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➡ Scales choices, PDFs and theoretical uncertainties.
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➡ Disclaimer: some material
borrowed from recent
review article.

• Perturbative QCD is a vast subject with a history of ~40 years that 
underpins much of today’s particle physics.

• I will not be able to touch on every important aspect of the theory.

• Nor will I explain the minutiae of pQCD calculations.

• I aim for a broad overview of some of the features of pQCD and a 
flavour of the upcoming challenges and promises.



Back to Basics: 
Perturbative QCD in a Nutshell



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:

σ̂ab→X = σ̂(0)
ab→X + αs(Q2)σ̂(1)

ab→X + α2
s(Q

2)σ̂(2)
ab→X + . . .

LO/tree level/Born NLO NNLO



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:

• Renormalization means that the coupling is not a constant, but 
depends on a scale Q2. Asymptotic freedom ensures that the whole 
procedure hangs together, with αs small as long as Q2 is large enough.

σ̂ab→X = σ̂(0)
ab→X + αs(Q2)σ̂(1)

ab→X + α2
s(Q

2)σ̂(2)
ab→X + . . .

LO/tree level/Born NLO NNLO



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:

• Renormalization means that the coupling is not a constant, but 
depends on a scale Q2. Asymptotic freedom ensures that the whole 
procedure hangs together, with αs small as long as Q2 is large enough.

• The QFT of QCD is usually interpreted in terms of Feynman 
diagrams, with successive orders in the perturbative expansion 
corresponding to ever more complicated graphs.

σ̂ab→X = σ̂(0)
ab→X + αs(Q2)σ̂(1)

ab→X + α2
s(Q

2)σ̂(2)
ab→X + . . .

LO/tree level/Born NLO NNLO



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:

• Renormalization means that the coupling is not a constant, but 
depends on a scale Q2. Asymptotic freedom ensures that the whole 
procedure hangs together, with αs small as long as Q2 is large enough.

• The QFT of QCD is usually interpreted in terms of Feynman 
diagrams, with successive orders in the perturbative expansion 
corresponding to ever more complicated graphs.

• Life is complicated further by hadron-collider
environment.

σ̂ab→X = σ̂(0)
ab→X + αs(Q2)σ̂(1)

ab→X + α2
s(Q

2)σ̂(2)
ab→X + . . .

LO/tree level/Born NLO NNLO



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:

• Renormalization means that the coupling is not a constant, but 
depends on a scale Q2. Asymptotic freedom ensures that the whole 
procedure hangs together, with αs small as long as Q2 is large enough.

• The QFT of QCD is usually interpreted in terms of Feynman 
diagrams, with successive orders in the perturbative expansion 
corresponding to ever more complicated graphs.

• Life is complicated further by hadron-collider
environment.

σ̂ab→X = σ̂(0)
ab→X + αs(Q2)σ̂(1)

ab→X + α2
s(Q

2)σ̂(2)
ab→X + . . .

LO/tree level/Born NLO NNLO



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:

• Renormalization means that the coupling is not a constant, but 
depends on a scale Q2. Asymptotic freedom ensures that the whole 
procedure hangs together, with αs small as long as Q2 is large enough.

• The QFT of QCD is usually interpreted in terms of Feynman 
diagrams, with successive orders in the perturbative expansion 
corresponding to ever more complicated graphs.

• Life is complicated further by hadron-collider
environment.

σ̂ab→X = σ̂(0)
ab→X + αs(Q2)σ̂(1)

ab→X + α2
s(Q

2)σ̂(2)
ab→X + . . .

LO/tree level/Born NLO NNLO

σAB =
∫

dxadxb fa/A(xa, Q2)fb/B(xb, Q
2) σ̂ab→X



Back to Basics: 
Perturbative QCD in a Nutshell

• Perturbative QCD is built around the expansion of observables as a 
series in the strong coupling constant, e.g. cross-section for ab→X:

• Renormalization means that the coupling is not a constant, but 
depends on a scale Q2. Asymptotic freedom ensures that the whole 
procedure hangs together, with αs small as long as Q2 is large enough.

• The QFT of QCD is usually interpreted in terms of Feynman 
diagrams, with successive orders in the perturbative expansion 
corresponding to ever more complicated graphs.

• Life is complicated further by hadron-collider
environment.

• Cross section factorizes into a part describing the
partons inside hadrons (universal) and another part
describing the scattering of those partons (calculated case-by-case).
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• In general, this factorization scale can be thought of as separating the 
soft (non-perturbative) physics inside the protons from the hard process 
represented by the partonic matrix elements. 

• pQCD is vindicated by its success at LEP, HERA and the Tevatron.

• There’s no reason why the renormalization scale Q2 at which the 
coupling is evaluated should be the same. However, a big difference 
between the two can lead to large logarithms: log(μR/μF).

• Often the scales are chosen to be equal and based on a hard scale that 
is present in the process, such as mW or a minimum pT. Any 
“reasonable value” is allowed though.

• The dependence on both scales is an artefact of pQCD and should be 
reduced in higher orders.

• Typically, one might vary both these scales to try to estimate the effect 
of neglected higher order corrections/quantify theoretical uncertainty.

Poll your local theorists!
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• Using the running of the coupling αs and the DGLAP equation describing 
the evolution of the splitting functions,

the NLO result is explicitly independent of μR and μF up to (unspecified) 
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• Independence is only formal: have to check real dependence case-by-case.
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lots of jets 

present, must be 
careful defining 
exclusive states
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• Obvious point is that scale dependence is unlikely to be improved at 
NLO and beyond if it is already small at LO.

• Particularly important for purely electroweak processes which have 
no dependence on the renormalization scale at LO!

Hankele & Zeppenfeld, 2007
• Recent calculation of pp → WWZ at the LHC. Factorization scale 

dependence is small at LO.

