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Perturbative QCD basics.

Scales choices, PDFs and theoretical uncertainties.

Progress in pQCD.

Expectations for the near
future.
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e (Cross section factorizes into a part describing the
partons inside hadrons (universal) and another part
describing the scattering of those partons (calculated case-by-case).
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The dependence on both scales is an artefact of pQCD and should be
reduced in higher orders.

Typically, one might vary both these scales to try to estimate the effect
of neglected higher order corrections/ quantify theoretical uncertainty:.
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Independence is only formal: have to check real dependence case-by-case.
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Not always true: sometimes clear that higher orders are important.
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e Canonical example is a process which receives contributions
proportional to new parton content of the proton at NLO (through
diagrams containing additional radiation).

e For example, Drell-Yan receives contribution
from the gluon only at NLO, resulting in a
large enhancement of the cross-section.

¢ In addition it can be the cause of worsened scale dependence, due to
the fact that this NLO contribution depends on the scale in only a LO
fashion (no LO term and no log).

W T bb @ LHC

warning sign:
lots of jets
present, must be
careful defining
exclusive states
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Recent calculation of pp = WWZ at the LHC. Factorization scale

dependence is small at LO.

Hankele & Zeppenfeld, 2007

NLO result largely due to real contributions. Need NNLO in principle.
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Tid

10

10

10°

10

10*

10

10

10

LHC parton Kinematics

X, = (M/14 TeV) exp(ty) ]
Q=M M=10TeV
/ ]
W= 100 GeV / E
Y= /f'} ]
/
M = 10 GeV
fixed
target |
il T B BT

10"

T

i s [ 1™ Tin



Two prerequisites for higher precision: determination of PDFs and

matrix elements to higher orders in as.

Although PDFs are inherently non-perturbative, their scale
dependence is not, e.g. extract at given (x,(Q¢?) and run to new (x,Q?).

Reliance on pQCD in
extraction (fit to a
perturbative calculation) and
in evolution (must be
calculated to required
precision).

Central production of SM and
new particles relatively well-
determined; total cross-
sections less so.

We are of course reliant on the
evolution to the new regime
of (x,Q?) probed by the LHC.
No reason to expect surprises,
but must bear it in mind.
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e For truly NNLO global PDF fit, need all matrix elements to the same
order. Some such information (D.-Y. at fixed target) is incorporated in
e.g. MRST, although not complete (missing inclusive jets at Tevatron).
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predictions using two or more global fits (e.g. MRST, CTEQ).

e For a while, it has been possible to estimate uncertainty within a
single fit. The n parameters entering the fit are varied about their
central value, resulting in 2n additional PDF variations.

e Requires additional MC running, but a good implementation repeats
only the PDF evaluations (and doesn’t require 21 runs).

e Individual predictions for different PDFs can be useful for quantitying

uncertainty in specific inputs, e.g. high x gluon.
high sensitivity to e-vector
15 (PDFs 29 and 30)
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Many revolve around doing either part or all of the calculation
numerically. Very much in the same spirit as at LO, e.g. Madgraph.

Brain power replaced by (CPU) muscle power.

At the moment, technology is still young. Calculations are on the edge
of feasibility and require long running/some amount of fine-tuning

by hand.
“To evaluate a single colour-ordered sub-amplitude for a

complex scalar took 9 seconds on 2.8GHz Pentium processor.”

six gluon scattering (hep-ph/0602185),
Ellis, Giele & Zanderighi

“ ... ten thousand kinematic points required a few days of
running on a cluster of several dozen processors.”

pp — ZZZ (hep-ph/0703273),
Lazopoulos & Melnikov

Even complete calculations are not yet suitable for a wide audience
— not ideal for maximal return.
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e None of the genuine 2—2 calculations have yet turned into full-blown
NNLO predictions.

e Disconnect is due to evaluation of (“real”) diagrams containing extra
partons, which contain soft and collinear singularities.

e At NLO the procedure for handling these configurations well-
understood (subtraction, phase-space slicing, hybrid schemes).

e Methods are flexible and systematic. In principle, more final-state
particles just means cranking the handle.

e In practice, must take care with phase space sampling and instabilities
(many singular regions).
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A solution, the antenna-subtraction method, has been successfully
applied to the NNLO calculation of 3-jet production in e*e" collisions.
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e Exciting prospect for the LHC: the equivalent “crossed” calculation, to
provide NNLO predictions for W-et/Z+jet rates.

e Technical challenge: singularities are now present also in the initial state
and constraints on kinematics change. The same but different.
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Most “easily-doable” NLO calculations have been done; those that
remain represent a significant step forward.
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theory community can focus on.
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process relevant for
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™ pp — V¥ +jet ttH, new physics

M pp — H + 2 jets | H production by vector boson fusion (VBF)

Les Houches
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A pp — tt + 2 jets ttH
5. pp — V V bb VBF— H — V'V, ttH, new physics
6. pp -V V +2jets | VBF—- H - VV
7. pp — V 4 3 jets various new physics signatures
A pp — V-V SUSY trilepton searches
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Good progress in last two years. List being updated and added to (e.g.
NNLO targets) in the most recent proceedings.

Something simple missing? Theorists always happy for motivation!
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e In the last couple of years there has been a flurry of activity that
indicates it may finally be in reach.

e Plethora of numerical techniques by various groups: GOLEM project
(Binoth et al.) / Ellis, Zanderighi, JC / ...

e Unitarity + numerical methods: Ossola, Papadopoulos, Pittau /
Giele, Kunszt, Melnikov / ... and many more.

e Automating NLO dipole subtractions: Gleisberg, Krauss.

e Mood of cautious optimism.

“We hope that further development of this method will finally
bring within reach NLO computations for such complicated

processesqas PP tt + 2 jets and PP Vit .5 djefs
arXiv:0801.2237 [hep-ph]
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experimentalist’s tool of choice, the parton shower.

Different philosophy: small number of seed processes, with additional
radiation incorporated via showering stochastically.

Relies on the same factorization properties already discussed:

s AW
further partons are

obtained by splitting
< gluons into more gluons
or quarks

¥

By including radiation to all orders, such programs implicitly resum the
most important (leading logarithmic) contributions.

FEATURE DRAWBACKS SOLUTIONS
approximations in problems at high pr, matching prescriptions:
matrix elements large angles MLM, CKKW

stochastic (independent) | no quantum interference, | inclusion of some effects:
branchings problems with correlations Nagy, Soper

NLO parton shower

leading order : L
. uncertain normalization ..
matrix elements — S. Frixione

Largely complementary to fixed order, where predictions are parton-
level only and are generally not valid at low pr. Horses for courses!
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Enormous progress in the last 5-10 years to calculate both higher
order terms and to implement them in accessible tools.

As a result, the LHC will benefit from a wealth of new predictions at
NLO and NNLO — backgrounds and precision measurements.

New techniques for NLO appear to be able to extend the reach of such
calculations to final states of high interest at the LHC (but early days).

Checklist for pQCD:
does the calculation really apply to your data?
if fixed-order, do you need higher orders?
is the scale dependence a reliable estimate of uncertainty?
how big are the PDF uncertainties (in distributions)?

never trust everything a theorist tells you.



