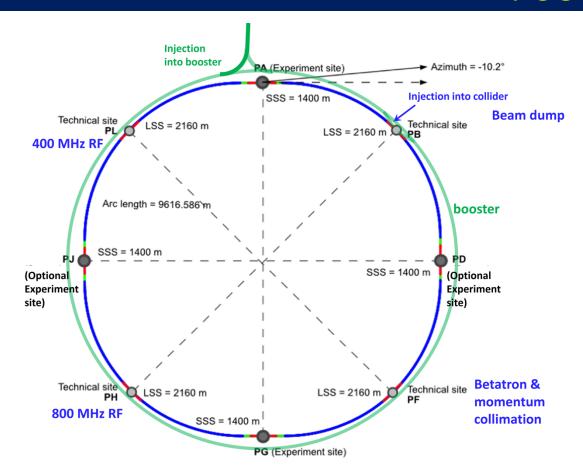
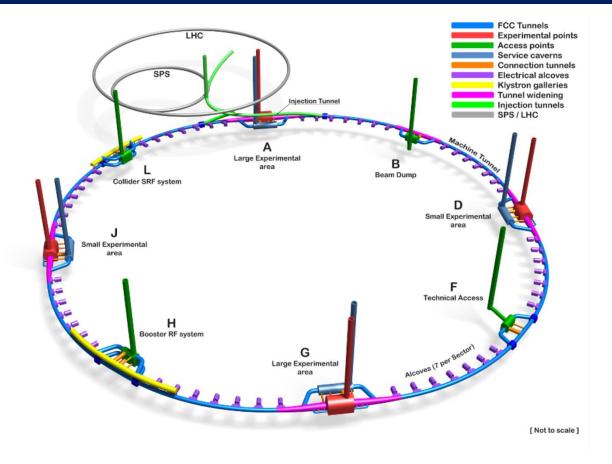
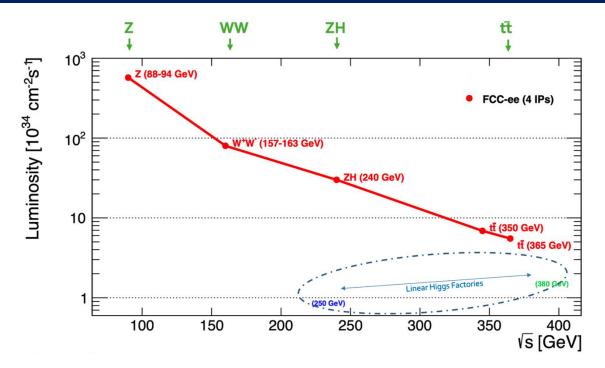

Towards FCC-ee Detector Concepts


FCC-UK, 11 Nov 2025 Durham


Mogens Dam, for the FCC-ee Detector Concepts Working Group

FCC-ee



- Double ring e⁺e⁻ collider, 91 km
- ◆ Large crossing angle 30 mrad, crab-waist optics
- ◆ Top-up injection
 - □ Separate booster ring

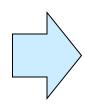
- Four experimental areas / experiments
 - Experimental diversity control of overall systematic uncertainties
 - Sustainability physics/TWh

FCC-ee Luminosity and Conditions

Z peak	√s ~ 91 GeV	4 years	6 × 10 ¹²	e⁺e⁻ → Z
WW threshold	√ s ~ 160 GeV	2 years	2.4×10^{8}	$e^+e^- \rightarrow W^+W^-$
ZH maximum	√s ~ 240 GeV	3 years	2.3×10^{6}	e⁺e⁻ → ZH
tt threshold	√s ~ 365 GeV	2 years	2×10^6	e⁺e⁻ → t t
[s-channel Higgs	√s = 125 GeV	5? years	~5000	$e^+e^- \rightarrow H_{125}$

FCC-ee parameters		Z	W ⁺ W ⁻	ZH	ttbar
√s	GeV	91.2	160	240	350-365
Luminosity / IP	10 ³⁴ cm ⁻² s ⁻¹	140	20	7.5	1.5
Bunch spacing	ns	25	160	680	5000
"Physics" cross section	pb	35,000	10	0.2	0.5
Total cross section	pb	70,000	30	10	8
Event rate	Hz	100,000	6	0.5	0.1
"Pile up" parameter [μ]	10 ⁻⁶	2,500	1	1	1

Experimentally, Z pole is the most challenging


- Extremely large statistics
- Physics event rates of ~100 kHz
- Bunch spacing at 25 ns
 - "Continuous" beams, no bunch trains, no power pulsing
- However, no pileup, no underlying event
 - ...well, pileup of 2.5 x 10⁻³ at Z pole

Detector Requirements and Challenges

Very Rich Physics Programme → Challenging Detectors

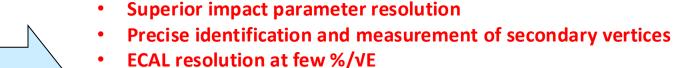
Higgs Factory Programme

- At √s=240 and √s=365 GeV collect 2.6M HZ and 150k WW → H events
- Higgs couplings to fermions and bosons
- Higgs self-coupling (\sim 4 σ) via loop diagrams
- Unique possibility: s-channel e⁺e⁻ → H at 125 GeV

