

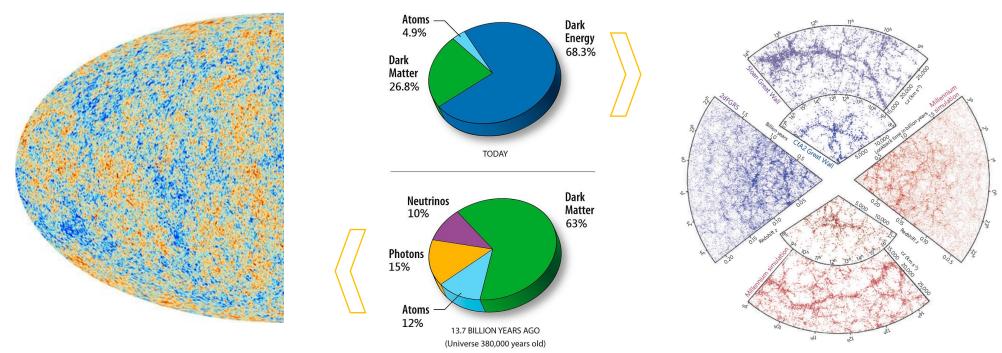
- XLZD@BOULBY HOSTING A RARE EVENT OBSERVATORY FOR DARK MATTER AND NEUTRINO PHYSICS?

(and all else that goes "ping" in the night...)

Henrique Araújo

Imperial College London & STFC Particle Physics Department

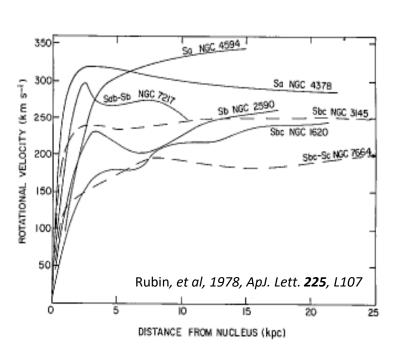
Strongly interacting dinosaur wandering in the dark at NSL-2025

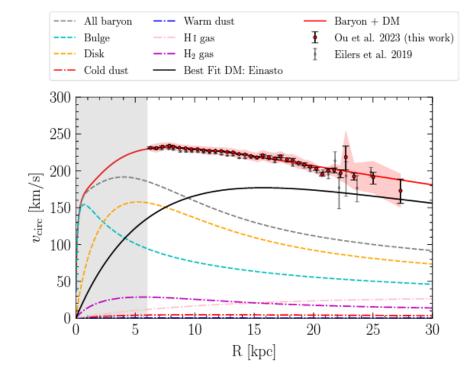


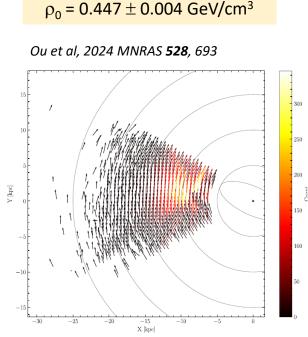
VANDERING IN THE DARK – UK HEP FORUM 2025 – 20-22 OCTOBER 2025 – COSENER'S HOUSE

DARK MATTER AT THE LARGEST SCALES

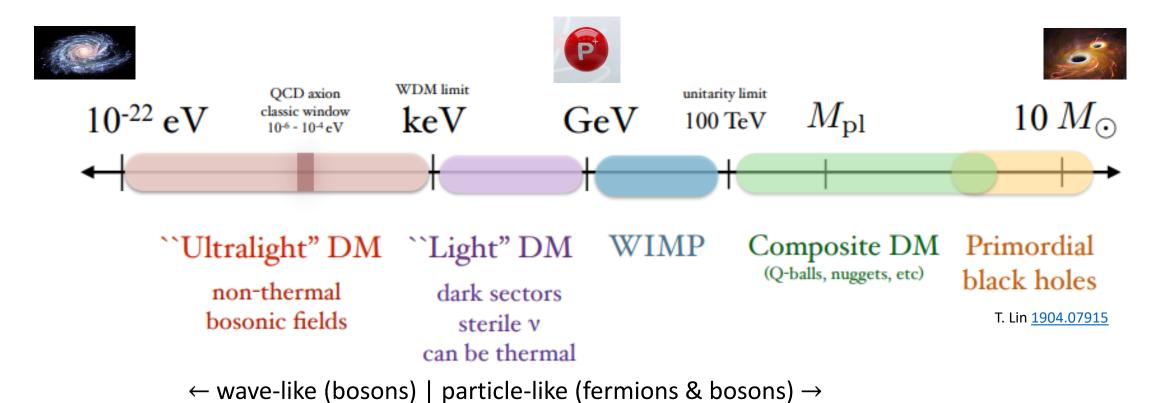
The Standard Model of Cosmology (Λ -CDM) is remarkably successful (still...)


- Initial conditions photographed at the surface of last scatters (the cosmic microwave background)
 - Left to evolve for 13.7 Gyr under two dark 'fluids' dark energy (Λ) and cold dark matter (CDM)
 - To produce the "structure" we see today ordinary matter (almost) does not matter...



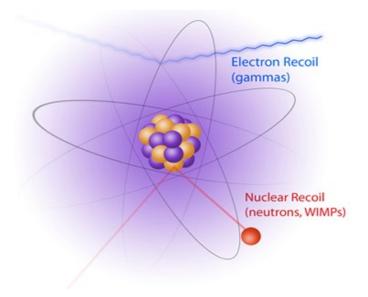

DARK MATTER AT THE SMALLEST SCALES

DM manifests itself also within individual galaxies (e.g. rotation curves of spiral galaxies)


• Our Milky Way is not exceptional – it, too, spins too quickly for the luminous matter it contains: we seem to be immersed in a large dark matter 'halo'

ALL CREATURES GREAT AND SMALL COULD BE IT...

