IPP Durham, 20 Feb. 2008

Beyond SM effects in B physics

Gino Isidori

[Scuola Normale Superiore - Pisa & INFN - Frascati]

Introduction

- What we learned so far
 - Model-independent fits
 - The MFV hypothesis
- What we could still hope to learn
 - The most interesting observables in the MSSM with MFV
 - Other observables
- Conclusions

<u>Introduction</u>

I. In most realistic BSM scenarios, the new degrees of freedom of the model are heavier than B mesons (usually heavier also than W & Z bosons) and contribute to B decays only via virtual effects \rightarrow *indirect sensitivity to NP*

<u>Introduction</u>

I. In most realistic BSM scenarios, the new degrees of freedom of the model are heavier than B mesons (usually heavier also than W & Z bosons) and contribute to B decays only via virtual effects \rightarrow *indirect sensitivity to NP*

II. If the new degrees of freedom respect the SU(2)_L×U(1) gauge symmetry (very reasonable/general assumption) $\rightarrow NP$ effects in *B* physics decouple as $1/\Lambda^2$ (Λ = energy scale of the new degrees of freedom)

$\frac{Introduction}{A = A_0} \begin{bmatrix} c_{\text{SM}} \frac{1}{M_W^2} + c_{\text{NP}} \frac{1}{\Lambda^2} \end{bmatrix} \begin{bmatrix} \Lambda = \text{energy scale of the new particles} \\ c_{\text{SM}(\text{NP})} = \text{eff. couplings} \end{bmatrix}$

- The sensitivity to the energy scale grows slowly with the statistics or the luminosity of the experiment ($\sigma \sim 1/N^{1/4}$)
- The interest of a given observable depends on the magnitude of c_{SM} vs. c_{NP} (*loop-induced observables usually more interesting because of small* c_{SM} , but other type of suppressions, such as the helicity suppression, can make specific tree-level processes particularly interesting) and on the theoretical error of c_{SM}

(*CKM* + hadronic uncertainties \rightarrow important role of auxiliary observables)

• There is no way of disentangling the information on Λ and c_{NP} , but the combined information which can be extracted is fully complementary to the direct searches performed at high-p_T: key role of B physics in determining the <u>flavour symmetry structure of NP</u>

What we learned so far

The SM is very successful in describing quark-flavour mixing

This is quite clear by looking at the consistency of the exp. constraints appearing in the so called CKM fits, and is confirmed by the absence of significant deviations from the SM in clean rare decays such as $B \rightarrow X_s \gamma$

What we learned so far

The SM is very successful in describing quark-flavour mixing

This is quite clear by looking at the consistency of the exp. constraints appearing in the so called CKM fits, and is confirmed by the absence of significant deviations from the SM in clean rare decays such as $B \rightarrow X_s \gamma$

mechanism

$$V_{CKM}V_{CKM}^{+} = I$$

triangular relations:

$$T_{i1}(V^{+})_{1j} + V_{i2}(V^{+})_{2j} + V_{i3}(V^{+})_{3j} = 0$$

$$V_{ub}^{*}V_{ud} \qquad \qquad V_{tb}^{*}V_{td}$$

$$V_{ub}^{*}V_{ud} \qquad \qquad V_{tb}^{*}V_{td}$$

Model-independent fits of $\Delta F=2$ amplitudes

Present data allow us to determine the CKM unitarity triangle using only tree-level dominated amplitudes

General fit of NP in $\Delta F=2$ amplitudes

UTfit

B

 $D(\overline{D})K$

<u>Model-independent fits of $\Delta F=2$ amplitudes</u>

These general results are quite instructive if interpreted as bounds on the scale of new physics:

$$M(B_{d}-\overline{B}_{d}) \sim \frac{(V_{tb}*V_{td})^{2}}{16 \pi^{2} M_{w}^{2}} + \left(c_{NP}\frac{1}{\Lambda^{2}}\right)$$

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{d \ge 5} \frac{c_{n}}{\Lambda^{d-4}} O_{n}^{d}$$