- Momentum resolution $\sigma(p_T)/p_T \simeq 10^{-3} @ p_T \sim 50 \text{ GeV}$
 - $\sigma(p)/p$ limited by multiple scattering \rightarrow minimise material
- Jet $\sigma(E)/E \simeq 3-4\%$ in multijet events for Z/W/H separation
- Superior impact parameter resolution for b, c tagging
- Hadron PID for s tagging

Precision EW and QCD Programme

- 6×10^{12} Z and 2×10^8 WW events
- × 500 improvement of statistical precision on EWPO: $m_{Z_{1}} \Gamma_{Z_{2}} \Gamma_{inv} \sin^{2}\theta_{W_{2}} R_{b} m_{W_{2}} \Gamma_{W_{2}} ...$
- 2×10^8 tt events: m_{top} , Γ_{top} , EW couplings
- Indirect sensitivity to new physics up to tens of TeV



Absolute normalisation of luminosity to 10⁻⁵ - 10⁻⁴ level

- Relative normalisation to $\mathcal{O}(10^{-6})$ [e.g. $\Gamma_{had}/\Gamma_{\ell}$]
 - Acceptance definition to $\mathcal{O}(10 \ \mu \text{m})$
- Track angular resolution < 0.1 mrad
- Stability of B field to 10-6

Heavy Flavour Programme

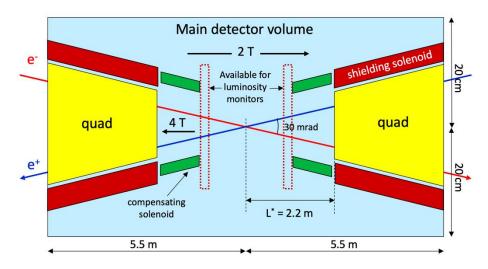
- 10^{12} bb, cc, 2×10^{12} $\tau\tau$ (clean, boosted): $10 \times$ BelleII stats.
- CKM matrix, CP measurements
- rare decays, CLFV searches, lepton universality

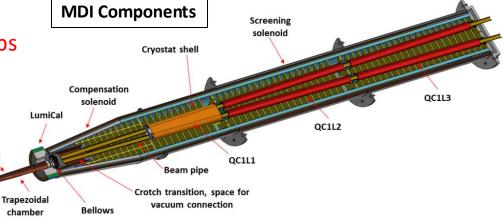
- Excellent π^0/γ separation for τ decay-mode identification
- PID: K/π separation over wide p range \rightarrow dN/dx, RICH, timing


Feebly coupled particles Beyond SM

- Opportunity to directly observe new feebly interacting particles with masses below m_z
- Axion-like particles, dark photons, Heavy Neutral Leptons
- Long-lifetime LLPs

Sensitivity to (significantly) detached vertices (mm → m)


- tracking: more layers, "continous" tracking
- calorimetry: granularity, tracking capabilities
- Precise timing
- Hermeticity



Experimental Challenges

- ◆ 30 mrad horizontal crossing angle
 - □ Detector B-field limited to 2Tesla (@ Z energy) beam emittance control
 - ❖ Alternative compensation scheme under study; may allow ~3 Tesla
 - □ Tightly packed MDI (Machine Detector Interface) region
 - ❖ Last quadrupole at L*=2.2 m (\rightarrow 2.4m); compensating solenoid in front
- Continuous collisions (no bunch trains); 25 ns bunch spacing
 - □ Power management and cooling of detectors (no power pulsing)
- Extremely high luminosities
 - \Box High statistical precision -- control of systematics to $\mathcal{O}(10^{-5})$ level
 - \Box Online and offline handling of $\mathcal{O}(10^{13})$ events for precision physics
 - ❖ "Big Data"
- Physics events at 200 kHz
 - □ Detector response time $\leq 1 \mu s$ to minimise dead-time and event overlaps
 - □ Strong requirements on front-end electronics and DAQ systems
 - ❖ At the same time, keep material budget low: minimise mass of electronics, cables, cooling, ...

Central part of detector volume – top view

Central

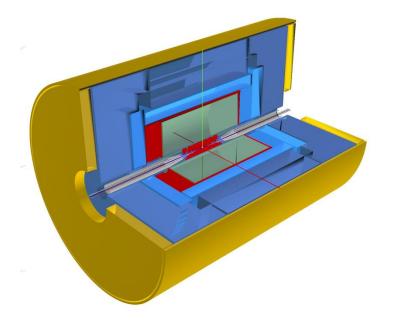
Detector Concepts

Detector Concepts

Detector concepts form the link between performance requirements and technological capabilities

 guide R&D and give feedback on performance impact of technical solutions

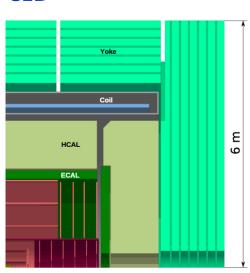
Two main ingredients:


- full simulation model including digitisation and reconstruction
 - enable validation of single particle performance with prototypes
 - □ realistic prediction of full-event performance
- overall engineering
 - act and respond to the design of the MDI
 - guide the optimisation of the global structure and parameters

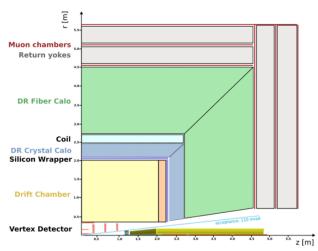
Experimental collaborations forming at a later stage

