ERG2026

13th International Conference on the Exact Renormalization Group https://indico.global/event/16125/

1 - 5 September 2026, University of Sussex

LOC: Daniel Litim, Manuel Reichert, Michael Scherer, Peter Millington

Peter Millington UKRI FLF, University of Manchester

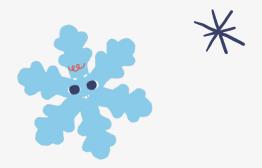
Annual Theory Meeting 2025

The University of Manchester

Peter Millington
UKRI FLF, University of Manchester

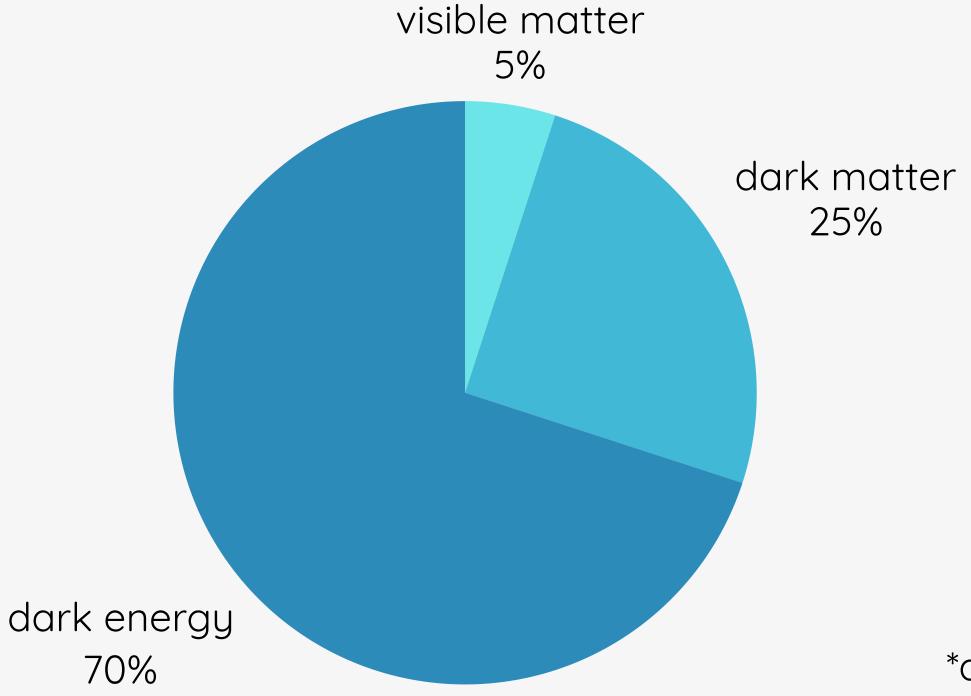
Why would you modify gravity?

