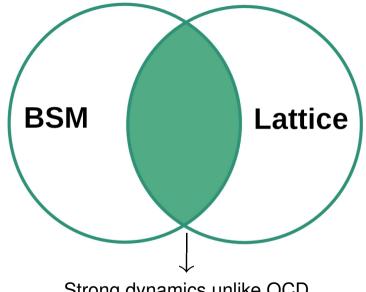
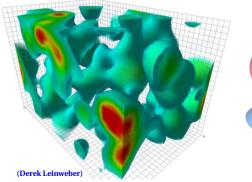

BSM Physics on the Lattice

David Schaich (University of Liverpool)



Annual Theory Meeting, IPPP Durham, 16 December 2025

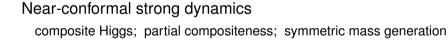
Big picture


Strong dynamics unlike QCD

Big picture

Strong dynamics unlike QCD

Both concrete calculations for phenomenology and non-perturbative explorations for more formal theory



Overview and plan

Lattice field theory is a broadly applicable tool to study strongly coupled quantum field theories

Especially important when QCD-based intuition unreliable

Composite dark matter direct & collider searches; self-interactions; gravitational waves

Lattice supersymmetry challenges; holographic duality; scaling dimensions

But wait, there's more...

Dynamical Triangulations Radial quantization on $S^{d-1} \times \mathbb{R}$ 3d QFTs dual to 4d de Sitter

['lattice quantum gravity', cf. arXiv:2209.06555]

['Quantum Finite Elements', cf. arXiv:2510.03085]

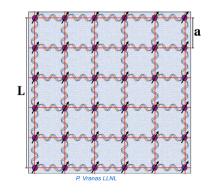
['lattice cosmology', cf. arXiv:2009.14768]

Etc.

Annual Lattice conference is great resource to go beyond this talk

Plenary reviews — Jong-Wan Lee '23; Georg Bergner '24; Biagio Lucini '25

Parallel tracks including Particle physics beyond the Standard Model


Applications outside particle physics Theoretical developments

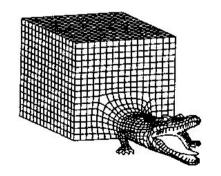
Quantum Computing and Quantum Information

Lattice quantum field theory in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

Regularize by formulating theory in finite, discrete, euclidean space-time Gauge invariant, non-perturbative, *d*-dimensional

Spacing between lattice sites ("a") \longrightarrow UV cutoff scale 1/a


Remove cutoff: $a \to 0$ $(L/a \to \infty)$

Discrete \longrightarrow continuous symmetries \checkmark

Lattice quantum field theory in a nutshell

Formally
$$\langle \mathcal{O} \rangle = \frac{1}{\mathcal{Z}} \int \mathcal{D} \Phi \ \mathcal{O}(\Phi) \ e^{-S[\Phi]}$$

Regularize by formulating theory in finite, discrete, euclidean space-time Gauge invariant, non-perturbative, *d*-dimensional

Caveats

Need UV-complete theory
[usually strong sector in isolation]

Physics needs to 'fit' in finite volume

Obstructions to chiral gauge theories, real-time dynamics, supersymmetry

Numerical lattice field theory calculations

High-performance computing \longrightarrow evaluate up to \sim billion-dimensional integrals (Dirac operator as $\sim 10^9 \times 10^9$ matrix)

Community relies on digital research infrastructure such as STFC-DiRAC

Science only possible thanks to support from DSIT, UKRI, universities and international partners!

COSMA @Durham [STFC-DiRAC]

Tursa @Edinburgh
[STFC-DiRAC]

ARCHER @Edinburgh [EPSRC/NERC]

JUPITER @Jülich [EuroHPC JU]

Composite Higgs

Composite Higgs sector can stabilize electroweak scale

QCD-like composite Higgs ruled out

New strong dynamics must differ from QCD

Typically analysed as EFT based on spontaneous symmetry breaking

 $G \rightarrow H \supset SU(2)_L \times SU(2)_R$

Must end up with 3 NGBs, 1 PNGB-Higgs, all else much heavier (or dark)

Pathways to Innovation and Discovery in Particle Physics

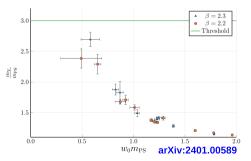
A Strategic Plan for US Particle Physics