- ◆ maintain freedom to combine technologies, e.g. tracking and calorimetry
 - □ "plug & play"

Currently, four concepts under study


□ At least one more on the horizon... Further ideas very welcome

Detector Concepts Currently under study

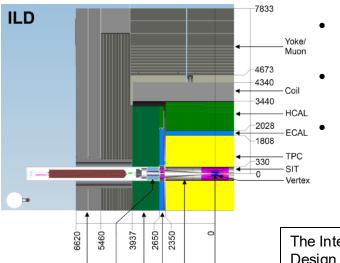


- Well established design
 - ILC → CLIC detector → CLD
- Full Si VXD + tracker
- CALICE-like calorimetry very high granularity
- Coil outside calorimetry, muon system
- Possible detector optimizations
 - Improved σ_p/p , σ_E/E
 - PID: precise timing and RICH

arXiv:1911.12230

IDEA

- Design developed specifically for FCC-ee and CEPC
- Si VXD; ultra-light drift chamber with powerful PID
- Crystal ECAL w. dual readout
- Compact, light coil;
- Dual readout fibre calorimeter
- Muon system


https://doi.org/10.48550/arXiv.2502.21223

Allegro

- Still in early design phase
- Design centred around High granularity Noble Liquid ECAL
 - Pb+LAr (or denser W+LKr)
- Si VXD
- Tracker: Drift chamber, straws, or Si
- Steel-scintillator HCAL
- Coil outside ECAL in same cryostat
- Muon system

Eur. Phys. J. Plus 136 (2021) 10, 1066, arXiv:2109.00391

- Designed originally for operation at the ILC
- Together with SiD, ancestor of CLD.
- Main difference and signature element:
 - Large-volume time projection chamber (TPC)

The International Linear Collider Technical Design Report - Volume 4: Detectors arXiv:1306.6329

Options for subdetector technologies

Muon System:

- Micromegas, TGC, MWPC, RPC, drift tubes

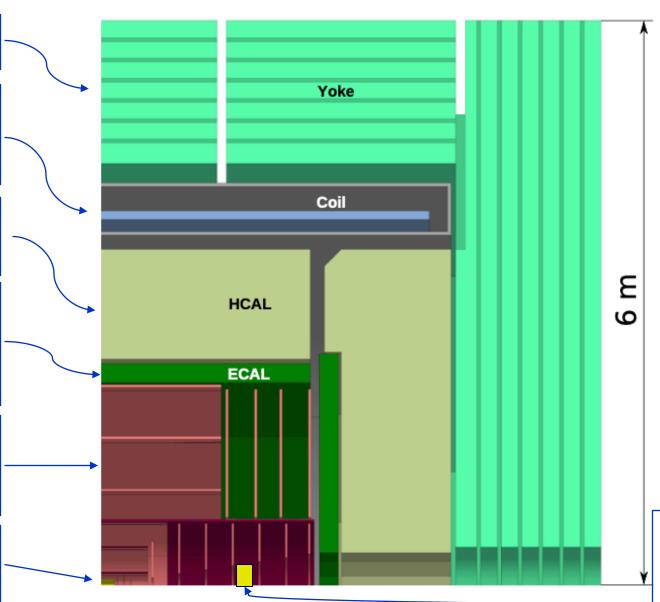
Superconducting Coil:

- Limited to 2 T by beam emittance considerations (30 mrad crossing angle)
- Inside / outside calorimeter system

HCAL options:

- Fe / Scintillating tiles
- Dual readout radial fibres

ECAL options:


- W/Si sandwich
- Pb / LAr (or alternatively W / LKr)
- Crystal
- Granita: Crystal grains in heavy liquid

Main tracker options:

- Full silicon (MAPS+Strips, full MAPS)
- Drift chamber or straw chamber
- Time Projection Chamber (TPC)