C

<u>Model-independent fits of $\Delta F=2$ amplitudes</u>

These general results are quite instructive if interpreted as bounds on the scale of new physics:

$$M(B_{d}-\overline{B}_{d}) \sim \frac{(V_{tb}*V_{td})^{2}}{16 \pi^{2} M_{w}^{2}} + \left(C_{NP} \frac{1}{\Lambda^{2}}\right) \qquad \text{heavy degrees of freedom}$$

$$\sim 1 \qquad \frac{\text{tree/strong + generic flavour}}{\Lambda \geq 2 \times 10^{4} \text{ TeV } [K]} \qquad \Lambda \geq 2 \times 10^{4} \text{ TeV } [K]$$

$$\sim 1/(16 \pi^{2}) \qquad \frac{\text{loop + generic flavour}}{\frac{\text{tree/strong + MFV}}{\Lambda \geq 2 \times 10^{3} \text{ TeV } [K]} \qquad \Lambda \geq 2 \times 10^{3} \text{ TeV } [K]$$

$$\sim (V_{ti}*V_{tj})^{2} \qquad \frac{\text{tree/strong + MFV}}{(V_{ti}*V_{tj})^{2}/(16 \pi^{2})} \qquad \frac{\text{loop + MFV}}{\Lambda \geq 0.5 \text{ TeV } [K \& B]}$$

If you don't think this is an accident of $\Delta F=2... \Rightarrow MFV$ (Minimal Flavour Violation)

A rigorous definition of the Minimal Flavour Violation hypothesis:

The flavour structure of the SM is quite constrained:

- a <u>large global symmetry</u> in the gauge sector $U(3)^5 = SU(3)_Q \times SU(3)_U \times SU(3)_D \times ...$
- <u>broken only by the Yukawa couplings</u> $Y_D \sim \overline{3}_Q \times 3_D \quad Y_U \sim \overline{3}_Q \times 3_U \quad (Y_E \sim \overline{3}_L \times 3_E)$

 $\mathscr{L}_{\rm SM} = \mathscr{L}_{\rm gauge} + \mathscr{L}_{\rm Higgs}$

 $\longrightarrow \overline{Q}_L^{\ i} Y_U^{\ ij} U_R^{\ j} \phi + \overline{Q}_L^{\ i} Y_D^{\ ij} D_R^{\ j} \phi_c$

This specific <u>symmetry</u> + <u>symmetry-breaking</u> pattern is responsible for the GIM suppression of FCNCs, the suppression of CPV,... *the successful SM predictions in the quark flavour sector*

A rigorous definition of the Minimal Flavour Violation hypothesis:

The flavour structure of the SM is quite constrained:

- a <u>large global symmetry</u> in the gauge sector $U(3)^5 = SU(3)_O \times SU(3)_U \times SU(3)_D \times ...$
- <u>broken only by the Yukawa couplings</u> $Y_D \sim \overline{3}_Q \times 3_D \quad Y_U \sim \overline{3}_Q \times 3_U \quad (Y_E \sim \overline{3}_L \times 3_E)$

A natural mechanism to reproduce the SM successes in flavour physics -without fine tuning- is the <u>MFV hypothesis</u>: *Yukawa couplings = unique sources of flavour symmetry breaking also beyond SM*

General principle which can be applied to any TeV-scale NP model

D'Ambrosio, Giudice, G.I., Strumia '02

A rigorous definition of the Minimal Flavour Violation hypothesis:

basic MFV:

- <u>global symmetry</u> $U(3)^5 = SU(3)_Q \times SU(3)_U \times SU(3)_D \times ...$
- <u>broken only by the Yukawa couplings</u> $Y_D \sim \overline{3}_Q \times 3_D \quad Y_U \sim \overline{3}_Q \times 3_U \quad (Y_E \sim \overline{3}_L \times 3_E)$

Interesting extension/variation in case of more than one Higgs doublet:

 $y_d = m_d / \langle H_D \rangle = \tan \beta m_d / \langle H_U \rangle$

 $\mathbf{y}_{\mathbf{n}} = \mathbf{m}_{\mathbf{n}} / \langle \boldsymbol{H}_{\boldsymbol{H}} \rangle$

• With two Higgs doublets we can change the relative normalization of $Y_U \& Y_D$ (controlled by $\tan\beta = \langle H_U \rangle / \langle H_D \rangle$)

$$\mathscr{L}_{q-Yukawa} = \overline{Q}_L Y_D D_R H_D + \overline{Q}_L Y_U U_R H_U + h.c.$$