- Weakly Interacting Massive Particles are the most studied dark matter candidate for two key reasons:
- New physics is needed at the electroweak scale to alleviate the 'hierarchy problem' ("why is the Higgs so light"?)
- Any new particles with weak-scale masses & couplings are 'naturally' produced with the right relic abundance


MINING FOR WIMPS WITH SCATTERING EXPERIMENTS

Electroweak particles with mass between ~ 1 GeV and 100 TeV solve the dark matter problem in all its dimensions: astrophysical, cosmological, particle physics

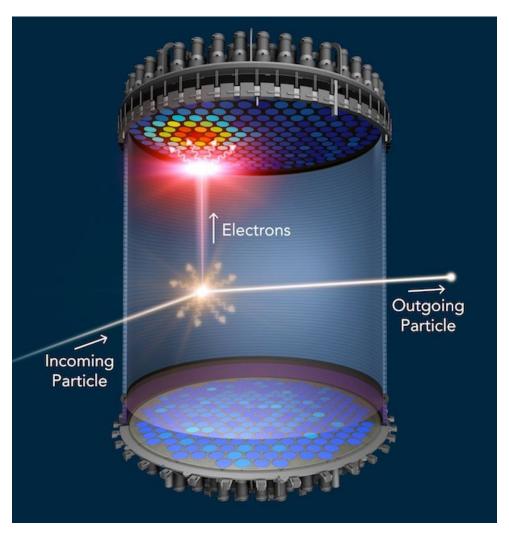
They must be stable, neutral, cold, interact via gravity – and, by construction, the weak force

WIMP-quark interaction \downarrow \downarrow WIMP-nucleon interaction \downarrow \downarrow WIMP-nucleus interaction \downarrow \downarrow $Scattering\ rate:$ $R = \phi\ \sigma_A\ N$

We seek to detect galactic DM particles using very sensitive detectors deep underground: "direct detection" – a very low-energy technique (keV), quite insensitive to the EW-scale physics (\gg GeV) – broadband!

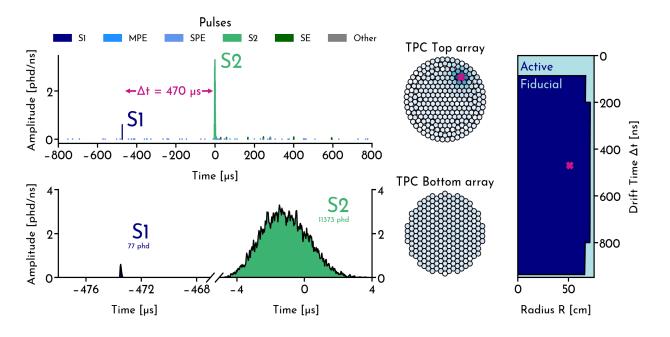
OUR QUIET POND IS THE NOBLE LIQUID XENON

Liquid xenon is an excellent medium for particle detection


- High scintillation and ionisation yields: low detection threshold
- Heavy and dense material: effective self-shielding of external backgrounds
- A very quiet medium: very low internal backgrounds

Rich portfolio of isotopes: same chemistry, diverse nuclear physics

- Spin-independent interaction rate gains A^2 factor from scattering coherence
- Coherent elastic neutrino-nucleus scattering (CEvNS) with N^2 dependence
- Spin-dependent sensitivity via odd-neutron isotopes
- Several double-beta decay isotopes


THE (DUAL-PHASE) XENON TIME PROJECTION CHAMBER

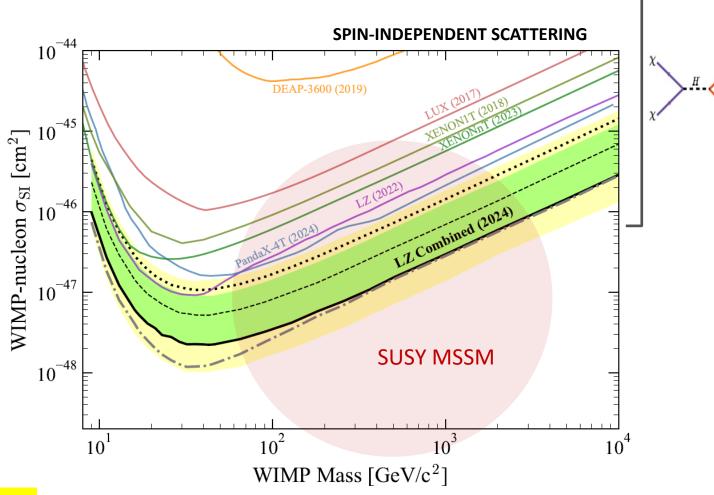
S1: Primary scintillation (VUV) in the liquid

S2: Secondary scintillation (electroluminescence) in the gas

Sensitive to single quanta of scintillation (S1) and ionisation (S2)

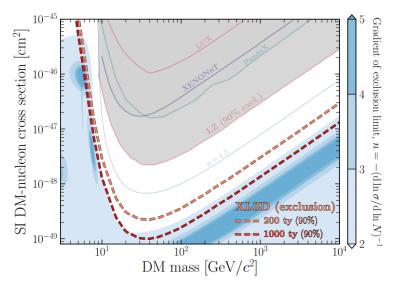
UK pioneered this technology through ZEPLIN programme at Boulby!

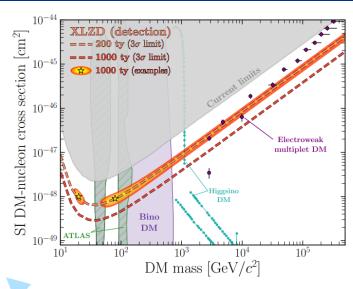
WIMP SEARCH STATUS

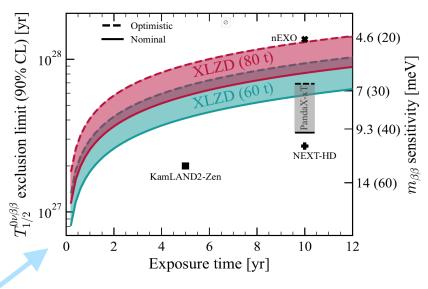

LZ continues to lead above a few GeV

Exposure so far: 4.2 tonne-years $(\sim 1/3 \text{ of planned})$

Peak sensitivity: 2x10⁻⁴⁸ cm² @ 36 GeV


Four-fold improvement into new parameter space: continuing to squeeze minimal SUSY, and to directly constrain the coupling strength of dark matter to the Higgs


But we need hundreds of tonne-years to fully probe the accessible WIMP paradigm...



