Searching for Primordial Black Holes with LSST

& The Impact of False Positives on Microlensing Detection

Benedict Crossey Institute of Particle Physics Phenomenology Durham University

In collaboration with Djuna Croon, Miguel Crispim Romão & Daniel Godines

JCAP10 (2025) 066

arXiv:2506.20709

Credit: RubinObs/NOIRLab/SLAC/NSF/DOE/AURA

Introduction

- The Legacy Survey of Space and Time (LSST) is a full-sky survey which launched this summer at the Vera C.
 Rubin Observatory in Chile
- It will run for 10 years and observe ~10⁹
 stars in our galaxy
- Can be used to search for gravitational microlensing events
- Microlensing events can be used to identify - or put bounds on - primordial black holes (PBHs)



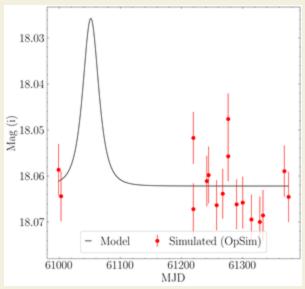
Credit: ESA/Hubble, N. Bartmann

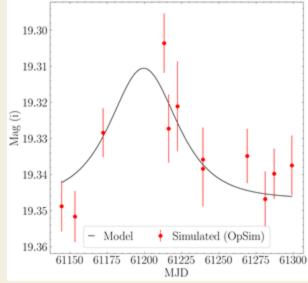
Identifying Microlensing in LSST Data

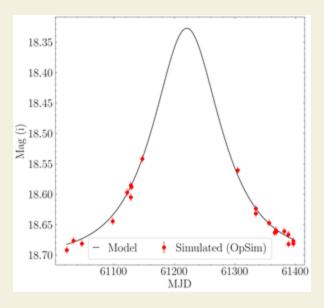
- Simulated ~10⁶ Constant and point-like Microlensing (ML) light curves using the Operations Simulator (OpSim) codebase from Rubin
- Due to LSST cadence, can only expect to see ~800 observations in the bulge over the full 10 years

Identifying Microlensing in LSST Data

- Simulated ~10⁶ Constant and point-like Microlensing (ML) light curves using the Operations Simulator (OpSim) codebase from Rubin
- Due to LSST cadence, can only expect to see ~800 observations in the bulge over the full 10 years



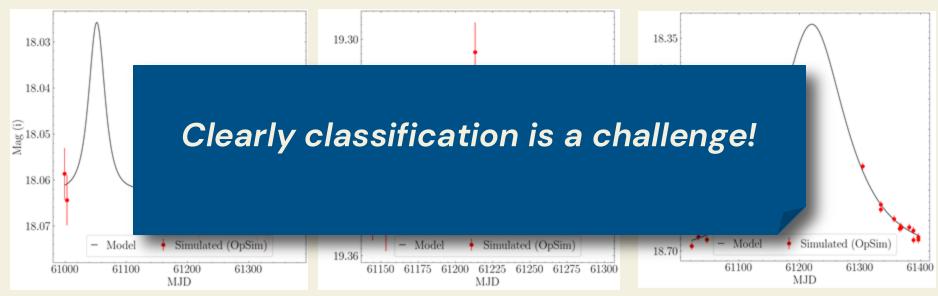




Benedict Crossey | Searching for PBHs with LSST

Identifying Microlensing in LSST Data

- Simulated ~10⁶ Constant and point-like Microlensing (ML) light curves using the Operations Simulator (OpSim) codebase from Rubin
- Due to LSST cadence, can only expect to see ~800 observations in the bulge over the full 10 years



In order to distinguish between the two light curve classes (Constant and ML), we trained a boosted decision tree (BDT) on a subset of the data:

- O = Constant Class
- 1 = ML Class

In order to distinguish between the two light curve classes (Constant and ML), we trained a boosted decision tree (BDT) on a subset of the data:

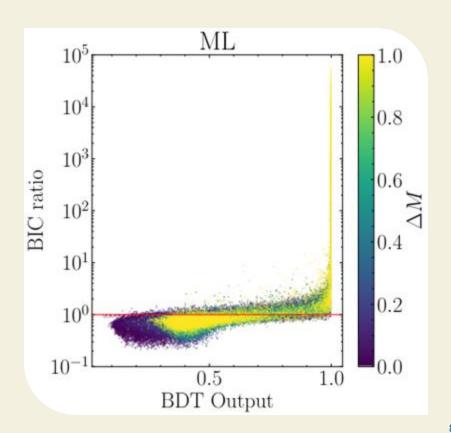
- O = Constant Class
- 1 = ML Class
- Bayesian Information Criterion (BIC):