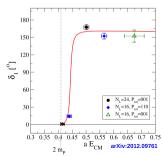
Decipher the Quantum Realm

Elucidate the Mysteries of Neutrinos

Reveal the Secrets of the Higgs Boson

2023p5report.org


See also ESPPU Physics Briefing Book [arXiv:2511.03883]


Composite Higgs — simple example

SU(2) gauge theory with $N_F=2$ fundamental fermions as UV completion of SU(4) \rightarrow Sp(4) \sim SO(6) \rightarrow SO(5) with five NGBs [Cacciapaglia–Sannino, arXiv:1402.0233]

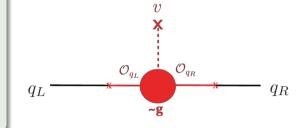
Lattice studies by Plymouth–Dublin–Odense–Bern collab. [cf. arXiv:2502.07163]

→ mass & width of vector resonance, EFT params., etc.

Dim'less ratios

Non-zero PNGB mass to fit in lattice volume

Extrapolate by fitting to EFT


Near-conformal composite Higgs

New strong composite sector also responsible for SM fermion masses

Partial compositeness

$$\lambda_q rac{\overline{q} \mathcal{O}_q}{\Lambda_{UV}^2} \ \longrightarrow \ m_q \sim \textit{v}_{\mathrm{EW}} \left(rac{\mathsf{TeV}}{\Lambda_{UV}}
ight)^{4-2\gamma_q}$$

With $\Lambda_{UV} \sim 10^{10}$ TeV, $m_{u/d} \sim \text{MeV}$ needs $\gamma_{u/d} \simeq 1.75$ $m_b \sim \text{GeV}$ needs $\gamma_b \simeq 1.9$

Need large anomalous dimensions γ across large range of scales

Near-conformal composite Higgs

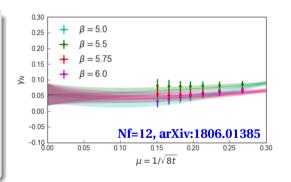
New strong composite sector also responsible for SM fermion masses

Need large anomalous dimensions $\ \gamma$ across large range of scales — near-conformal strong dynamics

Partial compositeness UV completions

Composite operators \mathcal{O}_q must have same quantum numbers as SM fermions q

For example, $\mathcal{O}_q \sim \psi_1 \psi_2 \psi_3$ baryons in SU(3) gauge theories with $N_F \geq 7$


[Vecchi, arXiv:1506.00623]

$$N_F = 12$$
 gradient flow renormalization $\longrightarrow \gamma_a = 0.05(5)$

For comparison, $\gamma_m = 0.23(6)$ [Carosso–Hasenfratz–Neil, arXiv:1806.01385]

Appears perturbative

 \longrightarrow 8 \leq $N_F \leq$ 10 more interesting

Partial compositeness UV completions

Composite operators \mathcal{O}_q must have same quantum numbers as SM fermions q

For example, $\mathcal{O}_q \sim \psi_1 \psi_2 \psi_3$ baryons in SU(3) gauge theories with $N_F \geq 7$

[Vecchi, arXiv:1506.00623]

Alternative: 'multi-rep' theories

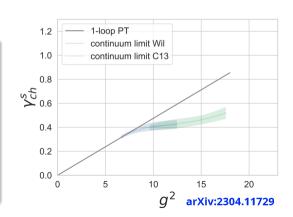
 N_{EW} fermions ψ in one rep \longrightarrow NGBs

 $N_{
m QCD}$ fermions χ in another $\longrightarrow \mathcal{O}_q \sim \psi_1 \psi_2 \chi$ 'chimera' baryons

[Ferretti-Karateev, arXiv:1312.5330]

Lattice studies of multi-rep theories (I)

SU(4) gauge theory with
$$N_F=4$$
 fundamental and $N_{AS}=3$ antisymmetric SU(4) \times SU(4) \to SU(4)