A few important comments:

I) The MFV hypothesis is far from being verified

To prove MFV from data we need to

- observe some deviation form the SM in FCNCs
- observe the CKM pattern predicted by MFV [within same type of FCNCs]

$$A_{\text{FCNC}}[b \to d(s)] \sim V_{\text{td}(s)} \left[c_{\text{SM}}^{(0)} \frac{1}{M_{\text{W}}^2} + c_{\text{NP}}^{(0)} \frac{1}{\Lambda^2} \right]$$

 $\Delta F = 2$ processes are in principle good candidates to prove MFV, but so far we are limited by theoretical (Lattice) uncertainties

Some $\Delta F=1$ rare decays could provide more useful infos to proof (or disproof) the MFV hypothesis from data (very interesting candidates: $B_{d,s} \rightarrow l^+ l^-$)

- A few important comments:
- I) The MFV hypothesis is far from being verified
- II) Even within the "pessimisic" MFV hypothesis we can still expect sizable deviations from the SM in various B physics observables

Typical examples:

 $B_{d,s} → l^+l^-$ up to order of magnitude enhancements if tanβ is large $A_{FB}(B → K^*l^+l^-)$ up to O(1) deviations from the SM

- A few important comments:
- I) The MFV hypothesis is far from being verified
- II) Even within the "pessimisic" MFV hypothesis we can still expect sizable deviations from the SM in various B physics observables

Typical examples:

 $B_{d,s} → l^+l^-$ up to order of magnitude enhancements if tanβ is large $A_{FB}(B → K^*l^+l^-)$ up to O(1) deviations from the SM

III) The fact we have not observed yet a significant deviation from the SM in <u>a few rare B decays</u> (in particular $B \rightarrow X_s \gamma$) <u>puts significant constraints on</u> <u>the parameter space of NP models, even if they respect the MFV hypothesis</u>

E.g.: The $B \rightarrow X_s \gamma$ constraint in the CMSSM (after imposing Dark-matter conditions)

Ellis et al. '07

<u>What we could still hope to learn</u>

Long list of potentially interesting observables, if we take into account that MFV has not been clearly established yet, and if we consider all the "auxiliary measurements" which could help in reducing SM uncertainties.

However, the list of interesting observables in "pessimistic" but very realistic scenarios, such as the <u>MSSM with MFV</u>, is rather limited.

The most interesting observables in the MSSM with MFV:

The most interesting observables in the MSSM with MFV:

In models with 2 Higgs doublets (such as the MSSM) the H[±] exchange appear at the tree-level in charged-current amplitudes. The effect is usually negligible (suppression of Yukawa couplings), except for helicity suppressed observables ($B \rightarrow l \nu$) or τ final states ($B \rightarrow D \tau \nu$)

Simple $M_H \& \tan\beta$ dependence

[mild dependence on other parameters]:

$$\mathbf{B}(\mathbf{B} \rightarrow l \mathbf{v}) = \mathbf{B}_{SM} \left(1 - \frac{\mathbf{m}_{B}^{2} \tan\beta^{2}}{\mathbf{M}_{H}^{2} (1 + \epsilon_{0} \tan\beta)} \right)^{2}$$

- O(10-30%) effect in $B \rightarrow l\nu$
- ~ 3 times smaller in B $\rightarrow D \tau v$
- ~ 100 times smaller in $K \rightarrow l \nu$

The most interesting observables in the MSSM with MFV:

 $B(B \to \tau v) = (1.43 \pm 0.43) \times 10^{-4}$ $tan(\beta)$ Babar+Belle '07 40 $B(B \to \tau v)_{SM} = B_0 F_B^2 V_{ub}^2 \approx 1.2 \times 10^{-4}$ sizable theoretical 20 (parametric) error 100 **KLOE** '06 $B(K \rightarrow \mu \nu) = (63.66 \pm 0.17)\%$ + f_K/f_π @ 0.7% MILC, UKQCD '07 KLOE, NA48, KTeV '06-'07 $+ V_{us} @ 0.5\%$ $B(B \rightarrow D \tau \nu)$ @ 10% potentially competitive $F_{\rm B \rightarrow D}$ known better than $F_{\rm B}$ V_{ch} has a negligible error

Improving th. and exps. on these channels can lead to very valuable infos on $M_H \& \tan\beta$!