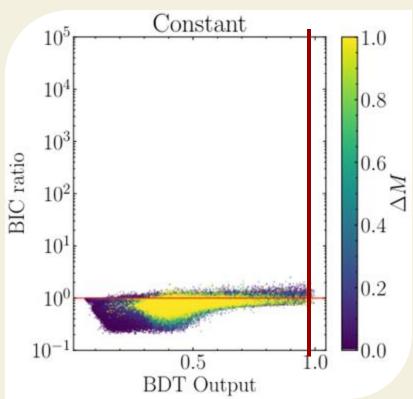
$$BIC(\mathcal{M}) = k \ln n - 2 \ln \hat{L} = k \ln n + \chi^2$$

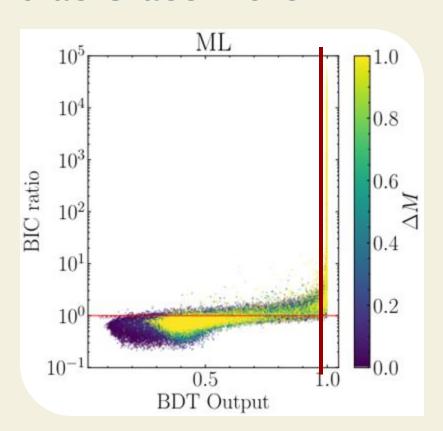
• Can compare the Constant and ML BICs for a given lightcurve using BIC ratio:

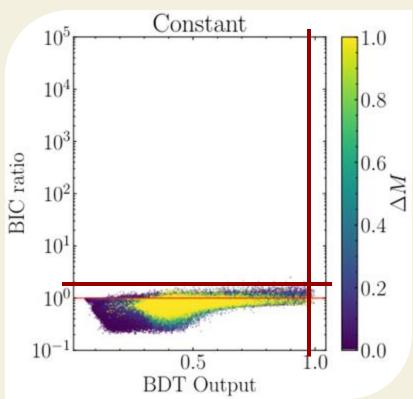
BIC ratio =
$$\frac{BIC(\mathcal{M}_{Const})}{BIC(\mathcal{M}_{ML})} = \frac{\chi_{Const}^2 + \ln n}{\chi_{ML}^2 + 5 \ln n}$$

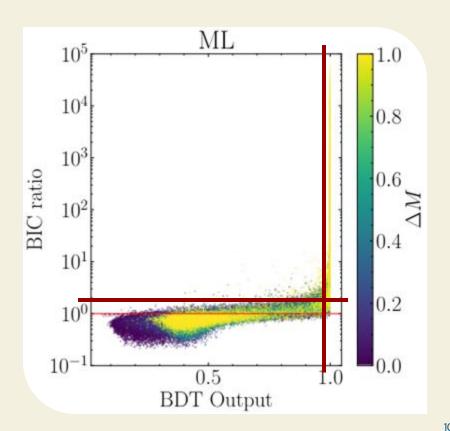












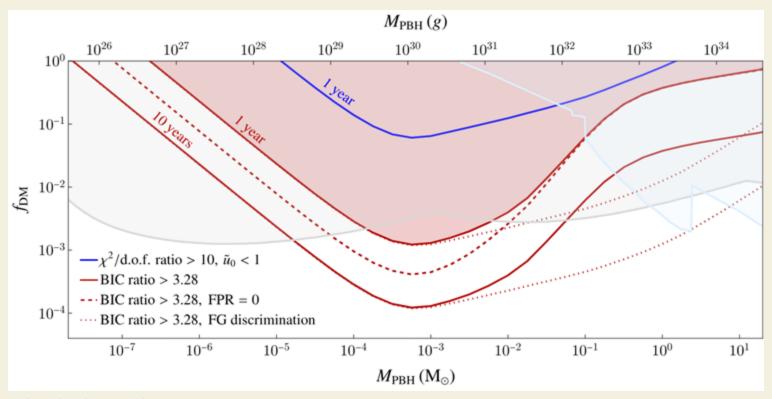
The Importance of False Positives

- Expect some amount of false positives to contaminate the data:
 - False Positive Rate (FPR) = $N_{FP} / (N_{FP} + N_{TP})$
- With ~10⁶ light curves simulated, cannot predict an FPR of lower than ~10⁻⁶ per star per year (without extrapolation)
- Bad news for LSST ~10⁹ stars visited, so with this FPR we would expect ~10³ false positives - completely drowning out the expected foreground (from our modelling ~10² foreground events expected per year)
- Therefore it is absolutely crucial to effectively control the false positive rate if we want to set novel constraints on PBHs using Rubin.

Extrapolating to Lower FPR

cut	FPR	$ar{\epsilon}$
BIC ratio > 3.28	10^{-7}	0.38
BDT > 0.999	10^{-7}	0.34
$\chi^2/\text{d.o.f.}$ ratio > 10	3.5×10^{-4}	0.30
$\chi^2/\text{d.o.f. ratio} > 10, \widetilde{u}_0 < 1$	1.1×10^{-4}	0.20

Projected Constraints on PBHs



Thank you for listening! Any questions?

Backup Slides

Tail Fits

Pareto Distribution:

$$f(x,b)=b/x^b$$

• Johnson S_B:

$$f(x,a,b)=(b/(x(1-x)))\phi(a+b\log(x/(1-x))$$

where ϕ is the normal distribution probability distribution function.