Vertex detector

- Thin 50 μm MAPS silicon pixels sensors, 3x3 μm^2 resolution

Luminosity monitor

- Small angle Bhabha scattering, e⁺e⁻ → e⁺e⁻
- W/Si sandwich calorimeter

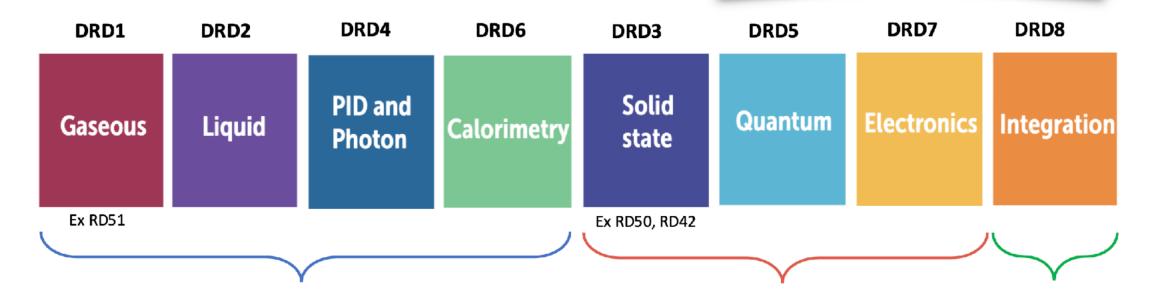
10

Detector Concepts Status and Plans – Towards next phase

- ◆ Sub-systems and subsystem technologies largely interchangeable at this stage
 - □ VXD, tracking, muon system
- ◆ Full simulation: huge progress already being made
- ◆ Still some way to full digitisation / full reconstruction
 - □ Digitisation requires technological input from DRD groups
- Topics for detector concepts group
 - □ Full detector, full event **performance**:
 - *Tracking-system momentum resolution, jet energy resolution, jet flavour ID, tau ID, V0 recon, ...
 - □ Physics and background induced **occupancies**, data flow
 - strawman (T)DAQ architectures
 - □ **Services** routing principal paths and volume requirements
 - □ **Detector opening** and maintenance scenarios (with MDI)
 - □ Detector **installation sequence** and resulting individual sub-detector assembly timelines
 - Latter driven by fundamental architecture choices
 - Location of coil, large or small (plug) endcaps, readout of calorimeters (radially, tangentially, axially)

Mogens Dam / NBI Copenhagen FCC-UK Meeting, Durham 12.11.2025

Detector Subsystems and Technologies


CERN Hosted Detector R&D Collaborations

Status of DRD collaborations

DRD Meetings:

https://indico.cern.ch/category/6805/

Proposals (search for DRDC public) https://cds.cern.ch/?ln=en

Fully approved for 3 years by CERN Research Board in **December 2023**

Fully approved for 3 years by CERN Research Board in June 2024

Fully approved for 3 years in November 2024

5 July 2024 Report from DRDC - Inés Gil-Botella

46

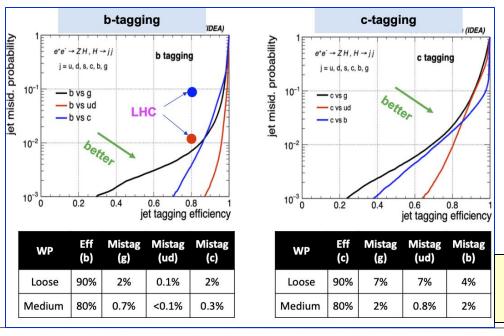
13

FCC Detector Expressions of Interest

Input to ESPPU 2026 - and for the next phase of our work

Purpose of the Eols

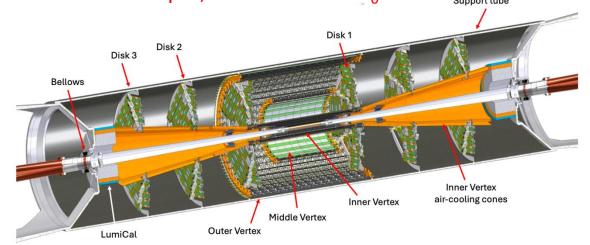
- ◆ Build community of institutes interested in development of dedicated sub-detectors
- ◆ Trigger interactions in the community to get (self-) organised around sub-detectors
 - Not parallel to, but largely within DRDs and Detector Concepts WG
- ◆ Call launced in October 2024; Asked for few pages
 - □ Scope of planned activities over next 3-5 years
 - □ Partners (institutes); contact persons
 - Connection with technological activities in DRD framework,
 and between subdetectors and concept groups
 - References to detailed documentation
- ◆ 39 documents received
 - □ Documents joined and submitted with "cover letter" to ESPPU:
 - * ESPPU submissions: https://indico.cern.ch/event/1530285/
 - Individual Eols: https://indico.cern.ch/event/1529896/

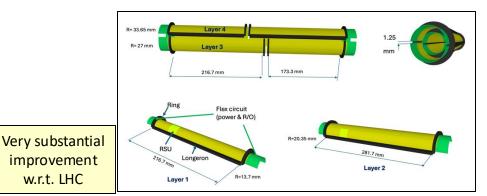

Topic	Number of Eols		
Detector Concepts	4		
Vertex Detector	2		
Main Tracker and Envelopes	10		
Calorimeters	8		
Luminometers	2		
Particle ID	1		
Coil	1		
Muon	5		
Trigger/DAQ/Electronics	3		
Algorithms, Al	2		
Machine Detector Interface	1		

Measurement of impact parameters

Secondary vertices, flavour tagging, lifetime measurements

Conditions/requirements


- Moderate radiation environments
- No need for picosecond timing
- High resolution and low multiple scattering i key Heavy flavour tagging results
- ML based: displaced vertices/tracks, lifetimes, PID, track multiplicity, non-isolated e/µ



Example: Recent engineering level design study (INFN Pisa, Frascati)

- All sensors are 50 µm MAPS (Monolithic Active Pixel Sensors)
- Three inner barrel layers: 25 x 25 μm², 50 mW/cm², air cooling
- Middel + outer barrel layers: 150 x 50 μm², water cooled
- Three disks in each direction: as middle/outer barrel layers

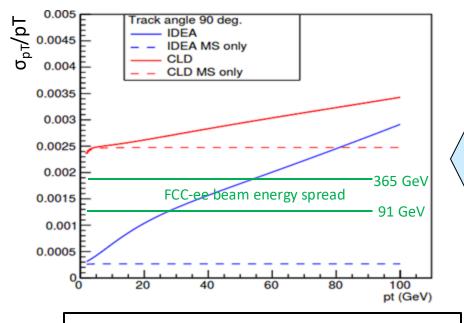
Hit resolution: \sim 3 µm; material: 2.5% X_0 at 90°