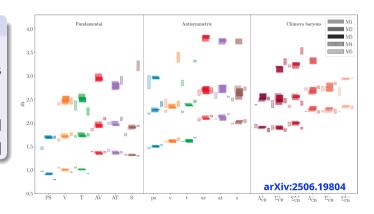

TACoS collaboration

 $N_{AS} = 4$ for technical reasons

Three independent chimeras $\longrightarrow \gamma_a \simeq \{0.25, 0.25, 0.5\}$

 $\longrightarrow \gamma_q \simeq \{0.25, 0.25, 0.5\}$

For comparison, $\gamma_m^{(F)} \simeq 0.75, \, \gamma_m^{(A)} \simeq 1$ [arXiv:2304.11729]

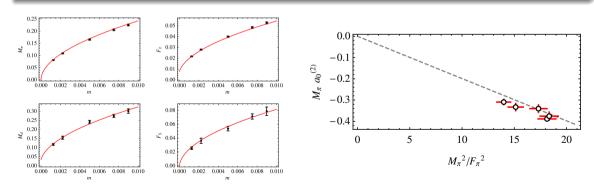

Lattice studies of multi-rep theories (II)

Sp(4) gauge theory with $N_F=2$ fundamental and $N_{AS}=3$ antisymmetric SU(4) \to Sp(4)

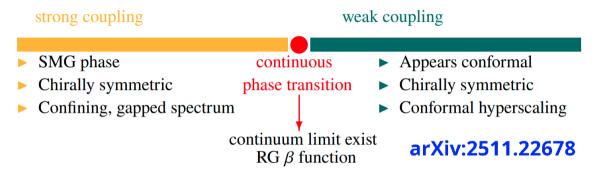
TELOS Collaboration

Masses of mesons and chimera baryons

Five independent calculations using spectral density method [arXiv:2506.19804]

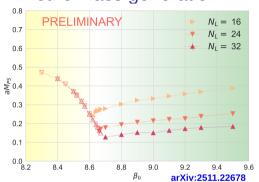


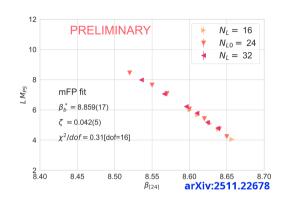
telos-collaboration.github.io


Pseudo-dilaton from near-conformality

Near-conformal lattice studies generically observe light scalar meson roughly degenerate with PNGBs

Test pseudo-dilaton interpretation by formulating dilaton-EFT [arXiv:2305.03665] \longrightarrow good description of SU(3) $N_F = 8$ spectrum and PNGB scattering



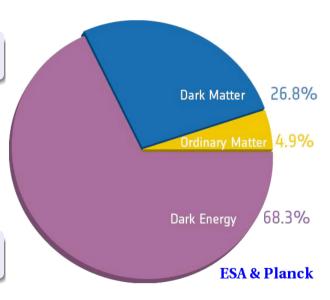

Symmetric mass generation

SU(N) with N_F fundamental $\longrightarrow N \times N_F \mod 8 = 0$ to cancel 't Hooft anomalies Novel strongly coupled continuum limit where perturbatively irrelevant operators may be relevant

Symmetric mass generation

Calculations with exactly massless fermions

[Hasenfratz-Witzel, arXiv:2511.22678]


Transition continuous rather than first-order,
potentially BKT from merger of UV and IR fixed points

Composite dark matter

Consistent gravitational evidence from kiloparsec to Gpc scales

$$rac{\Omega_{\text{dark}}}{\Omega_{\text{ordinary}}} pprox 5 \quad \dots$$
 not 10^5 or 10^{-5}

Explained by non-gravitational interactions in the early universe

Composite dark sector

Early universe

Deconfined charged fermions \longrightarrow non-gravitational interactions

Present day

Confined SM-singlet dark matter \longrightarrow no experimental detections

Composite dark sector

Present day

Confined SM-singlet dark matter \longrightarrow no experimental detections

Could be dark baryon; dark meson; dark glueball [review: arXiv:1604.04627]

for example 'SIMP' DM.

r example Slivie Divi

SU(2) or Sp(4) UV completions

Composite dark sector

Present day

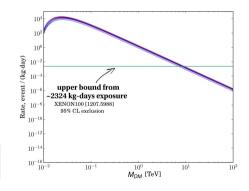
Confined SM-singlet dark matter \longrightarrow no experimental detections

Could be dark baryon; dark meson; dark glueball [review: arXiv:1604.04627]