Annual Theory Meeting 2025

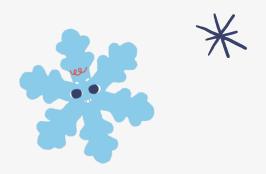


70%

The Dark Universe

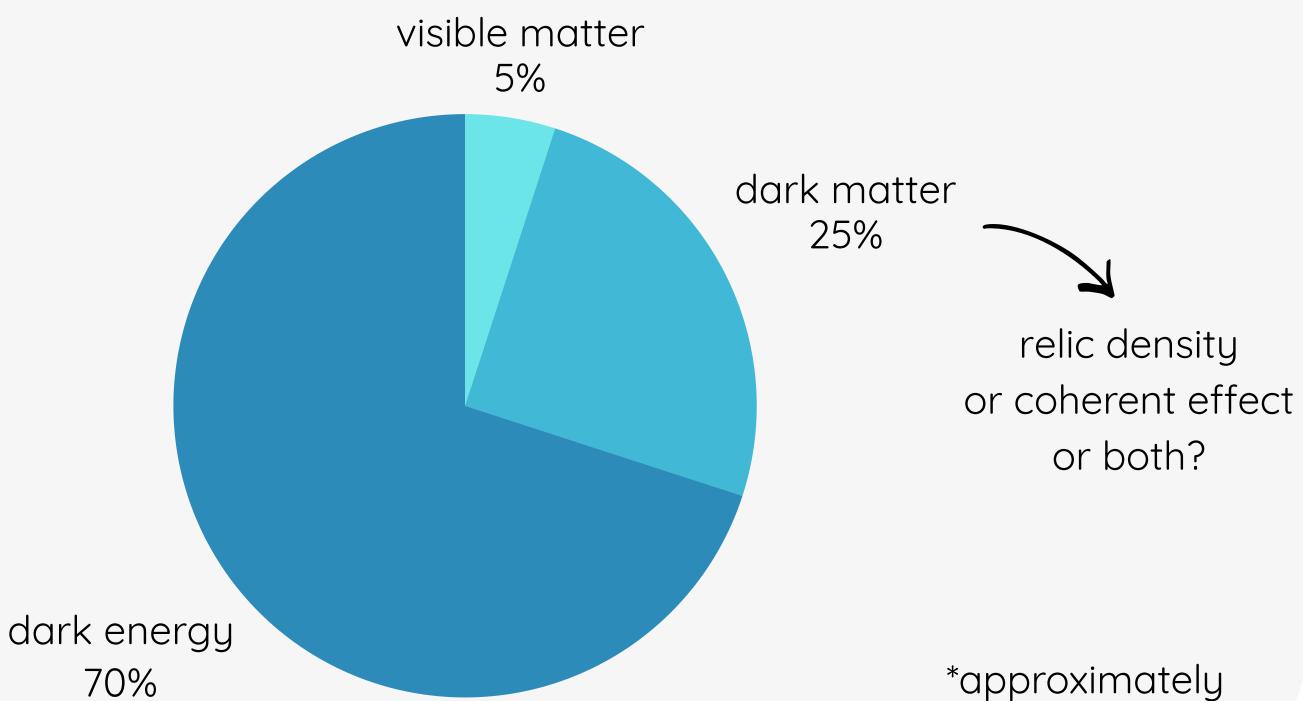


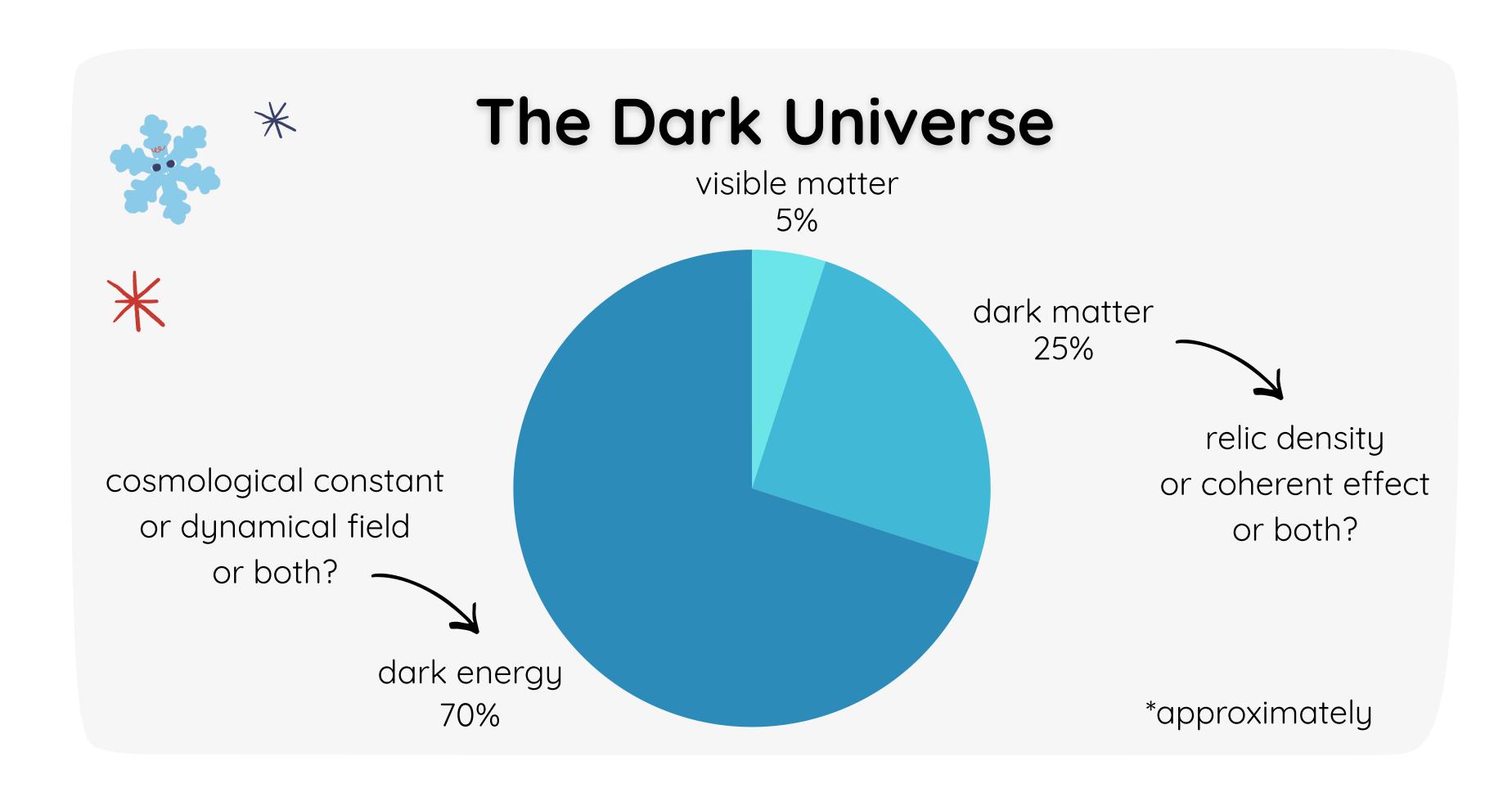
*approximately



70%

The Dark Universe





* The Einstein-Hilbert Action

$$S = \int d^4x \sqrt{-g} \, \frac{M_{\rm Pl}^2}{2} \left(R - 2\Lambda \right)$$

Things to like about GR:

- It seems to work.
- It doesn't use up much ink.
- Non-perturbatively renormalisable?

Things to dislike about GR:

- The cosmological constant problem.
- It contains dimensionful parameters.
- It is not perturbatively normalisable.

*

To fix problems on large scales, we may want to introduce **new physics** in the **infrared**.

Add new light degrees of freedom.

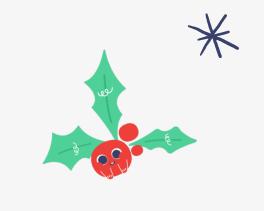
Lovelock: a local gravity action in (3+1)D containing only 2nd-order derivatives of the metric necessarily leads to the **Einstein field equations**

And then hide the evidence.



米

screened fifth-force models



米

screened fifth-force models

(scalar-tensor theories of gravity)

non-minimal gravitational couplings

potential

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} F(\phi, \partial \phi, \dots) R + \dots - \frac{1}{2} Z^{\alpha\beta}(\phi, \partial \phi, \dots) \partial_{\alpha} \phi \partial_{\beta} \phi - V(\phi) \right]$$

higher curvature terms + derivative couplings to curvature tensors

non-canonical kinetic terms and derivative interactions

Horndeski → Beyond Horndeski → DHOST → ...

non-minimal gravitational couplings

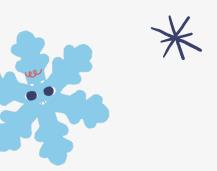
