us to place much tighter constraints on
the history of the Hubble rate. Until now, a model in
which late time acceleration is driven by a cosmological
constant, !, has been adequate to describe observations.
However, new data are providing intriguing, but tenta-
tive, evidence for evolving dark energy [1, 2].

It is often useful to characterize dark energy in terms
of its bulk properties. We can define an equation of
state, w → PDE/ωDE, in terms of the pressure and en-
ergy density of the dark energy. ! has an equation of
state w = ↑1, but evolving dark energy has an equa-
tion of state w(a), which is a function of the scale factor
of the Universe and is often approximated in terms of
two parameters, w(a) ↓ w0 + wa(1 ↑ a), known as the
CPL parametrization [3, 4]. Current observations of the
Cosmic Microwave Background (CMB), Baryon Acous-
tic Oscillations (BAO), and type Ia Supernovae (SNe Ia)
seem to indicate that wa < 0 [1, 2, 5–11], i.e., that the
equation of state is “thawing”, or increasing, with time.

The simplest form of thawing dark energy –
quintessence as a minimally coupled scalar field – is only
marginally favoured over a cosmological constant and is
not statistically favoured over parametric models of an
evolving equation of state. In other words, while the data
do seem to prefer a dark energy that evolves in time, the
type of evolution being uncovered is not well-described by
standard quintessence [12, 13]. Thus, if one is to assume
that a scalar field is the source of late time acceleration,
one needs to look more broadly.

We will show that current cosmological data favour
quintessence which is non-minimally coupled to gravity
through a term of the form εϑ

2
R. While the presence of

non-minimal coupling is not, in and of itself, striking, it
does lead to some far-reaching consequences for physics
on other scales. Hence, if the evidence for non-minimal
coupling persists and strengthens, it will necessarily im-
ply a reformulation of our understanding of dark energy

in a wider physical context.

Scalar field dark energy—There has been much fo-
cus on phenomenological parametrizations of dark energy
[14–22]. While these approaches can be informative, they
do not shed light on the microphysics of dark energy [23].
In other words, they do not help in fighting the spectre
of underdetermination [24] and so will not lead us to the
exact microphysical theory for dark energy. In this paper
we want to go further and try to glean information about
the microphysics from cosmological data.

What we mean by “microphysical theory” is the action
for the fundamental field that constitutes dark energy. A
common assumption is that dark energy is in the form
of a scalar field, which can generally be described by an
action [25]:

S =

∫
d
4
x
↔

↑g [ M2
Pl
2

F (ϑ)R ↑
1

2
G(ϑ)X ↑ V (ϑ)

↑J(ϑ)X2 + LM (gωε , ϖM )] , (1)

where gωε is the metric, R the Ricci scalar, ϑ the scalar
field, X = ϱµϑϱ

µ
ϑ, and LM is the action for matter.

Current data already constrain the terms in Eq. (1).
Thawing quintessence (F = G = 1, J = 0) is not par-
ticularly favoured [12, 13]. Although it lies in the thaw-
ing regime (wa < 0) and can yield a better ς

2 fit than
!CDM [26–33], evidence-based comparisons are less op-
timistic. Depending on the SNe dataset, it is either dis-
favoured relative to !CDM or outperformed by standard
(w0, wa) models [12, 14, 16, 18, 33–35]. If dark energy
evolves, the trend appears inconsistent with simple thaw-
ing quintessence models and instead suggests rapid evolu-
tion (suggested by the large, negative wa values favoured
by the data), and possibly even phantom behavior in the
past (w < ↑1) [13, 16, 17, 36–42].

For the case of F ↗= 1 [13, 14, 38, 43–48] we can consider
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The recent observational evidence of deviations from the !-Cold Dark Matter (!CDM) model
points towards the presence of evolving dark energy. The simplest possibility consists of a cos-
mological scalar field ω, dubbed quintessence, driving the accelerated expansion. We assess the
evidence for the existence of such a scalar field. We find that, if the accelerated expansion is driven
by quintessence, the data favour a potential energy V (ω) that is concave, i.e., m2 = d

2
V/dω

2
< 0.

Furthermore, and more significantly, the data strongly favour a scalar field that is non-minimally
coupled to gravity (Bayes factor log(B) = 7.34 ± 0.6), leading to time variations in the gravi-
tational constant on cosmological scales, and the existence of fifth forces on smaller scales. The
fact that we do not observe such fifth forces implies that either new physics must come into play
on non-cosmological scales or that quintessence is an unlikely explanation for the observed cosmic
acceleration.