Study of alternate ultralight layout of inner layers:

- Sensors bent around beam pipe
- ~60% reduction of material

ML-based - ParticleNet F.Bedeschi, M.Selvaggi, L.Goukas EPJ C 82 646 (2022) <u>link</u>

Mogens Dam / NBI Copenhagen

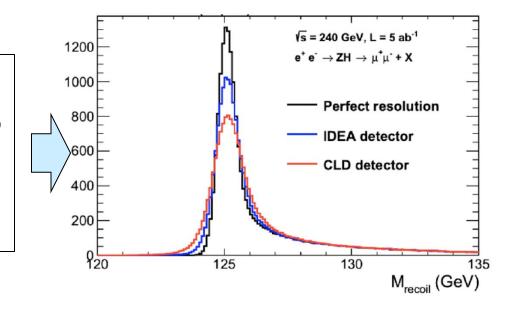

improvement

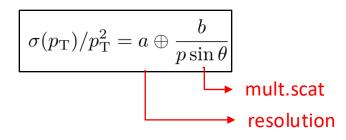
w.r.t. LHC

15

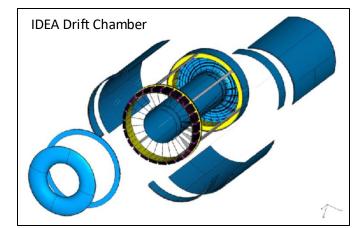
Tracking Systems - Momentum Measurement

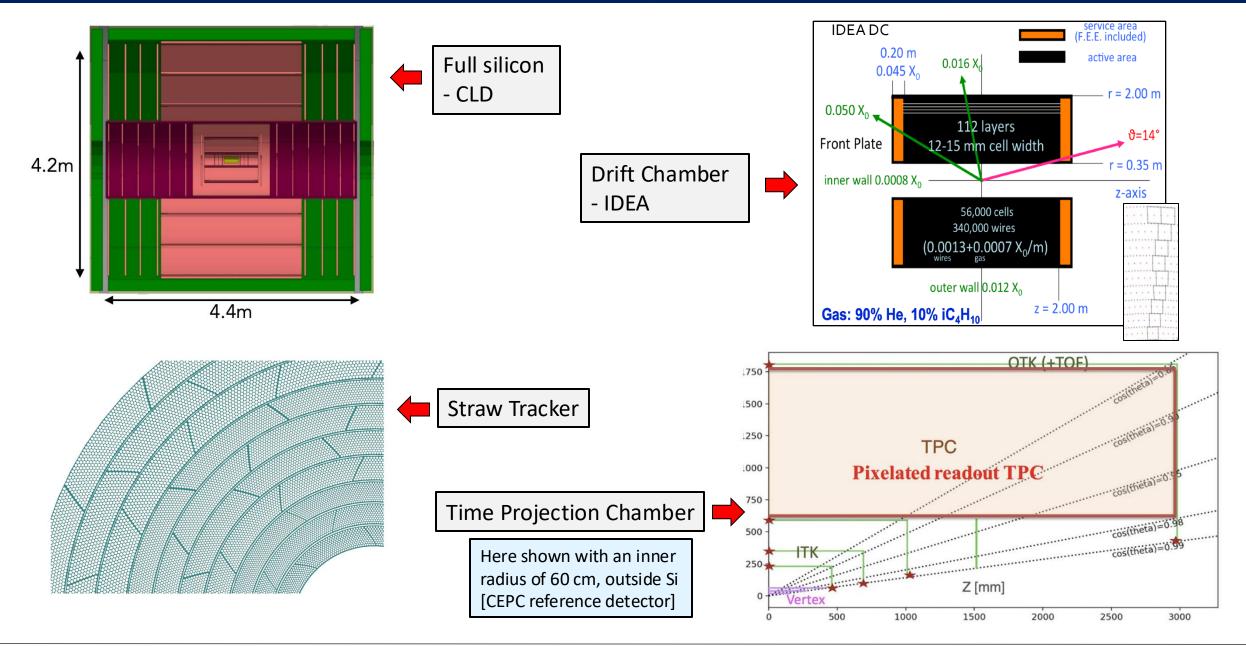
Momentum resolution tends to be multiple scattering dominated



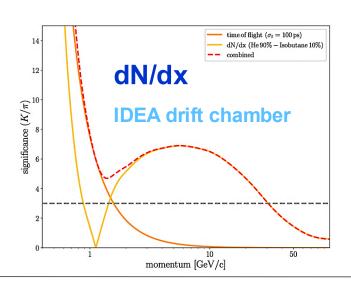

- All-Si tracker
- total material budget 11% X₀

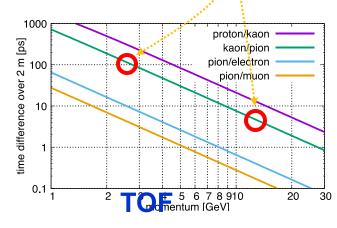
Example gaseous: IDEA

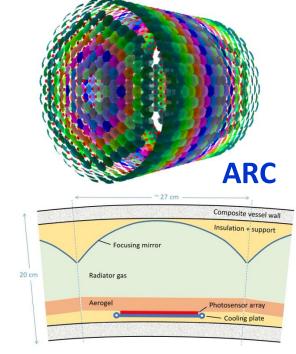

- Drift Chamber [< 2% X₀]
- vtx [2.5% X₀]
- Si "wrapper" surrounding drift chamber

