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Introduction

e ThelLegacy Survey of Space and Time
(LSST) is a full-sky survey which
launched this summer at the Vera C.
Rubin Observatory in Chile

e [t will run for 10 years and observe ~10°
stars in our galaxy

e Can be used to search for gravitational
microlensing events

e Microlensing events can be used to
identify - or put bounds on - primordial
black holes (PBHs)

Credit: ESA/Hubble, N. Bartmann
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Identifying Microlensing in LSST
Data

e Simulated ~10¢ Constant and point-like Microlensing (ML) light curves using the Operations
Simulator (OpSim) codebase from Rubin

e Due to LSST cadence, can only expect to see ~800 observations in the bulge over the full 10 years
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Identifying Microlensing in LSST
Data

e Simulated ~10¢ Constant and point-like Microlensing (ML) light curves using the Operations
Simulator (OpSim) codebase from Rubin

e Due to LSST cadence, can only expect to see ~800 observations in the bulge over the full 10 years
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BDT and BIC Ratio as Classifiers

In order to distinguish between the two light curve classes (Constant and ML), we
trained a boosted decision tree (BDT) on a subset of the data:

e O =Constant Class

e 1=ML Class
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BDT and BIC Ratio as Classifiers

In order to distinguish between the two light curve classes (Constant and ML), we
trained a boosted decision tree (BDT) on a subset of the data:

e O =Constant Class

e 1=ML Class

e Bayesian Information Criterion (BIC):

BIC(M) = klnn — 2InL =klnn + x°
e Can compare the Constant and ML BICs for a given lightcurve using BIC ratio:

BIC (MCDHSt) . XQCDnst +Inn

BIC ratio = —
BIC(ML) XI%IL +5Inn
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BDT and BIC Ratio as Classifiers
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BDT and BIC Ratio as Classifiers
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BDT and BIC Ratio as Classifiers
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The Importance of False Positives

e Expect some amount of false positives to contaminate the data:

o False Positive Rate (FPR) = Ngp / (Ngp + Nppy

e With ~10° light curves simulated, cannot predict an FPR of lower than ~10-° per star
per year (without extrapolation)

e Bad news for LSST - ~10° stars visited, so with this FPR we would expect ~103 false
positives - completely drowning out the expected foreground (from our modelling
~102 foreground events expected per year)

e Therefore it is absolutely crucial to effectively control the false
positive rate if we want to set novel constraints on PBHs using Rubin.
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Extrapolating to Lower FPR

cut
BIC ratio > 3.28
BDT > 0.999
x> /d.o.f. ratio > 10
x?/d.o.f. ratio > 10, uy < 1
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Projected Constraints on PBHs
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Thank you for listening!
Any questions?
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Backup Slides
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Tail Fits

e Pareto Distribution:

e Johnson Sg:

f(z,a,b) = (b/(z(1 —z)))¢(a + blog(z/(1 — x))

where ¢ is the normal distribution probability distribution function.



Analytic Efficiency Function




Calculating Constraints
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e 90% CL found by locating (Mpg,, fom) for which k = 4.61
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y2Ratio

Even for Constant class lightcurves, can often get low x? values for ML fits by fitting
to the noise

Can compare the Constant and ML goodness-of-fits for a given lightcurve using
the ratio of the reduced 2

N2
X CIDHH./VCUHS’E-

2 " .
x~/d.o.f. ratio = =5
XML /ML

"Const:n_‘II.VML:n_5
Often get very large values for Constant lightcurves, suggesting ML model fits
better than Constant model!
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Extrapolating to Lower FPR

BIC Ratio
e To bring number of false positive events expected per year down to same level as
foreground, need FPR ~ 1077
e Zooming into tail composed of top 1% of BIC ratios for Constant class, we find we

can fit the tail well with a Pareto distribution using distfit:

Constant Class Tail Fit
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Extrapolating to Lower FPR

BDT Output

BDT output is bounded between O and 1, but can fit with a bounded distribution

Zooming into tail composed of top 1% highest values of BDT, find the Johnson Si to
be a good fit using distfit:
Constant Class Tail Fit

— Johnsonsb (best fit)

A cut onBDT
output > 0.999
gives an expected
FPR of 10”7
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Effective ML Detection Efficiency

Can define an effective efficiency per
binned tg as € = Nscuts/ Ntotal

We find an analytic function to fit the
efficiency (solid line):

rd

te \"
F. (L {I.-!".{—:‘E.;_,-":In:.'::} +e
days

This doesn't asymptote to 1for large tg as

some other fits suggested in the literature
do (dashed line)

We use this efficiency and foreground
estimates to calculate the number of
expected point-like microlensing events te (days)
and hence put constraints on PBHs
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