PRL 135 (2025)

A RARE EVENT OBSERVATORY BASED ON THE NOBLE LIQUID XENON

XLZD Design Book (2025)

WIMPs Sub-GeV Inelastic Axion-like particles Planck mass

Dark Matter

Dark photons

Neutrino nature

Neutrinoless double beta decay Neutrino magnetic moment Double electron capture

XLZD 0vββ sensitivity (2025)

Diameter: 3.0 m, 2x LZ

Sun

LXe-TPC

Active mass: 60-80 tonnes, 10x LZ

Supernovae Early alert Supernova neutrino

Multi-messenger astrophysics

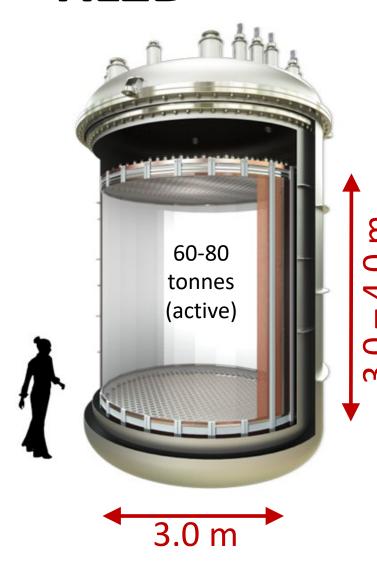
pp neutrinos Solar metallicity ⁷Be, ⁸B, hep

Science White Paper (2023)

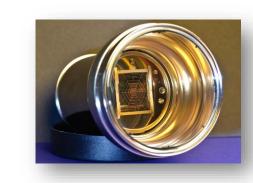
J. Phys. G: Nucl. Part. Phys. 50 (2023) 013001 (115pp) **Topical Review** A next-generation liquid xenon observatory for dark matter and neutrino physics

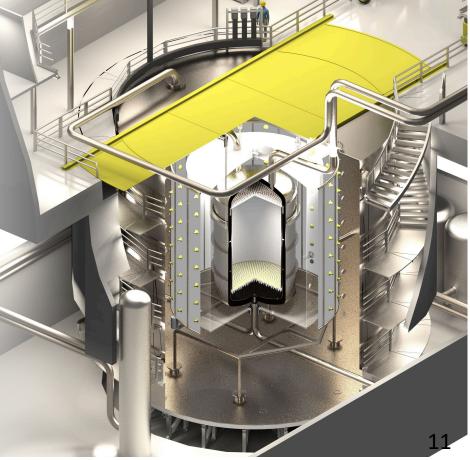
XENON-LUX-ZEPLIN-DARWIN

- XLZD Consortium MoU between competing collaborations signed in 2021
- Collaboration Agreement signed in 2024 by 163 senior members from 70+ institutions in 17 countries
- Our team(s) are still operating competitively the largest LXe-TPCs: LZ and XENON-nT
 - Two leading experiments operating underground
 - Experience & track record of two major collaborations
- Ongoing activities
 - Pre-Conceptual Design and sensitivity reports posted
 - Working Groups on science, technical, siting, ...
 - "Global WBS" in place to develop and cost project
 - Evaluating design options and key materials



XLZD




Designed for large exposures, up to 1000 tonne-years (systematic uncertainty limit at the neutrino 'floor')

Further reduction in backgrounds needed: longer operation plus $0\nu\beta\beta$ -decay sensitivity (Bi-214)

LZ & XnT built over the last decade, further advances in materials, components & techniques in hand

- Better PMTs, structural materials, electronics components, cabling
- Radon barriers, radon distillation, radon tagging
- Better understanding and control of accidental coincidences
- Better vetoes: Skin Detector and Outer Detector

HOST LABORATORY

Five laboratories expressed interest, four were shortlisted based on ability to meet XLZD technical requirements: **Boulby, LNGS, SNOLAB, SURF**

Site selection involves both technical and political factors

• Depth: backgrounds for DM and $0\nu\beta\beta$ -decay science

Access: vertical (shaft) or horizontal (tunnel)

• Space: required footprint is substantial (1000-2000 m²)

Timeline: competitive "first dark"

Investment in XLZD by host nation

The combination of quality space, early interest from STFC, UKRI & DSIT, and the possibility of major UK investment in XLZD means the UK plan is very compelling

INTERIM REPORT

XLZD-TN-2024-XX

SHORTLISTING OF UNDERGROUND LABORATORIES

TO HOST A NEXT-GENERATION LIQUID XENON OBSERVATORY

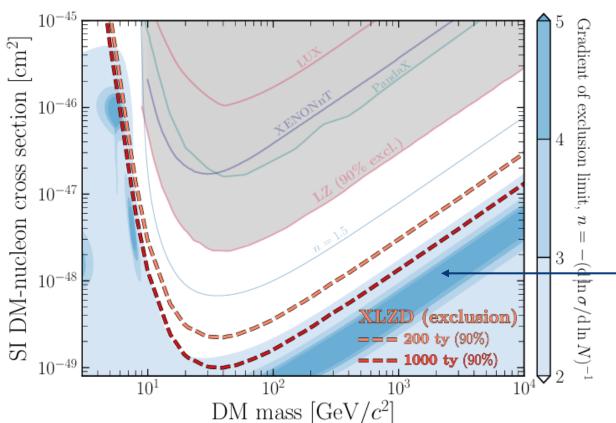
FOR RARE EVENT SEARCHES

For the XLZD Consorting


D.S. Akerib¹¹, H.M. Aratijo¹⁻², A.P. Colijn², U. Guenca⁴, P. Decowski², P. Di Gangi⁵, Itow¹⁶, V.A. Kudryavitsev⁷, A. Lindote⁸, M. Schumann⁹, A. Schwenck¹⁰, M. Selvi¹⁻⁵, T.J. Sumner⁶, D. Taylor¹¹, K. Valerius¹⁰, B. von Krosigk¹¹⁰, and R. Wangi¹²

S.J.G.C. National Accelerator Laboratory. *Imperial College London. *Nikhei & the University of Amsterdam-Hicknessity of Zurich, *University of Bologna is INFN-Bologna, *Nagoya University. *Infriversity of Sheffield, **U.F.C.C.Imbra. & University of Colimbra. *University of Fraiburg. *Santon Unider round Research Fedicity. *National Institute of Hicknessity. *University of Alaborator. *Information University Office University of Alaborator. *Information University Office University Of