The most interesting observables in the MSSM with MFV:

There are no tree-level FCNC couplings of the neutral Higgses in MFV models; however, effective couplings can appear at the one loop level and they are potentially quite large in the MSSM

Crucial dependence on μ and $A_U [+ M_H \& \tan\beta]$

$$A(B \rightarrow ll)_{H} \sim \frac{m_{b} m_{l}}{M_{A}^{2}} \frac{\mu A_{U}}{\tilde{M}_{q}^{2}} \tan^{3}\beta$$

Possible large enhancement over the SM, but the magnitude of the effect can vary a lot in different SUSY-breaking scenarios

The most interesting observables in the MSSM with MFV:

$$B(B_{\rm s} \to \mu\mu)_{\rm SM} \approx 3.5 \times 10^{-9}$$
$$B(B_{\rm d} \to \mu\mu)_{\rm SM} \approx 1.3 \times 10^{-10}$$

Most interesting bound set by: $B(B_s \rightarrow \mu\mu) < 5.8 \times 10^{-8} (95\% CL)$

CDF+D0 '07

Significant constraint, but a good fraction of the parameter sapce is still allowed

N.B.: the $B(B_d \rightarrow \mu\mu)/B(B_s \rightarrow \mu\mu)$ ratio is a key observable to proof or falsify MFV *e* channels suppressed by $(m_e/m_\mu)^2$

 τ channles enhanced by $(m_{\tau}/m_{\mu})^2$

The most interesting observables in the MSSM with MFV:

Most complicated observable with several, naturally competitive, contributions:

- positive
- decreasing with $tan\beta$

• sign ~ sgn(μ ,A)

• increasing with $tan\beta$

The most interesting observables in the MSSM with MFV:

Most complicated observable with several, naturally competitive, contributions:

- positive
- decreasing with $tan\beta$

• sign ~ sgn(μ ,A)

• increasing with $tan\beta$

One of the most significant constraint of the MSSM (even at small $tan\beta$)

B(B→X_s γ)SM = (3.15 ± 0.23)×10⁻⁴ Misiak et al. '06

G.I., Mescia, Paradisi, Temes, '07

Other observables (a very incomplete list):

I. Improved CKM fits

Improving the determination of the CKM matrix from tree-level processes offer a valuable tool to improve constraints on NP (including MFV models).

Key measurements:

 $\triangleright \gamma$ from various $B_{(s)} \rightarrow D(\overline{D})$ modes

good prospects of improvements from LHCb

All relevant hadronic parameters extracted from data with no theoretical assumptions

Other observables (a very incomplete list):

II. <u>Time-dependent CPV</u>

Is there still some hope to observe *significant* NP effects in time-dep. CPV asymmetries in $b \rightarrow s$ hadronic-penguin modes ?

E.g.:

$$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \stackrel{\text{HFAG}}{\underset{\text{DP 2007}}{\text{PRELIMINARY}}}$$

-2			1	0		1 2
:	⁺ ×	Belle Average		-		$\frac{0.68 \pm 0.15 \pm 0.03}{0.73 \pm 0.10}$
д до до	Ŷ	BaBar			8	$0.76 \pm 0.11 \stackrel{+0.07}{_{-0.04}}$
		Average	E S			-0.52 ± 0.41
		Belle		-		$-0.43 \pm 0.49 \pm 0.09$
×		BaBar	<u> </u>	4		$-0.72 \pm 0.71 \pm 0.08$
	ϰ	Average				0.84 ± 0.07
	Ъ,	Belle		****		$0.18 \pm 0.23 \pm 0.11$
e K ج		BaBar			6	0.89 ± 0.07
		Average				0.48 ± 0.24
		Belle	·	V A		$0.11 \pm 0.46 \pm 0.07$
	.	BaBar				$0.62 + 0.25 \pm 0.02$
	° ×	Average		<u>-</u>	N.	0.61 +0.25
	 ഗ്	BaBar		the second		0.00 ± 0.19 $61^{+0.22} \pm 0.09 \pm 0.08$
β		Average				$0.33 \pm 0.35 \pm 0.08$ 0.38 + 0.10
¥		Belle		X S		$0.40 \pm 0.25 \pm 0.03$ 0.33 ± 0.35 ± 0.08
	.¥	Average			-	0.58 ± 0.20
	Ϋ́,	Belle			ł.	$0.30 \pm 0.32 \pm 0.08$
т Т	ž	Balla				$0./1 \pm 0.24 \pm 0.04$
		Average				0.61 ± 0.07
		Belle			-	$0.64 \pm 0.10 \pm 0.04$
v		BaBar				$0.58 \pm 0.10 \pm 0.03$
		Average				0.39 ± 0.17
	¥	Belle				$0.50 \pm 0.21 \pm 0.06$
	0	BaBar	•			$0.21 \pm 0.26 \pm 0.11$
b→ccs		World Average			0.68 ± 0.03	