potential

$$S = \int d^4x \sqrt{-g} \left[\frac{1}{2} F(\phi, \partial \phi, \dots) R + \dots - \frac{1}{2} Z^{\alpha\beta}(\phi, \partial \phi, \dots) \partial_{\alpha} \phi \partial_{\beta} \phi - V(\phi) \right]$$

higher curvature terms + derivative couplings to curvature tensors

non-canonical kinetic terms and derivative interactions

Horndeski → Beyond Horndeski → DHOST → ...



Weyl rescaling

$$\sqrt{-g} F(\phi) R \longrightarrow \sqrt{-\tilde{g}} M_{\rm Pl}^2 \tilde{R}$$

Jordan frame

Einstein frame

Standard Model fields still move on geodesics of the Jordan-frame metric

$$g_{lphaeta} = rac{M_{
m Pl}^2}{F(\phi)} \tilde{g}_{lphaeta} = M_{
m Pl}^2 A^2(\tilde{\phi}) \tilde{g}_{lphaeta}$$

giving a **fifth force** $\propto -\nabla \ln A(ilde{\phi})$



Field-space geometry

$$\mathcal{L}\supset g^{lphaeta}G^{AB}\partial_{lpha}\Phi_{A}\partial_{eta}\Phi_{B}$$

Allows to construct field reparametrisation-invariant formulations

→ frame covariance

Also at the level of the quantum effective action via Vilkovisky-DeWitt and generalisations

Screening

new long-range forces are heavily constrained

(see Clare Burrage's talk this afternoon)

$$\phi \to \phi + \delta \phi$$
: $Z(\phi) \left(\ddot{\delta \phi} - c_s^2(\phi) \nabla^2 \delta \phi \right) + m^2(\phi) \delta \phi = A_{,\phi}(\phi) \mathcal{M} \delta^3(\mathbf{x})$

symmetron/ Chameleon Damour-Polyakov
$$U(r) = -\frac{1}{Z(\phi)c_s^2(\phi)}A_{,\phi}^2(\phi)\frac{1}{4\pi r}\exp\left[-\frac{m(\phi)r}{Z^{1/2}(\phi)c_s(\phi)}\right]\mathcal{M}$$
 Vainshtein