*Lead contacts: h arayio@imperial ac uk: salvi@ho ini


April 13, 2024

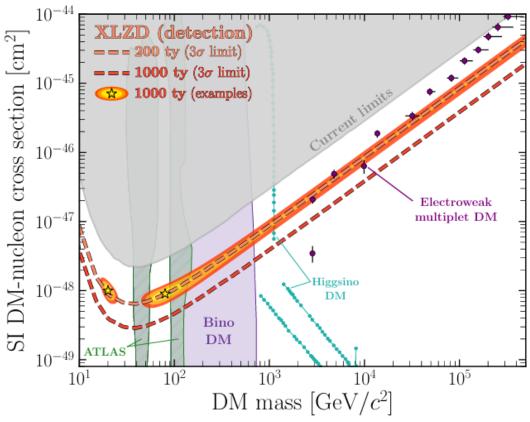
DOCUMENT CLASSIFICATION TBC

DARK MATTER SENSITIVITY

Mission statement: probe the entire range of accessible parameter space for thermal WIMPs (2 GeV - 100 TeV) with discovery sensitivity down to the neutrino fog

Explore fully a "natural coupling" of dark matter to the Higgs boson with 3σ discovery sensitivity

Probe spin-independent, spin-dependent and other interactions described by the NR-EFT operators, reaching further beyond the Standard Model

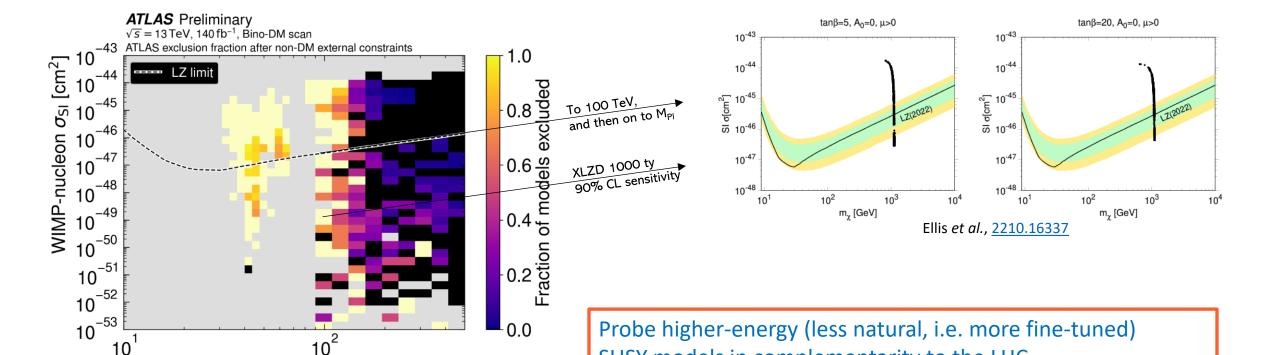

"neutrino fog" where astrophysical neutrino interactions (CEvNS) will obscure a WIMP signal

Henrique Araújo

2410.17137

DARK MATTER SENSITIVITY

Mission statement: probe the entire range of accessible parameter space for thermal WIMPs (2 GeV - 100 TeV) with discovery sensitivity down to the neutrino fog

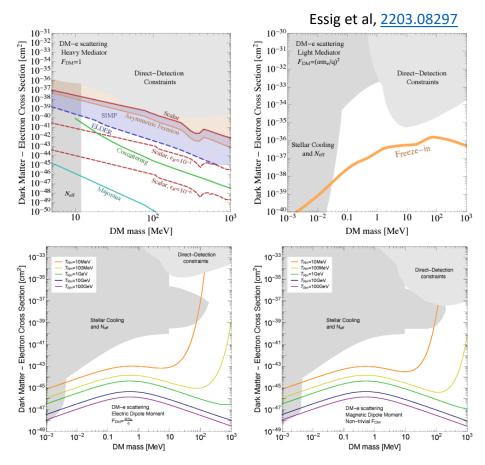

Probe compelling Bino & Higgsino models

Probe (at last!) the "minimal dark matter" model – this canonical WIMP is a member of an electroweak multiplet with interactions mediated by the SM gauge bosons and the Higgs – no new mediators

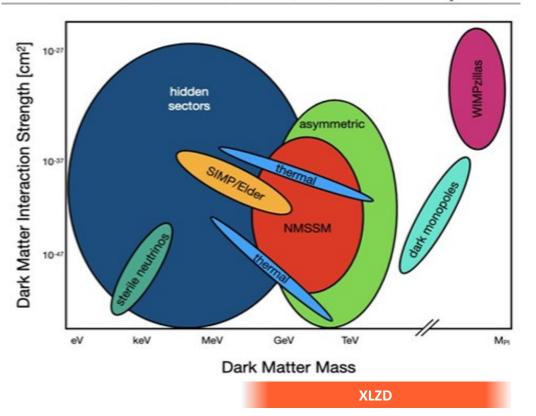
DARK MATTER SENSITIVITY

 $m(\tilde{\chi}_1^0)$ [GeV]

Mission statement: probe the entire range of accessible parameter space for thermal WIMPs (2 GeV - 100 TeV) with discovery sensitivity down to the neutrino fog


https://atlas.cern/Updates/Physics-Briefing/SUSY-Dark-Matter

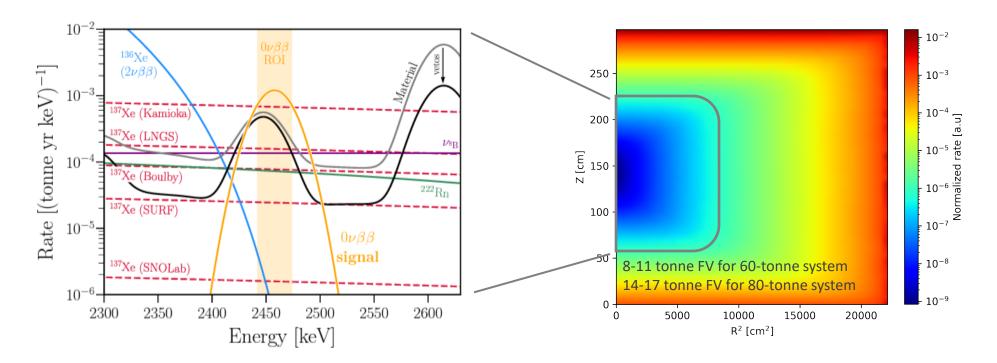
SUSY models in complementarity to the LHC


15

DARK MATTER SENSITIVITY – ALL CREATURES...

Mission statement: keep an open mind!