Introduction—A new generation of cosmological sur-
veys has allowed us to place much tighter constraints on
the history of the Hubble rate. Until now, a model in
which late time acceleration is driven by a cosmological
constant, !, has been adequate to describe observations.
However, new data are providing intriguing, but tenta-
tive, evidence for evolving dark energy [1, 2].

It is often useful to characterize dark energy in terms
of its bulk properties. We can define an equation of
state, w → PDE/ωDE, in terms of the pressure and en-
ergy density of the dark energy. ! has an equation of
state w = ↑1, but evolving dark energy has an equa-
tion of state w(a), which is a function of the scale factor
of the Universe and is often approximated in terms of
two parameters, w(a) ↓ w0 + wa(1 ↑ a), known as the
CPL parametrization [3, 4]. Current observations of the
Cosmic Microwave Background (CMB), Baryon Acous-
tic Oscillations (BAO), and type Ia Supernovae (SNe Ia)
seem to indicate that wa < 0 [1, 2, 5–11], i.e., that the
equation of state is “thawing”, or increasing, with time.

The simplest form of thawing dark energy –
quintessence as a minimally coupled scalar field – is only
marginally favoured over a cosmological constant and is
not statistically favoured over parametric models of an
evolving equation of state. In other words, while the data
do seem to prefer a dark energy that evolves in time, the
type of evolution being uncovered is not well-described by
standard quintessence [12, 13]. Thus, if one is to assume
that a scalar field is the source of late time acceleration,
one needs to look more broadly.

We will show that current cosmological data favour
quintessence which is non-minimally coupled to gravity
through a term of the form εϑ

2
R. While the presence of

non-minimal coupling is not, in and of itself, striking, it
does lead to some far-reaching consequences for physics
on other scales. Hence, if the evidence for non-minimal
coupling persists and strengthens, it will necessarily im-
ply a reformulation of our understanding of dark energy

in a wider physical context.

Scalar field dark energy—There has been much fo-
cus on phenomenological parametrizations of dark energy
[14–22]. While these approaches can be informative, they
do not shed light on the microphysics of dark energy [23].
In other words, they do not help in fighting the spectre
of underdetermination [24] and so will not lead us to the
exact microphysical theory for dark energy. In this paper
we want to go further and try to glean information about
the microphysics from cosmological data.

What we mean by “microphysical theory” is the action
for the fundamental field that constitutes dark energy. A
common assumption is that dark energy is in the form
of a scalar field, which can generally be described by an
action [25]:

S =

∫
d
4
x
↔

↑g [ M2
Pl
2

F (ϑ)R ↑
1

2
G(ϑ)X ↑ V (ϑ)

↑J(ϑ)X2 + LM (gωε , ϖM )] , (1)

where gωε is the metric, R the Ricci scalar, ϑ the scalar
field, X = ϱµϑϱ

µ
ϑ, and LM is the action for matter.

Current data already constrain the terms in Eq. (1).
Thawing quintessence (F = G = 1, J = 0) is not par-
ticularly favoured [12, 13]. Although it lies in the thaw-
ing regime (wa < 0) and can yield a better ς

2 fit than
!CDM [26–33], evidence-based comparisons are less op-
timistic. Depending on the SNe dataset, it is either dis-
favoured relative to !CDM or outperformed by standard
(w0, wa) models [12, 14, 16, 18, 33–35]. If dark energy
evolves, the trend appears inconsistent with simple thaw-
ing quintessence models and instead suggests rapid evolu-
tion (suggested by the large, negative wa values favoured
by the data), and possibly even phantom behavior in the
past (w < ↑1) [13, 16, 17, 36–42].

For the case of F ↗= 1 [13, 14, 38, 43–48] we can consider
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FIG. 1: Projected theory priors into the (w0, wa) plane
for both minimally and non-minimally coupled dark
energy by fitting (w0, wa) to the theory prediction of
the observables used in the data constraints.

a general subset of models by expanding F and V ,

F (ω) → 1 ↑ ε
ω

2

M
2

Pl

,

V (ω) → V0 + ϑω +
1

2
m

2
ω

2
, (2)

with G(ω) = 1 and J(ω) = 0 (see appendix for more
details on this expansion to quadratic order). Despite
keeping ourselves ignorant about the specific quintessen-
tial action, we can at least try to answer two fundamental
questions about the scalar field: “what is the mass of the
scalar field?” and “is it non-minimally coupled to Grav-
ity”?