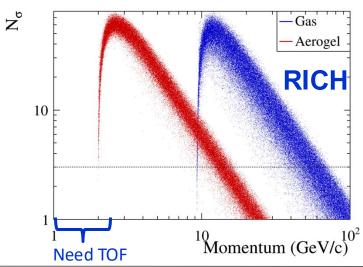

At relevant momenta, transparency more important than point resolution

Strong case for gaseous trackers


Several Main Tracker Options under Study

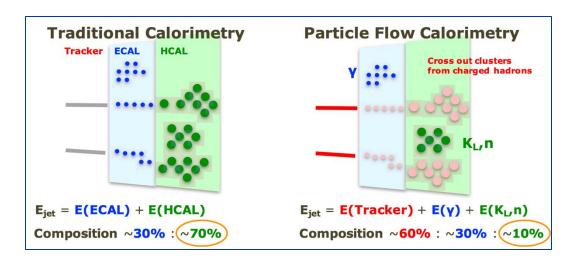



Charged Particle Identification


PID capabilities across a wide momentum range is essential for flavour physics

- Drift Chamber and Straw Tracker promise >3 σ π /K separation up to ~35 GeV based on cluster counting, dN/dx. Similar (or better) performance from TPC.
 - □ Cross-over window at 1 GeV, can be alleviated by unchallenging TOF measurement of $\delta T \lesssim 100$ ps
- Time of flight (TOF) alone with δT of ~ 10 ps over 2 m (LGAD,...)
 - \Box could provide $3\sigma \pi/K$ separation up to \sim 5 GeV (only)
- ◆ RICH counter being investigated (for silicon-based trackers): Array of RICH Cells ARC
 - □ Compact geometry (depth: 20 cm, 0.1 X₀) via use of SiPMs
 - \square Aerogel + Gas (C₄F₁₀ or pressurised Xe): $3\sigma \pi/K$ separation in 2.5 50 GeV range
 - □ Need ~50 ps TOF measurement to cover momenta < 2.5 GeV</p>

Calorimetry – Requirements

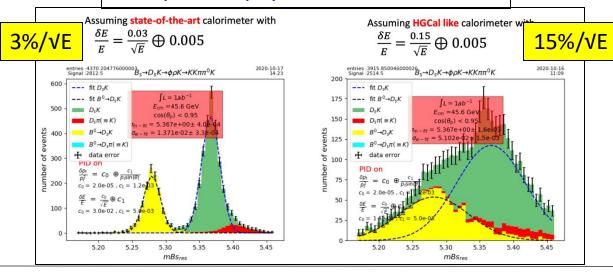

Energy coverage < 180 GeV \Rightarrow moderate depth: 22 X₀, 6-8 λ_{int}

3-4 % di-jet mass resolution needed to differentiate between W- and Z-origin of di-jet systems

Translates into requirement on jet energy resolution:

Jet energy: $\delta E_{jet}/E_{jet} \simeq 30\% / VE [GeV]$

Improved jet energy resolution via Particle Flow method



- Possibly combined with Dual Readout

(Some) requirements

- ◆ Energy resolution
 - \square ys & neutral hadrons for Pflow; e/π separation via E/p
- ◆ Dynamic range: 200 MeV 180 GeV
 - \Box Flavour & τ phys: sensitivity to π^0 s down to few-100 MeV
- ◆ Granularity: for Pflow and PID
 - \Box e/ π separation from shower shape; γ/π^0 separation
- Hermeticity, uniformity, calibrability, stability
 - □ Low systematics !!!

Example of B-physics final state with π^0

Calorimeter Technologies being pursued

All concepts aim at Particle Flow reconstruction

- with different emphasis on granularity, energy resolution, stability

Noble Liquid ECAL + Tile HCAL:

- fine longitudinal sampling (w.r.t. ATLAS, $4 \rightarrow 12$ layers)
- PB+LAr or denser W+LKr; warm or cold electronics
- CALICE or ATLAS style scintillating tile HCAL

Fibre-based Dual-Readout:

- copper or steel matrix; Cherenkov and scintillating fibres, SiPMs
- very fine transverse granularity, longitudinal information via timing

Segmented crystals with Dual Readout:

- Fine transverse segmentation, two longitudinal layers; SiPMs
- Excellent EM energy resolution of $\sim 3\%/\sqrt{E}$
- Combined with fibre-based DR calorimeter as HCAL

CALICE-style sandwich with embedded front-end electronics:

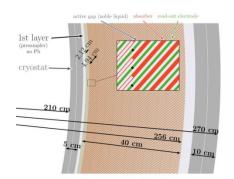
- Tungsten-silicon ECAL; Extremely fine segmentation: (0.5 cm)³
- Steel-scintillator HCAL; SiPM-on-Tile; Fine segmentation: (2.5 cm)³

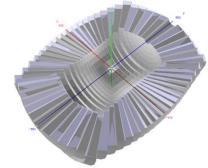
□ alternatives: scintillator strip ECAL, gaseous HCAL