Other observables (a very incomplete list):

II. <u>Time-dependent CPV</u>

Is there still some hope to observe *significant* NP effects in time-dep. CPV asymmetries in $b \rightarrow s$ hadronic-penguin modes ?

Personally I'm quite skeptical...

- Best observables [high stat. + full Dalitz Plot analysis] show no significant effect
- We are already close to the level of irredcible th. errors
 [remember the ε'/ε lesson...]

$$sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff}) \frac{\text{HFAG}}{\text{LP 2007}}$$

PRELIMINARY

b→ccs	World Av	erage			0.68 ± 0.03
	BaBar				$0.21 \pm 0.26 \pm 0.11$
Y Y	Belle		<u> </u>	•	$0.50 \pm 0.21 \pm 0.06$
-	Average		<u> </u>		0.39 ± 0.17
	BaBar				$0.58 \pm 0.10 \pm 0.03$
Ϋ́	Belle		4	-	$0.64 \pm 0.10 \pm 0.04$
L L	Average		2		0.61 ± 0.07
L X	BaBar		G		$0.71 \pm 0.24 \pm 0.04$
Š	Belle			2	$0.30 \pm 0.32 \pm 0.08$
<u>ی</u>	Average		: -		0.58 ± 0.20
x	BaBar		• <mark>-5-</mark> 5-		$0.40 \pm 0.23 \pm 0.03$
×	Belle		AG 1-AG 2007 1-A G P 200		$0.33 \pm 0.35 \pm 0.08$
a° ⊨	Average				0.38 ± 0.19
5	BaBar				$0.61 + 0.22 \pm 0.09 \pm 0.08$
	Average				0.61 +0.25
·····	BaBar				0.62 +0.25 ± 0.02
¥	Belle				$0.11 \pm 0.46 \pm 0.07$
8	Average				0.48 ± 0.24
	BaBar				0.89 ± 0.07
¥	Belle	-	· * · · ·		$0.18 \pm 0.23 \pm 0.11$
·	Average				0.84 ± 0.07
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	BaBar	<del>(5)</del>	4	- 1	$-0.72 \pm 0.71 \pm 0.08$
- -	Belle	P 200	-		$-0.43 \pm 0.49 \pm 0.09$
<u>_</u>	Average				-0.52 ± 0.41
N SY	BaBar				$0.76 \pm 0.11 \substack{+0.07 \\ -0.04}$
	Belle				$1.68 \pm 0.15 \pm 0.03 \substack{+0.21\\-0.13}$
. t	Average			<u>a</u>	0.73 ± 0.10
· · · · · · · · · · · · · · · · · · ·					
-2	-	1	0		1 2

## Other observables (a very incomplete list):

## II. <u>*Time-dependent CPV</u>*</u>

A time-dependent CPV asymmetry which is definitely worth to improve in the LHC era is the phase of  $B_s$  mixing from  $B_s \rightarrow \psi \phi \Rightarrow Tevatron/LHCb$ 

New theoretically clean observable which could allow to falsify MFV [or to constraint viable non-MFV models] in the  $\Delta F = 2$  sector



# Conclusions

We learned a lot about flavour physics in the recent past... ..but what is still to be discovered is more !

TeV-scale NP models must have a rather sophisticated flavour structure (not to be excluded by present data) but we have not clearly identified this structure yet

# Important to continue high-statistics / high-precision B physics in the LHC era

In realistic models there is only a limited set of particularly interesting observables [*theoretically-clean leptonic/semileptonic final states*]

but these observables play a key role in determining the <u>flavour symmetry</u> <u>structure of NP</u>