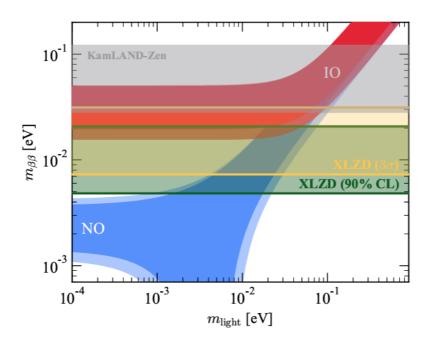
Snowmass2021 Cosmic Frontier Particle Dark Matter Report

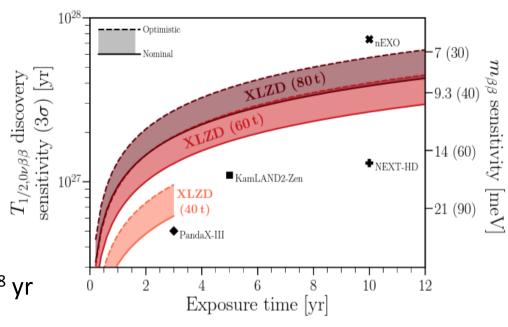


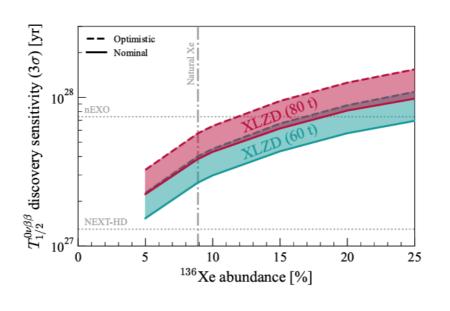
Probe interactions for non-thermal sub-GeV DM, and all the way up to the Planck mass, scattering off nuclei or electrons

0νββ-DECAY SENSITIVITY

Mission statement: probe fully the inverted mass hierarchy


A change in paradigm: trade-off component radioactivity for self-shielding in a natural abundance target


0νββ-DECAY SENSITIVITY


Mission statement: probe fully the inverted mass hierarchy

• Competing with the best dedicated 136 Xe-based experiments: effective Majorana mass $m_{\beta\beta}\sim$ 7-30 meV, $T_{1/2}\sim$ 0.3-0.6x10²⁸ yr

One last dial available: partial enrichment, pushing towards $T_{1/2} \sim 1 \times 10^{28}$ years

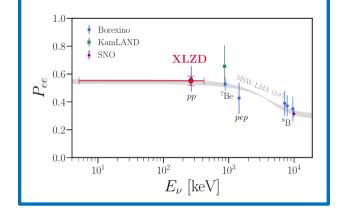
ASTROPHYSICAL NEUTRINOS

A unique observatory for MeV-scale astrophysical neutrinos through keV-scale nuclear- and electron-recoil signatures

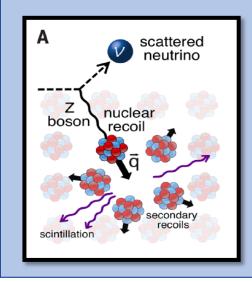
SOLAR NEUTRINOS (8B) ~90 events per tonne-year above 1 keVnr, to provide an independent measurement of the total flux 8 1 keVnr, to provide an independent measurement of the total flux 8 1 keVnr, to provide an independent measurement of the total flux

Current-generation experiments seeing "hints"

→ Also a great calibration for a supernova detection


GALACTIC SUPERNOVA

O(100) events from a Type II core-collapse supernova at 10 kpc within a 10-s window



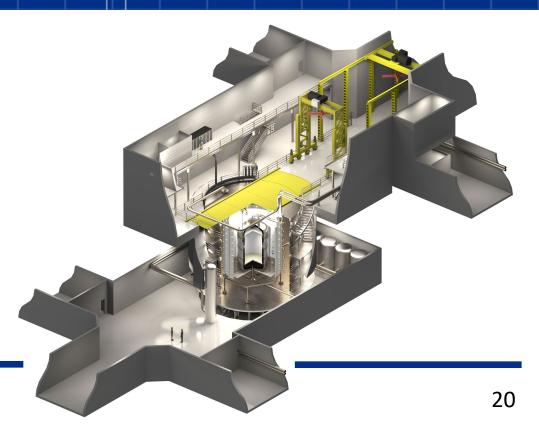
SOLAR NEUTRINOS (pp)

pp flux via v-e elastic scattering to 0.15% with 300 tonne-years, constraining solar luminosity and v_e survival probability at low energy

COHERENT n-N SCATTERING
Flavour-blind interaction,
allows reconstruction of the
total neutrino flux

First CEvNS detection by COHERENT collaboration using man-made neutrinos

ATMOSPHERIC NEUTRINOS

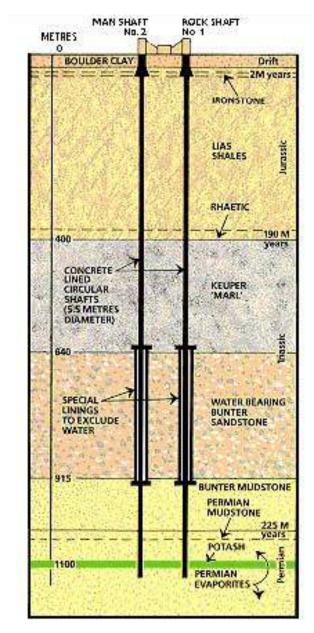

First measurement at low energies (≲100 MeV): our neutrino floor!

XLZD@BOULBY

COULD WE HOST IN THE UK?

ELEVATOR PITCH (A LONG ELEVATOR...)

The science mission


XLZD is an underground observatory for rare particle interactions and nuclear decays, aiming to make paradigm-shifting discoveries related to the composition of the universe:

- Revealing the nature of particle dark matter, and so explain the long-standing mystery
 of the missing mass of the cosmos;
- Probing the existence of the **neutrinoless double-beta decay** process which could explain why the known mass of the universe is made of matter rather than antimatter;
- Studying astrophysical neutrinos from the sun and galactic supernova explosions.

The societal mission

Hosting XLZD at a major new facility at Boulby represents an excellent opportunity to

- Invest in North East England bringing economic returns to the region;
- Enthuse and upskill its young people in an area with limited science opportunities and infrastructure and contributing to address a fast-growing skills gap;
- Enhance the **UK's global profile, reputation and leadership** in scientific research.