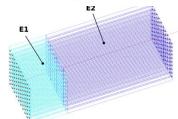
Eur.Phys.J.Plus 136 (2021) 10, 1066, arXiv:2109.00391

EM: $\sigma(E)/E \simeq 8-10\%/\sqrt{E}$

Jet: $\sigma(E)/E \simeq 4\%$ @ 50 GeV

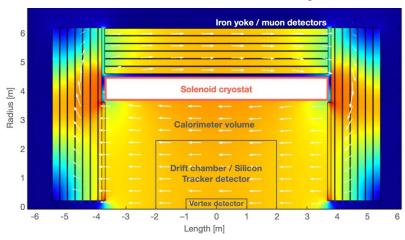

Jet: $\sigma(E)/E \simeq 3-4\%$ @ 50 GeV


EM: $\sigma(E)/E \simeq 3\%/\sqrt{E}$


Jet: $\sigma(E)/E \simeq 3-4\%$ @ 50 GeV

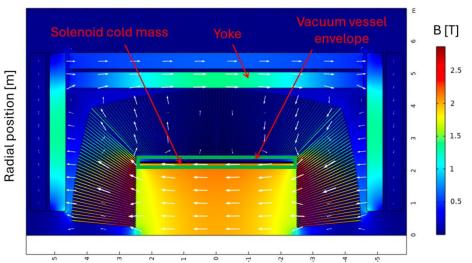

EM: $\sigma(E)/E \simeq 16\%/\sqrt{E}$

Jet: $\sigma(E)/E \simeq 3-4\%$ @ 50 GeV



Detector Solenoid

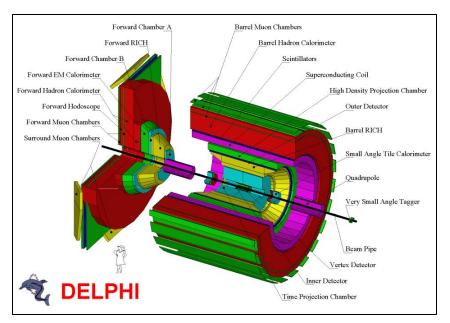
Two placement options being pursued


Coil outside calorimeter system

CLD + ILD

IDEA + ALLEGRO

Coil between outside ECAL inside HCAL


Current efforts

- ◆ CERN detector magnet group
 - Conceptual design of ultra-light 2 T solenoid
 - Operational temperature: 4 K
 - * Radial envelope \sim 30 cm; total material \sim 0.8 X_0
- ◆ Eol (INFN, Uni. Milan, CERN, et al.)
 - □ 3 Tesla HTS Superconducting Solenoid for IDEA
 - ❖ Operational temperature: 20 K
 - ❖ Radial envelope ~12 cm; total material 1.5 X₀

- ◆ CERN magnet group: "Experience tells that development & construction of large superconducting coil takes ≥ a decade"
 - Early design needed as input general detector design
 - Need to identify labs with appropriate expertice and strength

Mogens Dam / NBI Copenhagen FCC-UK Meeting, Durham 12.11.2025

Example: DELPHI Coil constructed at RAL in the 1980'ies

Parameters:

B = 1.2 T; bore: R \simeq 2m, L \simeq 5m

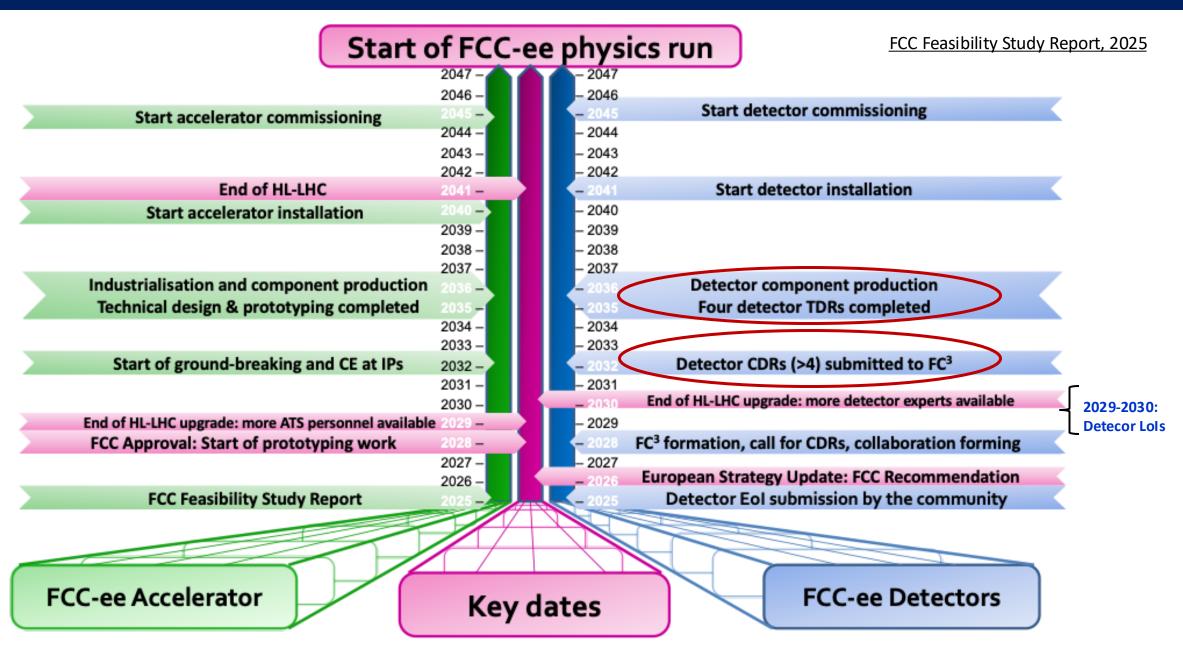
Complicated transport from RAL to CERN
- Here close to the goal in P8: Col de la Faucille