*\timeson massive and stable via dark baryon number

QCD-like dark baryon

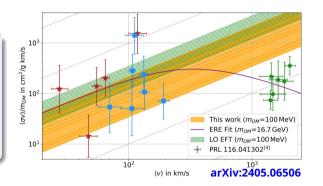
Composite dark matter can be QCD-like


[cf. DeGrand–Neil, arXiv:1910.08561]

Different EW charges → SM-singlet lightest baryon

Form factors \longrightarrow direct detection via Higgs or photon exchange

 $\begin{array}{ccc} \text{Constraint} & \textit{M}_{\textit{B}} \gtrsim 30 \text{ TeV} & \text{[arXiv:1301.1693]} \\ & \text{dominated by magnetic moment} \end{array}$



Composite dark matter is self-interacting

GeV-scale mass ->> self-interactions relevant to small-scale structure

Example cross-section for Sp(4) dark mesons [Dengler–Maas–Zierler, arXiv:2405.06506]

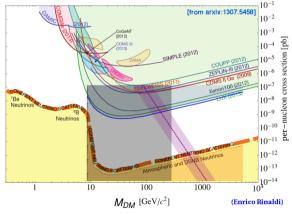
Points inferred from halo cores [Kaplinghat-Tulin-Yu, arXiv:1508.03339]

Reducing $M_B \gtrsim 30 \text{ TeV}$ constraint on dark baryons is interesting challenge...

Non-QCD-like bosonic baryon

Stealth Dark Matter [arXiv:1503.04205]

SU(4) gauge group, $N_F = 2 + 2$ \longrightarrow scalar 'dark baryon'


Symmetries forbid mag. moment and charge radius

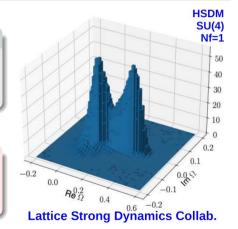
Polarizability $\longrightarrow M_{DM} \gtrsim 300$ GeV, comparable collider constraint

Hyper-Stealth DM [arXiv:2412.14540] Effectively $N_F = 1 + 2$

 $\longrightarrow M_{DM} \ge 3 \text{ GeV}$

Gravitational waves

First-order confinement transition \longrightarrow stochastic background of grav. waves


Space-based observatories (e.g., LISA) will access relevant frequencies

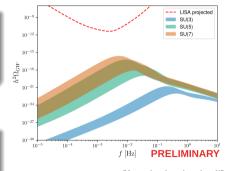
Lattice tasks

Determine order of transition

Compute latent heat and interface tension

Gravitational wave spectrum also sensitive to supercooling, bubble nucleation rate & wall speed

Gravitational waves


First-order confinement transition \longrightarrow stochastic background of grav. waves Space-based observatories (e.g., LISA) will access relevant frequencies

Lattice tasks

Determine order of transition

Compute latent heat and interface tension

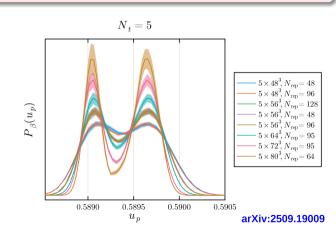
Gravitational wave spectrum also sensitive to supercooling, bubble nucleation rate & wall speed

[for dark glueball]

Gravitational waves

Super-critical slowing down at first-order transition

→ avoid via density-of-states algorithm [arXiv:1204.3243]


TELOS Collaboration

Pure-gauge Sp(4)

[arXiv:2509.19009]

Latent heat from distance between peaks

Interface tension from valley between them

Supersymmetry must be broken on the lattice

Supersymmetry is a space-time symmetry, $({\rm I}=1,\cdots,\mathcal{N})$ adding spinor generators $\textit{Q}_{\alpha}^{\rm I}$ and $\overline{\textit{Q}}_{\dot{\alpha}}^{\rm I}$ to translations, rotations, boosts

$$\left\{Q_{lpha}^{\mathrm{I}},\overline{Q}_{\dot{lpha}}^{\mathrm{J}}
ight\}=2\delta^{\mathrm{IJ}}\sigma_{lpha\dot{lpha}}^{\mu} extstyle{P}_{\mu}$$
 broken in discrete space-time