XLZD@BOULBY: THE EARLY YEARS

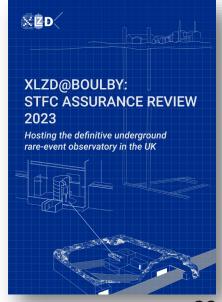
O. Xenon Futures R&D project (2019-25)

Technical R&D around LXe-TPC technologies

1. Boulby Feasibility Study (2019-21)

- Resonated with the STFC Strategic Delivery Plan 2020-25
- And with the (then) Government strategy ("Levelling up", ...)

2. Boulby Development Project (2022-25+) (£2.8M+)


- Funded through UKRI Infrastructure Fund (Preliminary Activity)
- Developing facility design
- Additional funds awarded for Stage 1 excavations (~£6.5M)

3. XLZD@Boulby Pre-Construction Project (2024-27) (£8.7M)

- Funded through UKRI Infrastructure Fund (Preliminary Activity)
- Broad objectives:
 - Technical design of UK hardware systems and their interfaces to facility and partner contributions
 - Planning and capacity-building in key areas (e.g. clean manufacture, skills pipeline, sustainability)
 - Working with international partners to build the XLZD collaboration and international project
 - To position the UK to host the experiment at Boulby

XLZD@BOULBY DEVELOPMENT

XLZD@BOULBY PROPONENTS

58 SENIOR RESEARCHERS IN 21 INSTITUTES

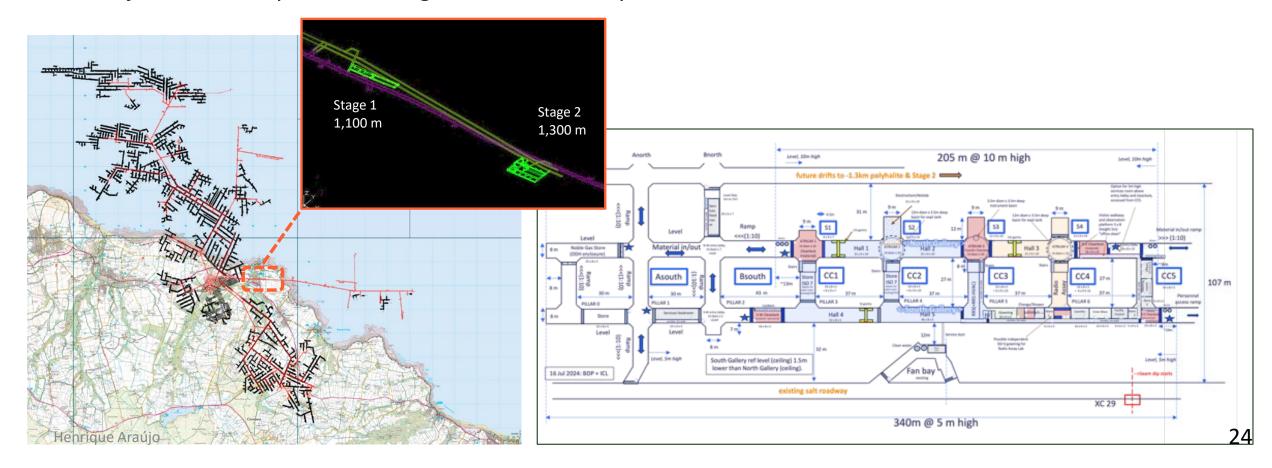
XLZD-UK "Pre-Construction" project funded by the UKRI Infrastructure Fund

XLZD-UK PRE-CONSTRUCTION PROJECT

A TEAM OF AROUND 80 PHYSICISTS & ENGINEERS IN 13 UK INSTITUTES

H. M. Araújo*¹, D. Bauer¹, C. Boehm², A. Boston³, S. Burdin³, X. Calmet⁴, G. Casse³, J. Coleman³, D. Colling¹, D. Costanzo⁵, A. Cottle⁶, G. J. Davies¹, A. De Santo⁴, J. Dobsonⁿ, J. Ellisⁿ, M. Fairbairnⁿ, H. Flaecher⁶, H. Foxゥ, C. Frenk¹⁰, C. Ghag⁶, E. Hardy³, J. Hays¹¹, S. Jones⁵.¹², A. Kaboth¹³, A. Khan¹⁴, L. L. Kormosゥ, H. Kraus¹⁵, V. A. Kudryavtsev⁵, P. Kyberd¹⁴, M. Labiche¹⁶, I. Lazarus¹⁶, P. A. Majewski¹⁷, J. March-Russell¹⁵, C. McCabe⁷, A. Mehta³, D. Muenstermannゥ, A. StJ. Murphy², K. Nikolopoulos¹⁶, K. Palladino¹⁵, S. Paramesvaran⁶, C. Patrick², K. Petridis⁶, T. Potter¹ゥ, R. Saakyan⁶, P. Scovell¹¬, S. Shaw², J. Smirnov³, M. Spannowsky¹⁰, T. J. Sumner¹, A. Szelc², D. R. Tovey⁵, Y. Uchida¹, C. Uhlemann²⁰, M. van der Grinten¹¬, J. Vossebeld³, D. Waters⁶, S. West¹³, and I. Zavala²¹

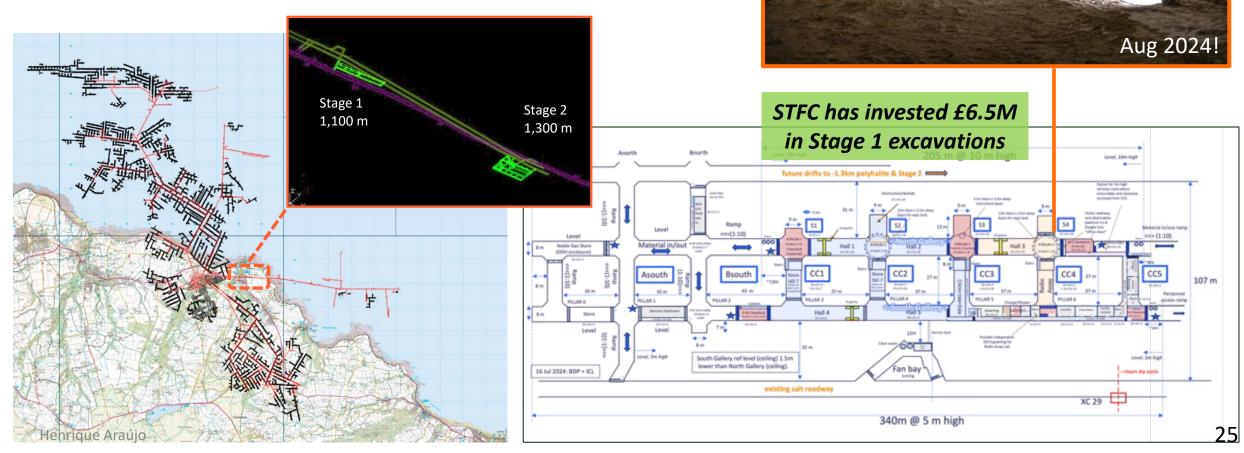
Imperial College London, ²University of Edinburgh, ³University of Liverpool, ⁴University of Sussex, ⁵University of Sheffield, ⁶University College London, ⁷King's College London, ⁸University of Bristol, ⁹Lancaster University, ¹⁰Durham University, ¹¹Queen Mary, University of London, ¹²Nuclear Advanced
 Manufacturing Research Centre, University of Sheffield, ¹³Royal Holloway, University of London, ¹⁴Brunel University, ¹⁵Oxford University, ¹⁶STFC Daresbury Laboratory, ¹⁷STFC Rutherford Appleton Laboratory, ¹⁸Birmingham University, ¹⁹Cambridge University, ²⁰Newcastle University, ²¹Swansea University