Trigger(?) and Readout System

Goal of readout system

- ◆ *Full efficiency* for all SM annihilation physics events
 - \Box Aiming at $\mathcal{O}(10^{-6} 10^{-5})$ relative normalisations
- ◆ No loss of potential BSM signatures
 - □ e.g., heavy (slow) particles decaying late, LLPs

In particular at Tera-Z, challenging conditions


- ◆ 40 MHz BX rate
- Physics rate at $\mathcal{O}(200 \text{ kHz})$
 - □ Physics event in every 1/200 BX
- ◆ Example Challenge VXD:
 - \square Pixel hit rate: ~200 MHz/cm² in VXD inner layer
 - Incoherent pairs from beam-beam interactions
 - Including cluster size of 5 and safety factor of 3
 - \Rightarrow 0(5 Gbit/cm²/sec)
 - ❖ Would saturate "standard" 1 Gbit/cm²/sec link

How to organise readout? "To TDAQ or to DAQ"

- ◆ Hardware (or software?) trigger as at LEP and LHC
 - □ Which sub-detectors can a trigger decision be based on?
 - □ High BX rate: Need for local **latency buffering** a la LHC?
 - Material / power / cooling for on-detector buffering?
- Free streaming of *self-triggered* detector sensors
 - Push data off detector elements
 - ❖ all front-ends are free-running, self-triggered
 - Off-detector event building based on precise timestamping
 - □ Potential enormous data rate out of sub-detectors
 - Easily Tbit/sec (Tbps) from VXD alone
 - Technical feasibly? Power needs,...?
 - In comparison: ePIC @ EiC plans to stream at max $\mathcal{O}(100 \text{ Tbps})$ off detectors, $\mathcal{O}(10 \text{ Tbps})$ to counting room, $\mathcal{O}(100 \text{ Gbps})$ to tape

Need to consider TDAQ vs DAQ architecture as integral part of detector design

Possible Timeline

Mogens Dam / NBI Copenhagen FCC-UK Meeting, Durham 12.11.2025

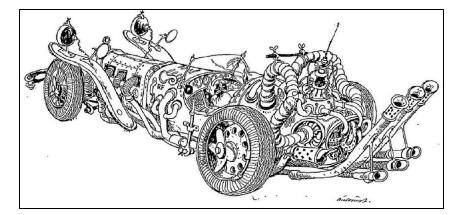
Evolution of Detector Concepts Work Package

In DRDs:

RnD / technologies

- Gaseous Detectors (DRD1)
- Liquid Detectors (DRD2)
- Semiconductor Detectors (DRD3)
- Photodetectors & PID (DRD4)
- Quantum Sensors (DRD5)
- Calorimetry (DRD6)
- Electronics (DRD7)
- Mechanics (DRD8)

US <u>R&D Collaborations</u> (RDCs) focus on generic (non-targeted), interdisciplinary and blue sky R&D – will collaborate where possible.


In FCC Detector concepts:

- a) Generic system-level studies (create structure as needed or organize workshops)
 - Tracker (e.g. Si + straw tracker) & PID
 - Calorimetry
 - Muons
 - TDAQ
 - Luminometry
 - Magnet
- b) Concept-specific studies (using specific envelopes/support structures, or physics benchmarks)
 - Allegro
 - CLD
 - IDEA
 - ILD
 - ...

Non-exclusive membership, need to preserve synergies and unity of the community!

Conclusions

- ◆ Rich physics programme translates into formidable detector challenge
 □ Very high precison; very high rates
- ◆ Sensor R&D concentrated in DRD groups
- ◆ It is timely and soon possible -- to ramp up efforts significantly
 - □ Demonstrators by 2030, scalable prototypes by 2035
 - Indicative likely different for vertex detector and calorimeters
- ◆ Detector concepts working group have challenges to tackle
 - □ Full simulation / digitisation / reconstruction for performance studies
 - Overall engineering
 - Support, cabling routes, cooling, installation
- ◆ EoI submission to ESPP demonstrated strong community interest to develop detector and sub-detector systems
 - □ Self-organisation on-going
 - □ Concrete plans for next phase
 - □ New ideas continue to appear
- Still ample room and time for new technologies and concepts

Contacts for getting involved

e-groups

Personal contacts

- ◆ Detector Concepts Working Group
 - □ Felix Sefkow, DESY
 - □ Marc-André Pleier, NBL
 - □ Mogens Dam, NBI
- ◆ Allegro Detector Concept
 - □ Martin Aleksa, CERN
- ◆ CLD Detector Concept
 - □ Jinlong Zhang, Argonne
- ◆ IDEA Detector Concept
 - Paolo Giacomelli, INFN Bolonga
- ◆ ILD Detector Concept
 - □ Ties Benhke, DESY

Extras