• NLO result largely due to real contributions. Need NNLO in principle.
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• Although PDFs are inherently non-perturbative, their scale 
dependence is not, e.g. extract at given (x,Q02) and run to new (x,Q2).

• Reliance on pQCD in 
extraction (fit to a 
perturbative calculation) and 
in evolution (must be 
calculated to required 
precision). 

• Central production of SM and 
new particles relatively well-
determined; total cross-
sections less so.

• We are of course reliant on the 
evolution to the new regime 
of (x,Q2) probed by the LHC. 
No reason to expect surprises, 
but must bear it in mind.
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completion of arduous 3-loop calculations by Moch, Vermaseren and 
Vogt. Vital component of improved predictions in pQCD.

• As well as the usual reduction in αs, differences between NLO and 
NNLO can be significant. 

• For truly NNLO global PDF fit, need all matrix elements to the same 
order.  Some such information (D.-Y. at fixed target) is incorporated in 
e.g. MRST, although not complete (missing inclusive jets at Tevatron).
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detailing impressive 
installation progress at CERN.

• Similar achievements in 
commissioning and running no 
doubt forthcoming!

• What are theorists doing?

• There has been 
comparable progress 
in tackling pQCD.

• Cumulative no. of 
papers appearing in 
SPIRES with the 
corresponding 
keyword.

• Levelling-off of NLO  
compensated for by 
recent rise in NNLO 
and beyond.
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• Brain power replaced by (CPU) muscle power. 

• At the moment, technology is still young. Calculations are on the edge 
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• Results known for:

✓ Drell-Yan;

✓ gg→Higgs; WH, ZH;

✓ dijet, diphoton production;

✓ vector boson + jet production.

• None of the genuine 2→2 calculations have yet turned into full-blown 
NNLO predictions.

• Disconnect is due to evaluation of (“real”) diagrams containing extra 
partons, which contain soft and collinear singularities.

• At NLO the procedure for handling these configurations well-
understood (subtraction, phase-space slicing, hybrid schemes).

• Methods are flexible and systematic. In principle, more final-state 
particles just means cranking the handle.

• In practice, must take care with phase space sampling and instabilities 
(many singular regions).

A large army of 2-loop stalwarts, see for example 
a recent talk by Gehrmann, hep-ph/0709.0351
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• Exciting prospect for the LHC: the equivalent “crossed” calculation, to 
provide NNLO predictions for W+jet/Z+jet rates.

• Technical challenge: singularities are now present also in the initial state 
and constraints on kinematics change. The same but different.
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process relevant for

(V ∈ {Z,W, γ})

1. pp → V V + jet tt̄H, new physics

2. pp → H + 2 jets H production by vector boson fusion (VBF)

3. pp → tt̄ bb̄ tt̄H

4. pp → tt̄ + 2 jets tt̄H

5. pp → V V bb̄ VBF→ H → V V , tt̄H, new physics

6. pp → V V + 2 jets VBF→ H → V V

7. pp → V + 3 jets various new physics signatures

8. pp → V V V SUSY trilepton searches

Table 2. The wishlist of processes for which a NLO calculation is both desired and
feasible in the near future.

semi-leptonically. It is useful to look both in the H → WW exclusive channel,

along with the H → WW+jet channel. The calculation of pp → WW+jet will be

especially important in understanding the background to the latter.

• pp → H + 2 jets: A measurement of vector boson fusion (VBF) production of the

Higgs boson will allow the determination of the Higgs coupling to vector bosons.

One of the key signatures for this process is the presence of forward-backward

tagging jets. Thus, QCD production of H + 2 jets must be understood, especially

as the rates for the two are comparable in the kinematic regions of interest.

• pp → ttbb and pp → tt + 2 jets: Both of these processes serve as background to

ttH, where the Higgs boson decays into a bb pair. The rate for ttjj is much greater

than that for ttbb and thus, even if 3 b-tags are required, there may be a significant

chance for the heavy flavour mistag of a ttjj event to contribute to the background.

• pp → V V bb: Such a signature serves as non-resonant background to tt production

as well as to possible new physics.

• pp → V V + 2 jets: The process serves as a background to VBF production of a

Higgs boson.

• pp → V + 3 jets: The process serves as background for tt production where one

of the jets may not be reconstructed, as well as for various new physics signatures

involving leptons, jets and missing transverse momentum.

• pp → V V V : The process serves as a background for various new physics

subprocesses such as SUSY tri-lepton production.

Work on (at least) the processes 1. to 4. of Table 2 is already in progress by several

groups, and clearly all of them aim at a setup which allows for a straightforward
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• Something simple missing? Theorists always happy for motivation!
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• The Holy Grail of pQCD has been clear for some time.

• In the last couple of years there has been a flurry of activity that 
indicates it may finally be in reach.

• Plethora of numerical techniques by various groups: GOLEM project 
(Binoth et al.) / Ellis, Zanderighi, JC / ...

• Unitarity + numerical methods: Ossola, Papadopoulos, Pittau / 
Giele, Kunszt, Melnikov / ... and many more.

• Automating NLO dipole subtractions: Gleisberg, Krauss.

• Mood of cautious optimism.

“The ideal would be the creation of a master 
program which for any desired process would 
generate the graphs, assign the momenta in the 
loops, evaluate the gamma matrix traces and 
colour algebra, and perform the integrals.”

“We hope that further development of this method will finally  
bring within reach NLO computations for such complicated 

processes as PP → tt + 2 jets and PP → V + 3, 4 jets.”
arXiv:0801.2237 [hep-ph]
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• Largely complementary to fixed order, where predictions are parton-
level only and are generally not valid at low pT. Horses for courses!
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‣ never trust everything a theorist tells you.