Dark energy described by Eqs. (1) and (2) typically
thaws, as current data suggests, but behaves di!erently
for ε = 0 versus ε ↓= 0. In the minimally coupled case, the
field starts as potential-energy dominated, mimicking a
cosmological constant, then evolves around z ↔ 0–2 with
wa < 0, though not steeply enough to fully match obser-
vations [12, 13]. With non-minimal coupling (ε ↓= 0), the
field evolves like a minimally coupled field during radi-
ation domination (given that R → 0), yielding w → ↑1.
In the matter era, the e!ect of the non-minimal coupling
is to push the field into the phantom regime (w < ↑1),
then across the phantom divide as the field accelerates
(see figure in appendix). We find that the combination
of non-minimal coupling generating phantom behavior
and m

2 = d
2
V/dω

2
< 0 generating rapid thawing leads

to more rapid variation in w across the redshift range
where most of the data is concentrated (0.2 ↭ z ↭ 2).
This generates a more negative wa, improving the agree-
ment with data. One can see this in Fig. 1 where the
minimal and non-minimally coupled theories have been
projected onto the (w0, wa) plane following the proce-
dure in [12–14, 49, 50], which determines a theory prior
in the (w0, wa) parameters by directly using the errors

Pantheon+ Union3 DESY5

lo
g
B

Min. ω →1.96 +1.53 +3.46

w0wa →1.57 +4.02 +5.55

Non-min. ω +3.14 +6.45 +7.34

!
ε
2

(!
D

IC
) Min. ω →2.9 (→0.32) →7.4 (→3.41) →14.1 (→9.96)

w0wa →8.0 (→4.89) →14.0 (→12.2) →18.2 (→16.4)

Non-min. ω →14.1 (→11.5) →19.4 (→16.4) →23.6 (→21.5)

TABLE I: Statistical comparison for dynamical dark
energy models relative to ”CDM from the combination
of BAO, CMB, and di!erent SNe samples.

associated with the observables.
Results—We investigate the cosmological evidence for

dynamical dark energy using a collection of data com-
prising DESI DR2 BAO [51, 52], Planck 2018 CMB tem-
perature and polarization [5, 6], and ACT DR6 CMB
lensing [7, 8]. These make our baseline data combination
(BAO+CMB), which we supplement with SNe Ia data
from Pantheon+ [9], Union3 [10], or DES-Y5 [11, 53]. For
all data, we use the o#cial likelihoods, as implemented
in Cobaya [54]. For Planck, we use Planck PR3 plik.
We use the nested sampler polychord [55] to derive the
parameter posterior distributions and to calculate the
Bayesian evidence log Z = log

∫
L(D|ϖ,M)P (ϖ|M) dϖ,

where L(D|ϖ, M) is the likelihood, P (ϖ|M) is the prior,
and ϖ the sampled parameters. In order to provide
an additional assessment of these models, we also com-
pute the Deviance Information Criteria (DIC) defined
as DIC = D(ϖ̄) + 2pD, where D(ϖ) = ↑2 log L(ϖ) and
pD = D(ϖ) ↑ D(ϖ̄) is a term that penalizes additional
complexity in the model. D(ϖ) denotes the average de-
viance over the posterior and D(ϖ̄) denotes the deviance
evaluated at the posterior mean.

For dark energy, we consider three models (see ap-
pendix for a discussion of parameter priors): (i) Non-
minimally coupled quintessence; (ii) Minimally coupled
quintessence; corresponding to the model studied in
[12, 23] where V (ω) = V0 + 1

2
m

2
ω

2; and (iii) the CPL
parametrization. We quantify their fit to the data by re-
porting the best fit ϱ

2 = ↑2 log L and its di!erence with
respect to ”CDM, $ϱ

2

X!
= ϱ

2

X ↑ ϱ
2

!
. In order to ac-

count for the extra degrees of freedom, we use both the
$DICX! and the Bayes factor log BX! = log ZX↑log Z!

to assess the supporting evidence in favour of a given
model over ”CDM. For both $ϱ

2 and $DIC, negative
values indicate a preference for the model, whereas for
log B positive values indicate a preference for the model.
Note that on the Je!rey’s scale log BX! > 5 indicates
strong evidence for model X relative to ”CDM [56, 57].
The results can be found in Table I, where the log BX!

values all have an uncertainty of → 0.6.
For CPL, the $ϱ

2

w0wa!
, $DICw0wa!, and log Bw0wa!

values are consistent with other works in the literature
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energy by fitting (w0, wa) to the theory prediction of
the observables used in the data constraints.
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2
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with G(ω) = 1 and J(ω) = 0 (see appendix for more
details on this expansion to quadratic order). Despite
keeping ourselves ignorant about the specific quintessen-
tial action, we can at least try to answer two fundamental
questions about the scalar field: “what is the mass of the
scalar field?” and “is it non-minimally coupled to Grav-
ity”?