→ relevant susy-violating operators

Supersymmetry must be broken on the lattice

$$\left\{ \emph{Q}_{lpha}^{\mathrm{I}}, \overline{\emph{Q}}_{\dot{lpha}}^{\mathrm{J}}
ight\} = 2 \delta^{\mathrm{IJ}} \sigma_{lpha \dot{lpha}}^{\mu} rac{\emph{P}_{\mu}}{}$$
 broken in discrete space-time

→ relevant susy-violating operators

Significant recent progress from three simplifications [review: arXiv:2208.03580]

Reduce dimensions

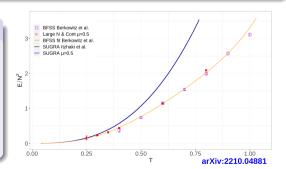
Avoid scalars

Maximize symmetries

(I) Reduce dimensions

Ultimate simplification — compactify all spatial dimensions

4d SU(N) super-Yang–Mills \longrightarrow quantum mechanics of $N \times N$ matrices


Holographic duality conjecture continues to relate stringy black branes ←→ lattice observables in large-N continuum limit

(I) Black hole energy

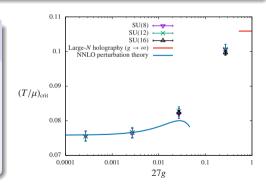
[max. susy]

Match leading-order ('SUGRA') result at low temperatures

Predict corrections at higher *T*[Monte Carlo String/M-Theory Collaboration,
arXiv:2210.04881]

(I) Reduce dimensions

Ultimate simplification — compactify all spatial dimensions


4d SU(N) super-Yang–Mills \longrightarrow quantum mechanics of $N \times N$ matrices

Holographic duality conjecture continues to relate

stringy black branes $\ \longleftrightarrow$ lattice observables in large-N continuum limit

(II) Phase transition in BMN model
[Jha–Joseph–DS, arXiv:2412.13407]
Match pert. theory at weak coupling
Approach strong-coupling limit
from numerical solution of dual SUGRA
[Costa–Greenspan–Penedones–Santos,

arXiv:1411.5541]

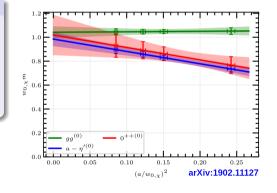
(II) Avoid scalars: 4d $\mathcal{N}=1$ super-Yang-Mills

SU(N) gauge theory with single massless Majorana fermion in adjoint rep.

Computational challenge comparable to lattice QCD

(II) Avoid scalars: 4d $\mathcal{N}=1$ super-Yang-Mills

SU(N) gauge theory with single massless Majorana fermion in adjoint rep.

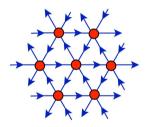

Computational challenge comparable to lattice QCD

DESY-Münster-Regensburg-Jena collab.

 $\mathcal{N}=$ 1 SYM, SU(3) gauge group

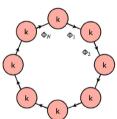
Recover degenerate supermultiplet in chiral continuum limit [arXiv:1902.11127]

Starting point for $\mathcal{N}=1$ superQCD [Bergner–Piemonte, arXiv:2008.02855; Carstensen–Bergner, Lattice '24]



(III) Maximize symmetries

Preserve susy sub-algebra in discrete lattice space-time


⇒ correct continuum limit with little or no fine tuning

Equivalent constructions from 'topological' twisting and dim'l deconstruction

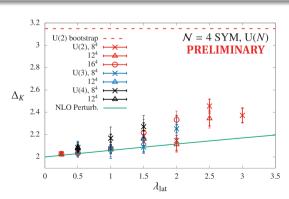
Review:

Catterall–Kaplan–Ünsal, arXiv:0903.4881

Need 2^d supersymmetries in d dimensions

 $d=4 \longrightarrow \mathcal{N}=4$ super-Yang-Mills

Lattice $\mathcal{N}=4$ SYM scaling dimension

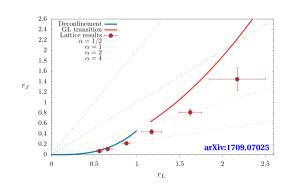

$$\mathcal{O}_K(x) = \sum_I \text{Tr} \left[\Phi^I(x) \Phi^I(x) \right]$$
 is simplest conformal primary operator