Analytic Efficiency Function

$$\epsilon = \left(\left(\frac{t_{\rm E}}{t_0} \right)^{-1/t_r} + 1 \right)^{-1}$$

Calculating Constraints

$$\kappa = 2 \sum_{i=1}^{N_{\rm bins}} \left[N_i^{\rm FG,eff} - N_i^{\rm SIG} + N_i^{\rm SIG} \ln \frac{N_i^{\rm SIG}}{N_i^{\rm FG,eff}} \right]$$

• 90% CL found by locating (M_{PBH} , f_{DM}) for which κ = 4.61

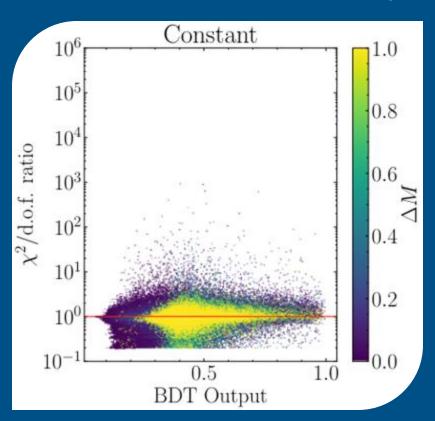
χ^2 Ratio

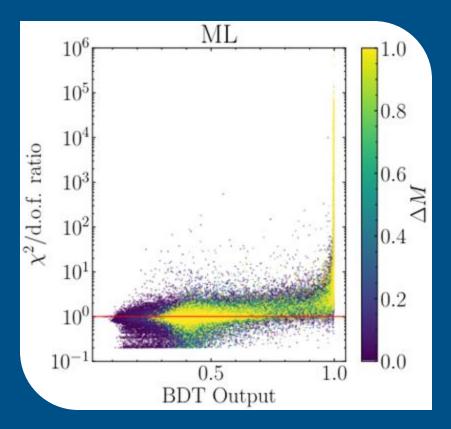
- Even for Constant class lightcurves, can often get low χ^2 values for ML fits by fitting to the noise
- Can compare the Constant and ML goodness-of-fits for a given lightcurve using the ratio of the reduced χ^2 :

$$\chi^2/\text{d.o.f.}$$
 ratio $\equiv \frac{\chi^2_{\text{Const}}/\nu_{\text{Const}}}{\chi^2_{\text{ML}}/\nu_{\text{ML}}}$

- $\mathbf{v}_{Const} = n 1; \mathbf{v}_{MI} = n 5$
- Often get very large values for Constant lightcurves, suggesting ML model fits better than Constant model!

χ^2 Ratio

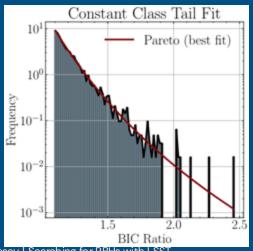


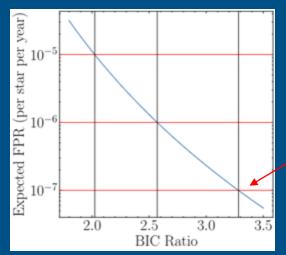


Extrapolating to Lower FPR

BIC Ratio

- To bring number of false positive events expected per year down to same level as foreground, need FPR ~ 10⁻⁷
- Zooming into tail composed of top 1% of BIC ratios for Constant class, we find we
 can fit the tail well with a Pareto distribution using distfit:



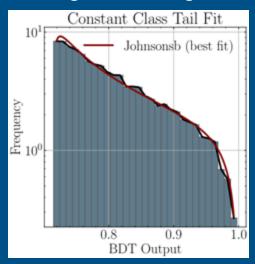


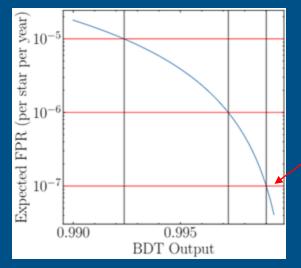
By extrapolation, a cut on the BIC ratio > 3.28 gives an expected FPR of 10⁻⁷

Extrapolating to Lower FPR

BDT Output

- BDT output is bounded between 0 and 1, but can fit with a bounded distribution
- Zooming into tail composed of top 1% highest values of BDT, find the Johnson S_B to be a good fit using distfit:





A cut on BDT output > 0.999 gives an expected FPR of 10⁻⁷

Effective ML Detection Efficiency

- Can define an effective efficiency per binned t_E as $\varepsilon = N_{2cuts}/N_{total}$
- We find an analytic function to fit the efficiency (solid line):

$$\epsilon = A \left(\frac{t_{\rm E}}{\rm days}\right)^k e^{\lambda(-t_{\rm E}/{\rm days})} + c$$

- This doesn't asymptote to 1 for large t_E as some other fits suggested in the literature do (dashed line)
- We use this efficiency and foreground estimates to calculate the number of expected point-like microlensing events and hence put constraints on PBHs