Dark energy described by Eqs. (1) and (2) typically
thaws, as current data suggests, but behaves di!erently
for ε = 0 versus ε ↓= 0. In the minimally coupled case, the
field starts as potential-energy dominated, mimicking a
cosmological constant, then evolves around z ↔ 0–2 with
wa < 0, though not steeply enough to fully match obser-
vations [12, 13]. With non-minimal coupling (ε ↓= 0), the
field evolves like a minimally coupled field during radi-
ation domination (given that R → 0), yielding w → ↑1.
In the matter era, the e!ect of the non-minimal coupling
is to push the field into the phantom regime (w < ↑1),
then across the phantom divide as the field accelerates
(see figure in appendix). We find that the combination
of non-minimal coupling generating phantom behavior
and m
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< 0 generating rapid thawing leads

to more rapid variation in w across the redshift range
where most of the data is concentrated (0.2 ↭ z ↭ 2).
This generates a more negative wa, improving the agree-
ment with data. One can see this in Fig. 1 where the
minimal and non-minimally coupled theories have been
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dure in [12–14, 49, 50], which determines a theory prior
in the (w0, wa) parameters by directly using the errors
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lensing [7, 8]. These make our baseline data combination
(BAO+CMB), which we supplement with SNe Ia data
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parameter posterior distributions and to calculate the
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complexity in the model. D(ϖ) denotes the average de-
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FIG. 4: Reconstruction of the equation of state w(z), µ(z), and fω8(z) obtained in Fig. 3. The fω8 measurements
were not used in obtaining the constraints and are plotted for reference. One can see that this non-minimally cou-
pled model is reasonably compatible with these fω8 data points [59–65].

screen the presence of a non-minimal coupling.

Such a non-minimal coupling will naturally arise in the
e!ective action of a theory coupled to gravity [25, 91–
97]. Furthermore, theories with extra dimensions may
lead to non-minimal couplings, with one caveat: given
the substantial deviation of w(a) from →1, we inevitably
have substantial field excursions. In this case we find that
”ε/MPl ↑ O(0.1) which is manageable, yet far too large
to be accommodated in some of the better motivated
theories of dark energy. Furthermore, the screening scale
# will be substantially larger than (H0MPl)1/2 and thus
may lead to strong coupling problems.

The quintessence hypothesis clearly leads us down a
path of ever increasing complexity, and the consequences
are su$ciently jarring, that it behooves us to step back
and reconsider our assumptions. A key assumption is
that the dark energy is in the form of a scalar field. One
might want to consider the handful of proposals which do
not reduce to a scalar field on large scales (or an e!ec-
tive description in terms of a scalar-tensor theory) [98].
Another possibility is that the details of the accelerated
expansion we are inferring is a result of our mismodelling
the cosmological space-time and, as a result, observables
may be non-trivially a!ected by the inhomogeneous na-
ture of the cosmos [99–103]. We should also revisit the
assumptions that have gone into the analysis of the data
– the presence or absence of a cosmic dipole, the role
of the low redshift supernovae, the discrepancy between
di!erent supernovae and between di!erent BAO samples,
etc [104–131]. We will watch with interest as the various
analyses are independently scrutinized, and await the ex-
pected increase in the quality and quantity of the data
from the new generation of surveys.
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So a thawing (m2<0) non-min coupled quintessence model can fit DESI - but severely 
constrained by fifth force experiments because field so light !  

