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Introduction
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● The Legacy Survey of Space and Time 
(LSST) is a full-sky survey which 
launched this summer at the Vera C. 
Rubin Observatory in Chile

● It will run for 10 years and observe ~109

stars in our galaxy

● Can be used to search for gravitational 
microlensing events

● Microlensing events can be used to 
identify - or put bounds on - primordial 
black holes (PBHs)
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Credit: ESA/Hubble, N. Bartmann



Identifying Microlensing in LSST 
Data
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● Simulated ~106 Constant and point-like Microlensing (ML) light curves using the Operations 
Simulator (OpSim) codebase from Rubin

● Due to LSST cadence, can only expect to see ~800 observations in the bulge over the full 10 years
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Identifying Microlensing in LSST 
Data
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Clearly classification is a challenge!

● Simulated ~106 Constant and point-like Microlensing (ML) light curves using the Operations 
Simulator (OpSim) codebase from Rubin

● Due to LSST cadence, can only expect to see ~800 observations in the bulge over the full 10 years



BDT and BIC Ratio as Classifiers
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In order to distinguish between the two light curve classes (Constant and ML), we 
trained a boosted decision tree (BDT) on a subset of the data:
● 0 = Constant Class
● 1 = ML Class



BDT and BIC Ratio as Classifiers
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● Can compare the Constant and ML BICs for a given lightcurve using BIC ratio:

7

● Bayesian Information Criterion (BIC):

In order to distinguish between the two light curve classes (Constant and ML), we 
trained a boosted decision tree (BDT) on a subset of the data:
● 0 = Constant Class
● 1 = ML Class
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The Importance of False Positives

● With ~106 light curves simulated, cannot predict an FPR of lower than ~10-6 per star 
per year (without extrapolation)

● Bad news for LSST - ~109 stars visited, so with this FPR we would expect ~103 false 
positives - completely drowning out the expected foreground (from our modelling 
~102 foreground events expected per year)

● Therefore it is absolutely crucial to effectively control the false 
positive rate if we want to set novel constraints on PBHs using Rubin.

● Expect some amount of false positives to contaminate the data:

○ False Positive Rate (FPR) = NFP / (NFP + NTP)
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Extrapolating to Lower FPR



Projected Constraints on PBHs
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Thank you for listening!

Any questions?
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Backup Slides
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Tail Fits

● Pareto Distribution:

● Johnson SB:

where 𝜙 is the normal distribution probability distribution function.
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Analytic Efficiency Function
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Calculating Constraints

● 90% CL found by locating (MPBH, fDM) for which 𝜿 = 4.61



𝝌2 Ratio
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● Even for Constant class lightcurves, can often get low 𝛘2 values for ML fits by fitting 
to the noise

● Can compare the Constant and ML goodness-of-fits for a given lightcurve using 
the ratio of the reduced 𝛘2:
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● 𝛎Const = n - 1; 𝛎ML = n - 5

● Often get very large values for Constant lightcurves, suggesting ML model fits 
better than Constant model!



𝝌2 Ratio
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Extrapolating to Lower FPR
BIC Ratio

● To bring number of false positive events expected per year down to same level as 
foreground, need FPR ~ 10-7

● Zooming into tail composed of top 1% of BIC ratios for Constant class, we find we 
can fit the tail well with a Pareto distribution using distfit:

By extrapolation, a 
cut on the

BIC ratio > 3.28 gives 
an expected FPR of 

10-7
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Extrapolating to Lower FPR
BDT Output

● BDT output is bounded between 0 and 1, but can fit with a bounded distribution
● Zooming into tail composed of top 1% highest values of BDT, find the Johnson SB to 

be a good fit using distfit:

A cut on BDT 
output > 0.999 

gives an expected 
FPR of 10-7



Effective ML Detection Efficiency
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● Can define an effective efficiency per 
binned tE as ε = N>cuts/Ntotal

● We find an analytic function to fit the 
efficiency (solid line):
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● This doesn’t asymptote to 1 for large tE as 
some other fits suggested in the literature 
do (dashed line)

● We use this efficiency and foreground 
estimates to calculate the number of 
expected point-like microlensing events 
and hence put constraints on PBHs
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