Scale symmetry

$$g_{\alpha\beta} \to \Omega^2(x) g_{\alpha\beta}$$

$$g_{\alpha\beta} \to \Omega^2(x) g_{\alpha\beta} \qquad \frac{\mathrm{d}}{\mathrm{d}\tau} \to \Omega^{-2}(x) \frac{\mathrm{d}}{\mathrm{d}\tau}$$

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta} - g_{\alpha\beta}\dot{x}^{\alpha}\dot{x}^{\beta}\partial^{\mu}\ln\Omega = 0$$

zero for null geodesics

Higgs-dilaton

explicit scale breaking in the matter sector → fifth forces couple

no explicit scale breaking in the matter sector \rightarrow fifth forces decouple

$$V = rac{\lambda}{4!} \left(H^\dagger H - rac{\beta}{\lambda} S^2
ight)^2$$

But dimensional transmutation breaks scale symmetry.

An important corollary

Fifth forces couple via explicit scale breaking terms.

fifth force couplings

Higgs portals

$$\phi^2 R$$

$$\phi^2 H^{\dagger} H$$

Many BSM models share the phenomenology of the scalar sectors of scalar-tensor theories of gravity and vice versa.

Moreover, non-minimal couplings to curvature terms are generated by radiative effects.

Prototype: symmetron

Screening driven by spontaneous symmetry breaking.

$$V(\phi) = \frac{1}{2M^2} \left(\rho - \mu^2 M^2 \right) \phi^2 + \frac{1}{4!} \lambda \phi^4$$

low ambient density

$$\rho < \mu^2 M^2$$

$$\langle \phi \rangle \to v$$

$$\rho > \mu^2 M^2$$

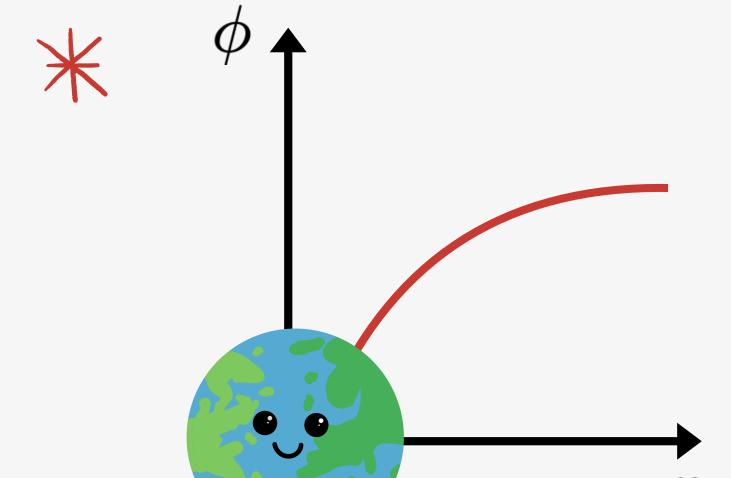
$$\langle \phi \rangle \to 0$$

$$F \propto \langle \phi \nabla \phi \rangle \to 0$$

high ambient density

Fifth-force profiles

Matter sources generate non-trivial classical field profiles.



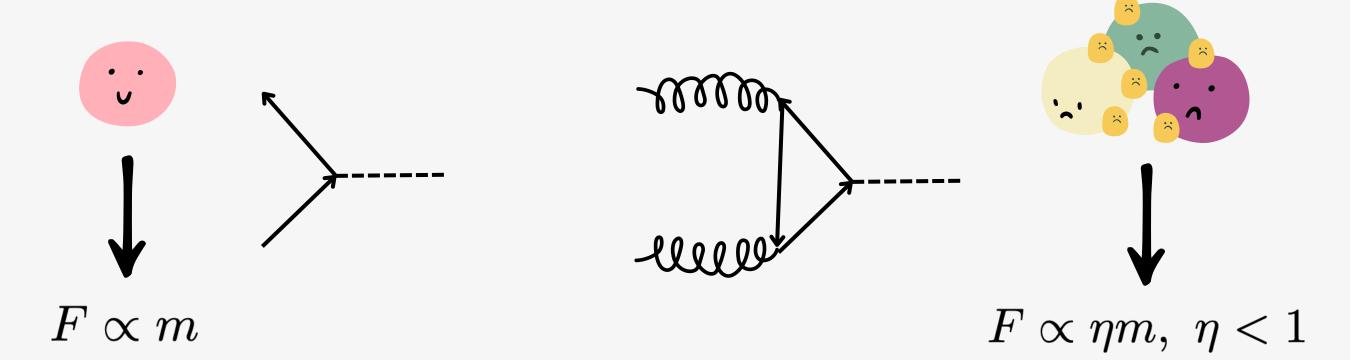
- fifth forces from spatial gradients
- gradient energy also gravitates
- time-dependent coherent phenomena beyond the static ground state
- → multiple phenomenologies