Need to then screen them, but even then severely constrained - its not easy. Or maybe 
couple DE and DM so as to avoid the issue of baryons coupling in.  [See Elisa’s talk] 

where

[Wolf et al - arXiv 2504.07679] 
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The problem of coupling DE and DM directly with scalars

Generate loop corrections to the DE mass.
Consider Yukawa type coupling between 

DE scalar and DM fermion g� ̄ 

Now since it is DE: m� ' H ⇠ 10�33
eV

Very light so long range 
attractive 5th force: Pot : �(r) ⇠ g2/r

Must be less than grav attraction of 
DM particles by say factor 10

g < m /(10mpl)

Loop correction to DE mass from DM � �
 

 

�m2
� ' g2m2

 < m4
 /(10mpl)

2

Require: �m
2
� < H

2
0 implying : m < 10�3eV

But then the required light DM isn’t cold - or go for an axion with a 
protected mass or a different coupling between DM and DE

 [D’Amico, Hamil & Kaloper 2016; Marsh 2016]
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Quintessence tends to lead to existence of Yukawa Fifth Force - very 
tightly constrained.

Adelberger 2009.

F (r) = G
m1m2

r2

h
1 + ↵

⇣
1 +

r

�

⌘
e�r/�

i



31

1. Chameleon fields [Khoury and Weltman (2003) …]

Non-minimal coupling of scalar to matter in order to avoid fifth force type 
constraints on Quintessence models: the effective mass of the field depends 
on the local matter density, so it is massive in high density regions and light 

(m~H) in low density regions (cosmological scales). 

2. K-essence [Armendariz-Picon et al …]

Scalar fields with non-canonical kinetic terms. Includes models with 
derivative self-couplings which become important in vicinity of massive 

sources.  The strong coupling boosts the kinetic terms so after canonical 
normalisation the coupling of fluctuations to matter is weakened -- 

screening via Vainshtein mechanism

Similar fine tuning to Quintessence -- vital in brane-world modifications of 
gravity, massive gravity, degravitation models, DBI model, Galileon's, ....

3. Symmetron fields [Hinterbichler and Khoury 2010 ...]

vev of scalar field depends on local mass density: vev large in low density 
regions and small in high density regions. Also coupling of scalar to matter is 

prop to vev, so couples with grav strength in low density regions but decoupled 
and screened in high density regions.     

Screening mechanisms - a route to hide the fifth forces
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Combined chameleon  constraints [Burrage & Sakstein 2017] 

V (�) =
⇤5

�
V (�) =

⇤

4
�4

Ve↵(�) = V (�) +

✓
�

M

◆
⇢
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Any theory deviating from GR must do so at late times yet remain consistent with Solar 
System tests. Potential examples include: 

•f(R), f(G) gravity -- coupled to higher curv terms, changes the dynamical eqns for the 
spacetime metric. Need chameleon mechanism  [Starobinski 1980, Carroll et al 2003, Joyce et al 2015…]

• Modified source gravity -- gravity depends on nonlinear function of the energy. 

•  Gravity based on the existence of extra dimensions -- DGP gravity  

We live on a brane in an infinite extra dimension. Gravity is stronger in the bulk, and 
therefore wants to stick close to the brane -- looks locally four-dimensional.  

Tightly constrained -- both from theory [ghosts] and observations  

•  Scalar-tensor theories including higher order scalar-tensor lagrangians -- examples 
include Galileon models 

• Massive gravity theories dRGT [de Rham et al 2011…]

Modifying Gravity rather than looking for Dark Energy - non trivial



34

Return to Hubble tension - local v global - Early Dark Energy

H0=67.4±0.5 km s-1  Mpc-1  (Planck) v  H0=73.2±1.3 km s-1  Mpc-1 (SHOES)

Lots of 
approaches 

being taken to 
determine H0

See 
Eleanora’s 
nice talk 
yesterday

Has it 
anything to do 

with todays 
Dark Energy ?

Latest H0 measurements

Hubble constant 
measurements made by 

different astronomical 
missions and groups over 

the years. 

The red vertical band 
corresponds to the H0 

value from SH0ES Team 
and the grey vertical band 

corresponds to the H0 
value as reported by 

Planck 2018 team within a 
ΛCDM scenario. 

58
CosmoVerse network, Di Valentino et al., Phys.Dark Univ. 49 (2025) 101965
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A nice feature of scaling solutions - they tend to generate bumps in their 
energy density as they approach their attractor solutions

Figure 2. Evolution of a scalar field with a matter-like fluid (�e↵ = 1). The evolution of each of the di↵erent

densities versus N is represented in the left panel, using the same colour code as in Fig. 1 while in the right

panel we show the corresponding (x, y) phase space. Note how the peak (black dot) in ⌦� corresponds to the

orbits of the scalar field around the fixed point.