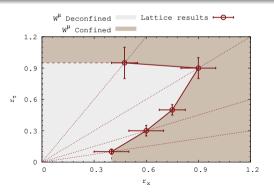
Scaling dimension $\Delta_K(\lambda) = 2 + \gamma_K(\lambda)$ investigated through perturbation theory (& S duality), holography, conformal bootstrap

 Δ_K from Monte Carlo RG analyses [arXiv:2304.04655]

Roughly perturbative for $\lambda_{\rm lat} \lesssim 3$

Sign problem challenging for larger $\lambda_{\rm lat}$

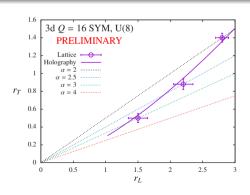



Supplement: Twisted lattice SYM in lower dimensions

Low-temperature large-N phase transition predicted by holography

Two dimensions: Can have Q = 4, 8 or 16 supersymmetries

Lattice results for maximal Q = 16 consistent with holography (left), not the case for minimal Q = 4 (right, arXiv:2312.04980)


Supplement: Twisted lattice SYM in lower dimensions

Low-temperature large-*N* phase transition predicted by holography

Three dimensions: Can have Q=8 or 16 supersymmetries [starting point for 2d quiver superQCD]

Preliminary Q = 16 lattice results consistent with holography [Joseph–DS, Lattice '25]

Recap: An exciting time for lattice BSM

Lattice field theory is a broadly applicable tool to study strongly coupled quantum field theories

Especially important when QCD-based intuition unreliable

Near-conformal strong dynamics

Composite dark matter

Lattice supersymmetry

Much more to explore

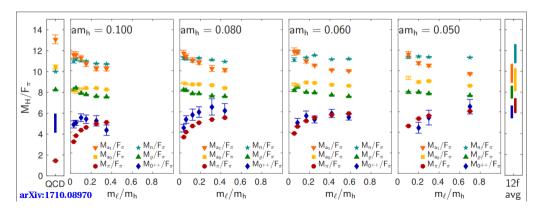
Recap: An exciting time for lattice BSM

Lattice field theory is a broadly applicable tool to study strongly coupled quantum field theories

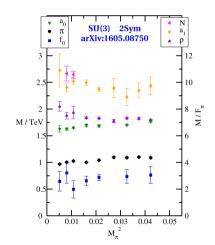
Especially important when QCD-based intuition unreliable

Thank you!

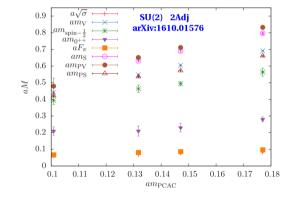
UK Research and Innovation



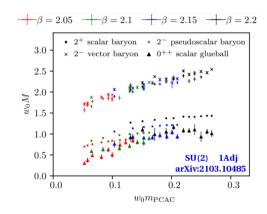
Consistently observed by many groups considering various theories


 \checkmark SU(3) with $N_F = 8$ fundamental

 \checkmark SU(3) with $N_F = 12$ fundamental


Consistently observed by many groups considering various theories

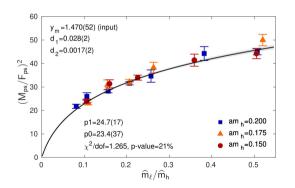
- \checkmark SU(3) with $N_F = 8$ fundamental
- \checkmark SU(3) with $N_F = 12$ fundamental
- \checkmark SU(3) with N_F = 2 sextet


Consistently observed by many groups considering various theories

- ✓ SU(3) with $N_F = 8$ fundamental
- \checkmark SU(3) with $N_F = 12$ fundamental
- \checkmark SU(3) with $N_F = 2$ sextet
- \checkmark SU(2) with $N_F = 2$ adjoint

Consistently observed by many groups considering various theories

- \checkmark SU(3) with $N_F = 8$ fundamental
- \checkmark SU(3) with $N_F = 12$ fundamental
- \checkmark SU(3) with $N_F = 2$ sextet
- \checkmark SU(2) with $N_F = 2$ adjoint
- \checkmark SU(2) with $N_F = 1$ adjoint