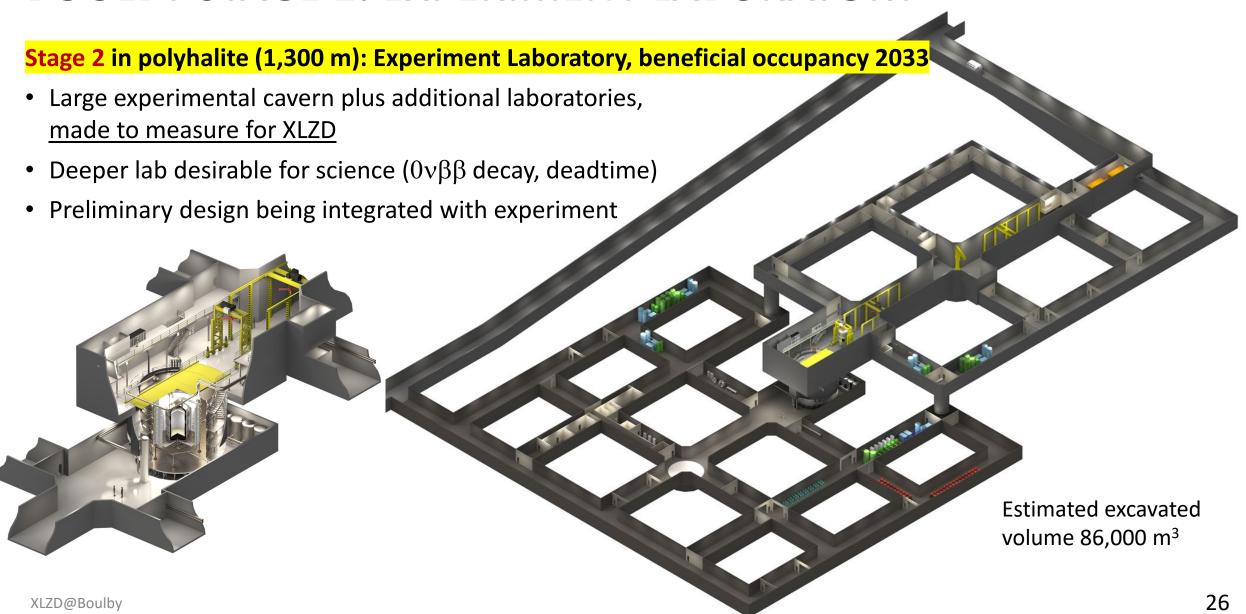

KEY UK PARTNERS

- STFC Boulby Underground Laboratory
- STFC Technology Department
- RAL-PPD Project Management Office
- Advanced Manufacturing Research Centre (AMRC)
- ICL-Boulby
- BUTTON, DarkSPHERE, ...

BOULBY STAGE 1: MANUFACTURING FACILITY

Stage 1 in salt (1,100 m): Clean Manufacturing Facility, beneficial occupancy 2028+ (XLZD + others)

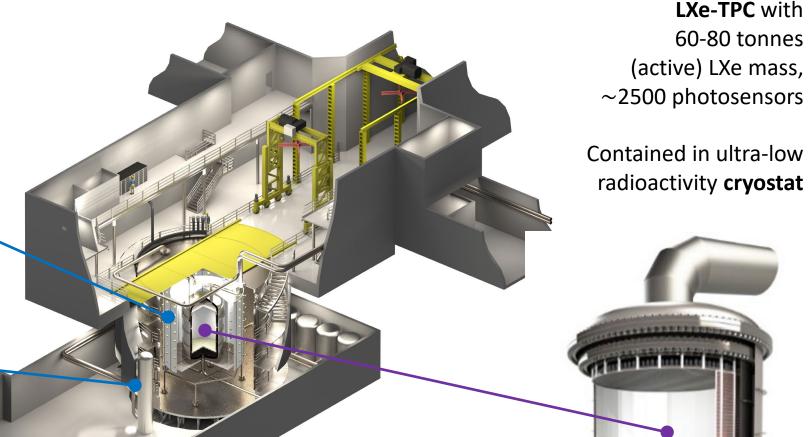

- Manufacture past-the-bottleneck: radon-reduced cleanrooms, electrochemistry, radioassay, ...
- A major new facility in its own right, for science beyond XLZD


BOULBY STAGE 1: MANUFACTURING

Stage 1 in salt (1,100 m): Clean Manufacturing Facility, beneficial c

- Manufacture past-the-bottleneck: radon-reduced cleanrooms, ele
- A major new facility in its own right, for science beyond XLZD

BOULBY STAGE 2: EXPERIMENT LABORATORY

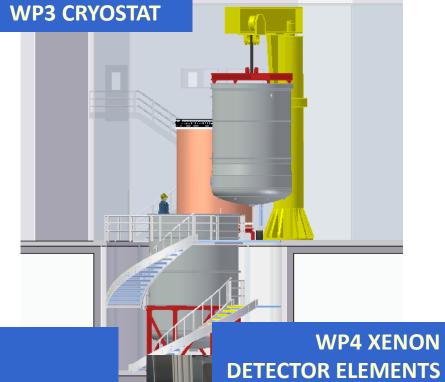


XLZD@BOULBY

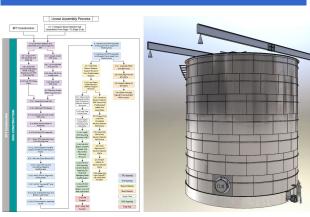
Scintillator-based **Outer Detector** contained in 12-m diameter tank

Xenon purification and emergency recovery systems

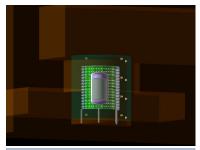
Many ancillary systems not shown (controls, electronics, cryogenics, scintillator purification, ...)