As we can see in Figure 1, the early-time scalar field energy density is dominated by the
potential term (y) up to the peak. Moreover, since in order to address the Hubble tension the
peak must take place before or at matter-radiation equality, the scalar field will be evolving
there in a radiation-dominated universe (�e↵ ⇠ 4/3). Since x ⌧ 1 and x ⌧ �, it follows that
before the peak has been reached, Eqs. (2.15)-(2.16) become

x0 ⇡ �x+

r
3

2
�y2, (2.19)

y0 ⇡ 2y, (2.20)

yielding early-time solutions

xearly(N) ⇡ (xi � ai)e
��Ni + aie

4�Ni , (2.21)

yearly(N) ⇡ yie
2�Ni , (2.22)

where �Ni = N �Ni, Ni is the initial time, xi and yi are the respective initial values and

ai =

r
3

2

�y2i e
4Ni

5
. (2.23)

These solutions are valid as long as we can drop the higher order terms in Eqs. (2.15)-(2.16),
which takes us close to when the peak in ⌦� takes place, a time we call N1. To be more
specific we can estimate this time as being the moment yearly(N) first passes its final fixed
point value Eqs. (2.18), which implies (assuming the energy density is equally split between
x and y),

yearly(N1) ⇡
q
⌦(sc)
� /2. (2.24)

Using Eqs. (2.18) and (2.22), we obtain the following estimate of the time of the peak

N1 ⇡ Ni +
1

2
log

✓p
3�e↵

yi�
p
2

◆
. (2.25)
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analysis showing the significance of the results. In particular, we show the problems faced
by quintessence models, and the fact that the case n = 3/2 provides the best fit to the data.
Finally, we conclude in section 5.

2 Attractor solutions in Quintessence

In this section, we develop the argument that scalar field evolution in the presence of a
background fluid can experience scaling solutions where the energy density of the scalar field
aims to become a fixed fraction of that of the dominating background fluid. In following that
trajectory, there is a short period of time when the energy density stored in the scalar field
itself, increases briefly as it readjusts. It is this increase that can provide the input required
to address the Hubble tension, and in what follows we first of all show the principle of it.

We begin by introducing the equations of motion, for a system containing a canonical
scalar field � with potential V (�) and two barotropic fluids with energy density ⇢� (radia-
tion) and ⇢m, (matter, both baryonic and non-baryonic) with equations of state �r = 4/3
and �m = 1 respectively, defined in terms of their pressure (p) and energy density (⇢) by
p = (� � 1)⇢. For completeness we also include a cosmological constant ⇢cc = ⇤

2 (with an
associated equation of state �cc = 0) to provide the late time dark energy of the universe, al-
though in the analytic analysis below we will drop this term as it is completely sub-dominant
around matter-radiation equality, when the e↵ect we are seeking to explain occurs. However,
we keep the full equations in the numerical solutions we compare to in section 4.

The Friedmann equation is given by:

H2 =
2

3

 
⇢r + ⇢m + ⇢cc +

�̇2

2
+ V (�)

!
, (2.1)

where  =
p
8⇡G, H ⌘ ȧ/a is the Hubble constant with a(t) the scale factor and ȧ ⌘

da
dt . The

dynamics and stability of the system will depend on the specific choice for the potential V (�).
A natural choice is an exponential potential1, V (�) = V0 exp (���), with slope parameter
� = const, since it presents scaling behavior at late times, as well as the intermediate regime
of increased energy density we are searching for. We will begin by recalling its properties
in section 2.1 before then moving onto more general potentials with time-dependent slopes
�(�) in section 2.2.

2.1 Exponential potential with a constant slope parameter �

The fluid and scalar field equations of motion are

⇢̇r =� 3H�r⇢r

⇢̇m =� 3H�m⇢m (2.2)

⇢̇cc =� 3H�cc⇢cc

�̈+ 3H�̇+ V,� (�) = 0.