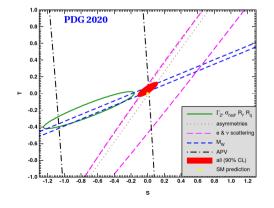

Backup: Dilaton-EFT test from SU(3) with $N_F = 4 + 6$

Dilaton-EFT includes light pseudo-Nambu–Goldstone boson (PNGB)

of broken scale invariance, in addition to usual PNGBs

Good description of spectrum for $N_F = 4 + 6$

[arXiv:2007.01810]

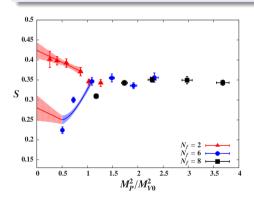

Analyze
PNGB scattering
Electroweak S parameter

(EFT coeff. related to W mass)

Backup: The S parameter

Constrain Higgs sector from vector-minus-axial vacuum polarization $\Pi_{V-A}(Q)$

$$\gamma,\,Z\, \, \bigvee \hspace{-.5cm} \bigcap \hspace{-.5cm} \bigcap \hspace{-.5cm} Q \, \longrightarrow \hspace{-.5cm} \gamma,\,Z$$



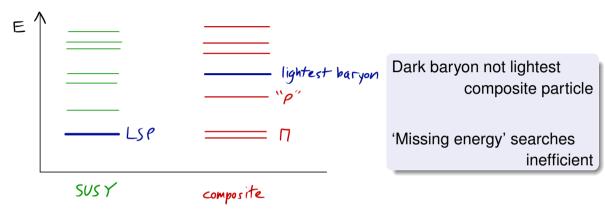
Experimental $S=-0.01\pm0.10$ vs. QCD-like $S\approx0.43\sqrt{\xi}$

Related to W boson mass [arXiv:2204.03796]

Domain-wall fermion symmetries important

Backup: S parameter on the lattice

Prior LSD study of $N_F = 2, 6, 8$ [arXiv:1405.4752] $N_F = 4 + 6$ planned for the near future


$$S/\sqrt{\xi}=$$
 0.42(2) for $N_{F}=$ 2 matches QCD \checkmark

Significant reduction from larger N_F , chiral extrapolation again challenging

V–A vacuum polarization also contributes to Higgs potential

[arXiv:1903.02535]

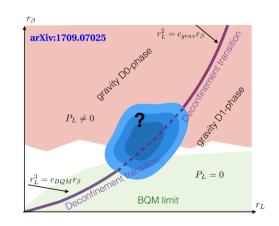
Backup: Collider constraints on composite dark matter

Collider constraints from lighter **charged** ' Π ' plus lattice calculation of M_{DM}/M_{Π} [cf. ATLAS, arXiv:2405.20061]

Backup: More about holographic duality

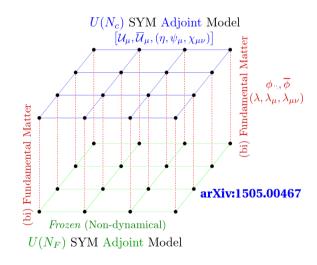
Holographic duality conjecture

Thermodynamics of supersymmetric QFT \longleftrightarrow black holes in dual supergravity


2d example: For decreasing r_L at low $t = 1/r_\beta$ and large N

homogeneous black string (D1)

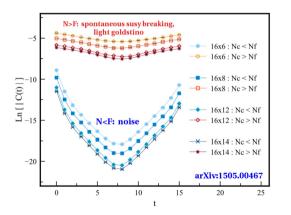
→ localized black hole (D0)

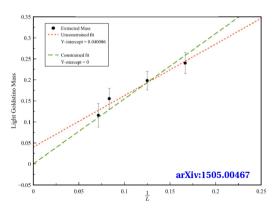

"spatial deconfinement" signalled by Wilson line

Backup: Quiver superQCD from twisted SYM

2-slice lattice SYM with $U(N) \times U(F)$ gauge group Adj. fields on each slice Bi-fundamental in between

Decouple U(F) slice $\longrightarrow U(N)$ SQCD in (d-1) dims. with F fund. hypermultiplets




Backup: Dynamical susy breaking in 2d lattice superQCD

U(N) superQCD with F fundamental hypermultiplets

Observe spontaneous susy breaking only for N > F, as expected

Catterall-Veernala, arXiv:1505.00467