* Equiv. principle violations

Macroscopic level:

When an extended mass distribution is (partially) screened, not all of the mass sources a fifth force.

Elementary and composite states couple differently to fifth forces.



Bottom: Burrage, Copeland, PM, Spannowsky, 1804.07180; cf. the case of axion fifth forces: Bauer, Rostagni, 2307.09516

Fine tuning

If we want to see these models as more than prototypes, we need to acknowledge fine tuning.

SM Higgs field

non-linearities are important

environmental dependence

coupling QFTs to classical sources

Quantum corrections

Quantum fields coupled to spatially varying classical sources:

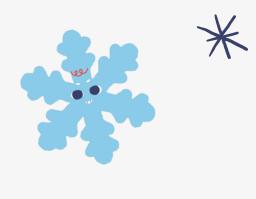
Quantum corrections cannot be renormalized away where there are gradients in the classical field profile.

The classical field will be meaningful if

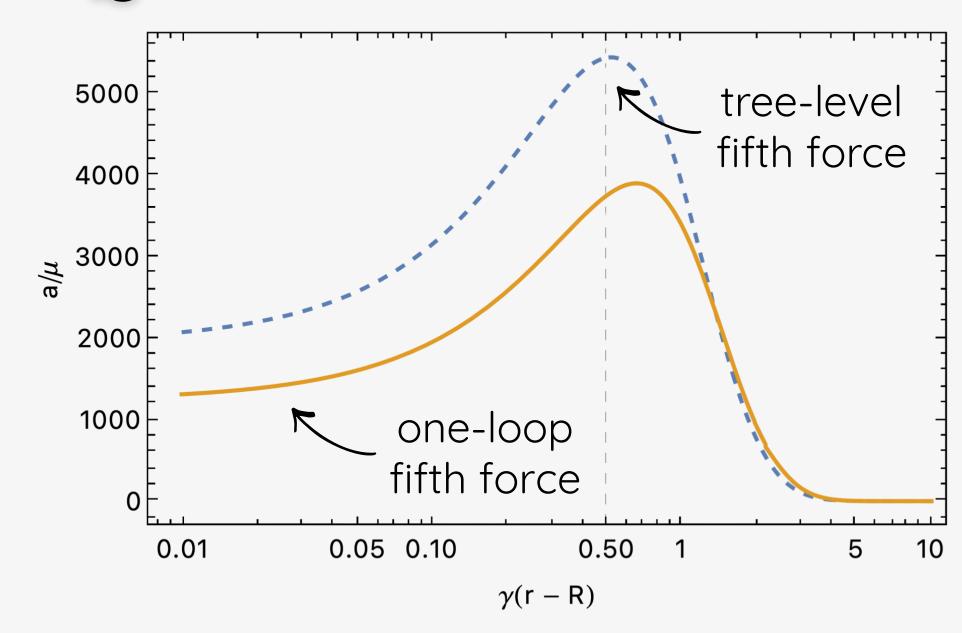
$$L \ll \mu^{-1} : (\Delta \phi_L)_{\mathrm{QM}} \ll (\Delta \phi_L)_{\mathrm{cl}}$$

quantum corrections smeared over L

change in the classical field



Quantum corrections



(a) Parameters appropriate for hydrogen spectroscopy [53] ($\mu = 1 \,\text{GeV}$, $M = 10 \,\text{MeV}$, $\lambda = 0.5$ and $\rho_0 = 2.54 \times 10^{-3} \,\text{GeV}^4$).

Key takeaways

Field theories whose phenomenology depends on interplay of

- non-linear (self-)interactions
- couplings to classical sources
- the structure of the Standard Model and its extensions

Much of the analysis of these models has been (semi-)classical

Multiple phenomenologies shared by many other models

- o ultra-light dark matter
- Higgs portals (albeit in very different parameter regions)