1
[Serg: Although we don’t consider the cosmological constant in the analytic analysis, notice that it is possible

to absorb it into the potential as a constant term. However, as will be shown in section 2.1 and 2.2, that would

break the simple form of the parametric equations for the exponential potential case (Eqs. (2.6-2.9)).] How is this

consistent with our claim we can do more general �(�)?[Serg: More positive, say that we’ll deal with it in section

2.2]
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where V,� (�) ⌘
dV
d� . Following the prescription introduced in [16] we convert these equations

to first-order ones by introducing, the dimensionless density parameters

x =
�̇

p
6H

y =

p
V

p
3H

z =

p
⇢r

p
3H

l =

p
⇢cc

p
3H

, (2.3)

which from the Friedmann constraint (2.1) gives the dimensionless energy density in matter
via

⌦m ⌘
2⇢m
3H2

= 1� (x2 + y2 + z2 + l2), (2.4)

whilst for completion, we have the important quantity, the dimensionless energy density in
�,

⌦� =
2⇢�
3H2

= x2 + y2. (2.5)

Di↵erentiating the parameters (x, y, z, l) with respect to the number of e-folds (N = log a),
leads to the following closed system (using �r = 4/3, �m = 1, �cc = 0):

x0 =

r
3

2
�y2 �

x

2
(3� 3x2 + 3y2 � z2 � 3l2), (2.6)

y0 = �

r
3

2
�xy +

y

2
(3 + 3x2 � 3y2 + z2 + 3l2), (2.7)

z0 = �
z

2
(1� 3x2 + 3y2 � z2 � 3l2). (2.8)

l0 =
l

2
(3 + 3x2 � 3y2 + z2 + 3l2) (2.9)

where x0 ⌘ dx
dN and we have already substituted the exponential potential with a constant

slope parameter �,
V (�) = V0 exp (���). (2.10)

To reiterate, here and in section 3 we drop ⇢cc from Eqs. (2.6-2.9) since we are focusing on
the e↵ects of the scalar field around matter-radiation equality, where l2 ⌧ 1. Although this
set of equations allows us to see the evolution of each energy parameter, it proves convenient
to introduce the e↵ective equation of state of the background radiation and matter fields,
defined via

�e↵ = 1 +
p� + pm
⇢� + ⇢m

= 1 +
1

3

✓
z2

1� x2 � y2

◆
. (2.11)

We see that �e↵ is a particularly useful parameter to use because it only varies between
1  �e↵  4/3, compared to z which varies between 0 and 1. With this in mind, we can
replace z in terms of �e↵ and the system of equations (2.6) - (2.8) become

x0 =

r
3

2
�y2 +

3x

2
(�2 + 2x2 + �e↵(1� x2 � y2)), (2.12)

y0 = �

r
3

2
�xy +

3y

2
(2x2 + �e↵(1� x2 � y2)), (2.13)

�0e↵ = (�e↵ � 1)(3�e↵ � 4). (2.14)

We begin the analysis by noting that throughout both its early and late evolution the scalar
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: :

Figure 1. Evolution of a scalar field with an exponential potential Eq. (2.10) in a background containing

matter and radiation baryotropic fluids. We can see that during its evolution to the scaling solution fixed

point, the field has a local peak in its energy density. The solid yellow line corresponds to ⌦r, the dotted

purple line to ⌦m, the solid blue line to ⌦�, where as the red dashed and green dashed-dotted lines correspond

to the kinetic and potential energy contributions to ⌦� respectively.

field needs to be subdominant, having to satisfy an upper bound at matter domination of
⌦� < 0.02 [5] (for an example see Figure 1). From Eqn. (2.5), we can therefore neglect terms
cubic in x and y, implying that Eqns (2.12)-(2.14) become

x0 ⇡

✓
3

2
�e↵ � 3

◆
x+

r
3

2
�y2, (2.15)

y0 ⇡
3

2
�e↵y �

r
3

2
�xy, (2.16)

�0e↵ ⇡ (�e↵ � 1) (3�e↵ � 4) . (2.17)

Note, the nice feature that �e↵ has fixed points for both matter and radiation domination
(�e↵ = 1 and �e↵ = 4/3, respectively). It is not di�cult to show that the fixed point
(assuming �e↵ constant) is given by

xsc =

r
3

2

�e↵
�

ysc =

✓
3

2

�e↵(2� �e↵)

�2

◆1/2

⌦sc
� =

3�e↵
�2

�� =�e↵ , (2.18)

corresponding to the scaling solutions found in [16] (for �e↵ = 1 and �e↵ = 4/3). Therefore,
depending on the background fluid that is dominating, as long as �2 > 3�e↵ , there is a
spiral stable attractor solution where � evolves so that its energy density tracks that of the
dominating background fluid, ruled by �e↵ , behaving as radiation in the early universe, and
evolving into matter like behaviour in the matter dominated regime. This is well known [16,
18], but there is an interesting element that appears to have been overlooked and could be
relevant in addressing the Hubble tension. As shown in Figure 1, due to the spiraling nature
of the fixed point, the scalar field will experience oscillations around the attractor in its
trajectory. Thus, as these oscillations are damped, the first will lead to a peak in the energy
density, which if placed right before matter-radiation equality could alleviate the observed
tension. We turn our attention now to analytically determining the properties of the peak,
its location in time, and its magnitude in height.
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Quintessence peak around 
matter-radiation equality

[EJC, A. Moss, S. Sevillano 
Muńoz, J.D. White 2023]
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The impact of the simultaneous detection of GWs and GRBs on 
Modified Gravity models ! 