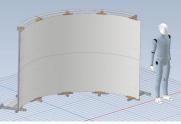

Challenge: manufacturing and assembling these systems underground, under extremely demanding quality assurance – esp. cleanliness and radioactivity controls – well beyond industrial standards

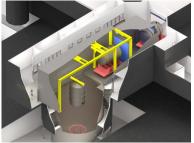
LXe-TPC with


60-80 tonnes

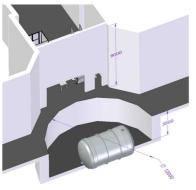
XZD

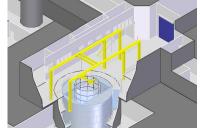

WP7 ENGINEERING & SKILLS

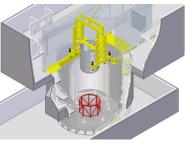


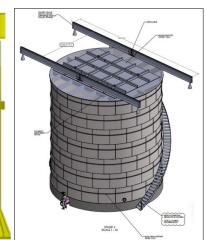


& ONSITE COMPUTING


XLZD-UK PRE-CONSTRUCTION STATUS


- >1 year after kick off, project is on track (dashboard is green)
- Design activities progressing at pace, CDR in the coming months
- Very good technical progress, challenges are mostly external...
- UK team is driving XLZD development along


What are we doing now?

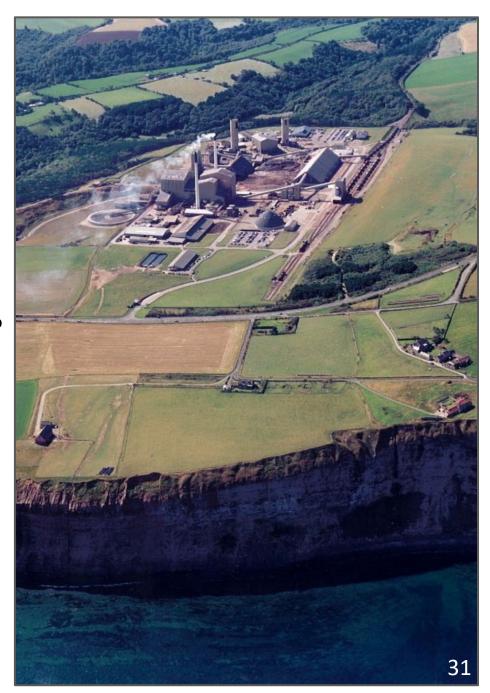

- Options analysis for Outer Detector, Cryostat, TPC Fieldcage & Skin, ...
- Monte Carlo simulations, requirements flow-down (esp. radioactivity)
- R&D on materials and coatings, radioactivity and cleanliness controls
- Planning for Computing and Sustainability
- Integration engineering: story-boarding, lab integration, ...

XLZD IMPACT: OUR AMBITIOUS PLAN

STRATEGY: ECONOMIC IMPACT ♦ SKILLS DEVELOPMENT ♦ OUTREACH

- Driving economic impact through wide-ranging industrial engagement
- Developing the skills pipeline to support the project and the facility (and beyond) through an apprenticeship programme in the region
- Skills pipeline driven by a strategic outreach programme
- Visible presence in the region is essential for all of these aspects
- XLZD@Boulby is attractive to regional stakeholders and could act as a catalyst for surrounding industrial projects

CONCLUSION


The **XLZD Rare Event Observatory** has started development, aiming for a 10-fold upscale from current experiments

It will seek answers for some of the key questions in science:

- Is the elusive dark matter related to new electroweak physics?
 - ✓ XLZD can provide the definitive test of the natural WIMP paradigm
- What is the nature of neutrino mass and the missing antimatter?
 - \checkmark XLZD offers a competitive search for $0\nu\beta\beta$ decay and other rare decays
- Can astrophysical neutrinos help reveal new physics?
 - ✓ Bringing CEvNS to Multi-Messenger Astronomy

XLZD builds on two major experiments operating now in real-world conditions: LZ and XENON-nT – major risk mitigation

XLZD@Boulby – a unique opportunity to host world-leading, fundamental science in the UK with substantial impact!

The XLZD Collaboration

Black Hills State University SURÉ South Dakota School of Mines Rice University

Pennsylvania State University

University of Massachusetts

Purdue University

University of Alabama

University of Maryland

University of Michigan

University of Rochester

Lawrence Berkeley National Laboratory Lawrence Livermore National Laboratory SLAC National Accelerator Laboratory University of California, Berkeley University of California, Davis University of California, Los Angeles University of California, San Diego University of California, Santa Barbara

Countries: 17 Institutions: 76 Members: 440+

Imperial College London King's College London Royal Holloway, University of London STFC Daresbury Laboratory Johannes Gutenberg University Mainz STFC Rutherford Appleton Laboratory Stockholm University Karlsruhe Institute of Technology University College London Max-Planck-Institut für Kernphysik University of Bristol TU Darmstadt University of Edinburgh TU Dresden University of Liverpool University of Freiburg University of Oxford University of Heidelberg University of Sheffield University of Chicago University of Münster University of Sussex University of Texas, Austin University of Bern University of Wisconsin LPNHE University of Zurich Subatech/IN2P3 Brookhaven National Laboratory LIP-Coimbra Vinca Institute of Nuclear Sciences Brown University University of Coimbra Bucknell University INAF Osservatorio Astrofisico Torino University of Barcelona Columbia University

INFN-LNGS Weizmann Institute SISSA University and INFN Bologna University of Ferrara University of L'Aquila University of Naples "Federico II"

Institute for Basic Science The Chinese University of Hong Kong, Shenzhen Tsinghua University Westlake University

Kobe University

Nagoya University

The University of Tokyo

University of Sydney

Created with Datawrapper

The University of Melbourne

XLZD Meeting - LNGS, July 2025