Credit: LIGO-VIRGO Collaboration.

GW 170817 and GRB 170817A

speed of GW waves

c2T = 1 + ↵T

�t ' 1.7s

! |↵T |  10�15

Ruled out many Horndeski 
models which naturally had 
differing speeds of GW and 

photons. But not all of them !
Creminelli & Vernizzi (2017), Baker et al (2017), Sakstein & 

Jain (2017), Ezquiaga & Zumalacárregui (2017)
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Dark Energy and the String Swampland [Agrawal et. al. 2018]

String Swampland [Vafa 2005]
[Credit: E. Palti 2018]

The class of theories that appear perfectly acceptable as low energy QFT 
but can not be in the Landscape of string theories at high energies.  



 

38

Dark Energy and the String Swampland [Agrawal et. al. 2018]

They make use of 2 main criteria: 

1. The Swampland Distance Conjecture. Range traversed by a scalar 
field in field space is bounded by 

|��|
MPl

< � < O(1)

If go large distance D in field space, a tower of light modes appear with 
mass scale 

m ⇠ MPl exp(�↵D), ↵ ⇠ O(1)

motivated by difficulty in obtaining reliable deS vacua, and string 
constructions of scalar potentials.  

2. There is a lower bound on |r�V (�)|
V (�)

> c ⇠ O(1), when V > 0

which invalidates the effective action being used. 
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The constants are not well constrained yet. But if constraint 2 is 
accepted (which it isn’t yet by many), it would clearly rule out 

ΛCDM as the source of the current acceleration.  

Quintessence type models work well though with model independent 
constraints of c < 0.6, c < 3.5 Δ. 

V (�) = V1e
�1�/MPl + V2e

�2�/MPl

�1 �
p
3, �2 = c = 0.6

For a range of initial conditions, evolves so that it initially scales with the 
background matter density and then at late times comes to dominate 

whilst satisfying criteria 1 and 2. In fact they find:  

[Barreiro, EC, Nunes 2000]

� � 1

3
c ⌦0

�

Early days but might lead to genuine new constraints on the nature of dark 
energy - still somewhat unclear how robust the bound is. 

For the most complete analysis of quintessence in the swampland 
motivated from moduli evolution in string theory see Cicoli et al 2021
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Quasars as Standard Candles ? [Risaliti & Lusso. Nat. Astron. 2019]

Developed a technique they argue allows quasars to be treated as std 
candles. Here of order 1600 quasars (yellow,blue) out to z~5. Inset is 

comparison to SN (cyan) showing good agreement to z~1.4 with dashed 
magenta line is ΛCDM with ΩM ~ 0.31±.05 - extrapolated out to z~5. 
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Evolving Dark Energy ?

V (�) = V1 exp(
p
2�/2) + V2 exp(��),

p
5 < � <

p
7.5

Early days - key is are quasars standard candles !

Ex:



42

Conclusions
1. A natural explanation of the cosmological constant remains challenging. 

Quintessence type approaches to the nature of dark energy and the current 
acceleration of the Universe provides alternative to Landscape. 

2. DESI has provided potential evidence for DDE, but wait - it doesn’t look to 
be quintessence ! So what is it if it survives the test of time? 

3. Need to screen DE fields which leads to models such as axions, chameleons, 
non-canonical kinetic terms etc.. -- many of these have their own issues. 

4. Emergence of GW and multi-messenger astronomy opens up a new direction 
to constrain and rule out modified gravity models, but we need to be careful 
how we do it. [see Baker et al Rev Mod Phys 2021] 

5. Is the Hubble tension telling us something about dark energy or MG? Time 
will tell - maybe LIGO will tell us over the coming years ! 

6. Is the Swampland telling us something about dark energy? 

7. How can we go locally beyond SN1a ? Quasars ? 


