
CPV in Higgs couplings to Z bosons at FCC-ee and FCC-hh

Arun Atwal, Jessica Burridge, António Costa, Christoph Englert, Sinead Farrington, Jay Nesbitt, Leonor Pereira, Andrew Pilkington, Aidan Robson, **Júlia Silva**, Sarah Williams, Yuyang Zhang

FCC UK meeting

12th November 2025

The University of Manchester

Introduction

Motivation

Observed baryon asymmetry outstanding question from the SM

- Sakharov criteria require sufficient CPV
- Only known SM source is complex phase of CKM matrix for quark mixing not enough CPV!

Introduction

Motivation

Observed baryon asymmetry outstanding question from the SM

- Sakharov criteria require sufficient CPV
- Only known SM source is complex phase of CKM matrix for quark mixing not enough CPV!

EFT Approach

- Assume CP-violating BSM physics exists at high energy scale (Λ)
 - Effects of new physics expressed as CP-odd higher dimension operators in an effective Lagrangian

$$\mathcal{L}_{\text{SMEFT}} \approx \mathcal{L}_{\text{SM}}^{(4)} + \sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} O_{i}^{(6)} + \sum_{j} \frac{c_{j}^{(8)}}{\Lambda^{4}} O_{j}^{(8)}.$$
 Extensions to SM induce anomalous interactions
$$\widetilde{\mathcal{O}}_{\Phi \widetilde{B}} = \Phi^{\dagger} \Phi B^{\mu \nu} \widetilde{B}_{\mu \nu} \,,$$
 Subset of CP-odd operators that affect
$$\widetilde{\mathcal{O}}_{\Phi \widetilde{W} B} = \Phi^{\dagger} \sigma^{i} \widetilde{W}^{i \, \mu \nu} B_{\mu \nu} \,.$$
 Subset of CP-odd operators that affect HVV interactions

How to look for CPV?

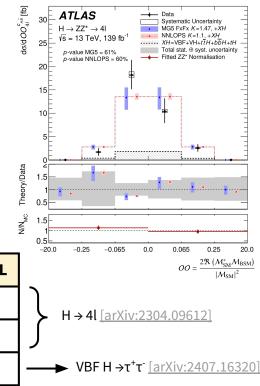
 Considering only dimension-6 operators, the scattering amplitude is CP-odd

$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6}) + |\mathcal{M}_{d6}|^2$$

- Ideally, we should construct observables sensitive to the interference term:
 - o $\mathcal{M}_{SM}^*\mathcal{M}_{d6}$ should be the leading correction to the SM, proportional to $1/\Lambda^2$.
 - $\circ |\mathcal{M}_{d6}|^2$ should be subleading as proportional to $1/\Lambda^4$.
 - Leading dimension-8 terms are missing and also proportional to $1/\Lambda^4$.
- The interference term is CP-odd and produces asymmetries in CP-odd observables
 - o integrates to 0 for CP-even observables

How to look for CPV?

 Considering only dimension-6 operators, the scattering amplitude is CP-odd


$$|\mathcal{M}|^2 = |\mathcal{M}_{SM}|^2 + 2\operatorname{Re}(\mathcal{M}_{SM}^*\mathcal{M}_{d6}) + |\mathcal{M}_{d6}|^2$$

- Ideally, we should construct observables sensitive to the interference term:
 - o $\mathcal{M}_{SM}^*\mathcal{M}_{d6}$ should be the leading correction to the SM, proportional to $1/\Lambda^2$.
 - $\circ |\mathcal{M}_{d6}|^2$ should be subleading as proportional to $1/\Lambda^4$.
 - \circ Leading dimension-8 terms are missing and also proportional to $1/\Lambda^4$.
- The interference term is CP-odd and produces asymmetries

in CP-odd observables

- o integrates to 0 for CP-even observables
- Operators constrained at the LHC using angular observables or optimal observables

ies Latest @ AI LAS				
EFT Coupling Observed 95% CL				
$c_{H ilde{B}}$	[-0.61,0.54]			
$c_{H\tilde{W}B}$ [-0.97,0.98]				
$c_{H ilde{W}}$	[-0.31,0.88]			

This work: study of CPV HZZ couplings at FCC

- CPV HZZ couplings at FCC-ee and FCC-hh
- Bonus: study the effect of beam polarisation in Linear Collider Facility → compare with FCC

Simulation

- Madgraph5_aMC@NLO to generate events at leading order
 - k-factors applied to correct for missing order effects
- **SMEFTSim 3.0** for CPV EFT interactions
- **DELPHES** for detector simulation

<u>pp collisions:</u> SM event yields validated within fiducial regions of recent ATLAS analyses

- LCF beam polarisation configurations:
 - o 45% {+80%, -30%}
 - 0 45% {-80%, +30%}
 - o 5% {+80%, +30%}
 - o 5% {-80%, -30%}

Collider	\sqrt{s}	Lumi [ab ⁻¹]	Processes	Delphes
FCC-ee	240 GeV	10.8	ZH	IDEA
LCF	250 GeV	3	ZH	ILCgen
HL-LHC	13 TeV	3	ZH, H→4l, WBF	ATLAS
FCC-hh	100 TeV	30	ZH, H→4l, WBF	FCC-hh

CP Sensitive Observables - Angular

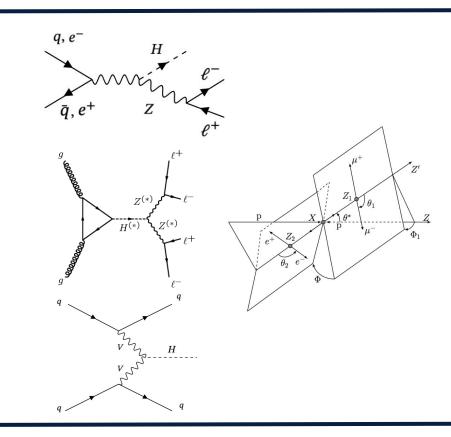
H

Signed Azimuthal difference between leptons from Z decay

$$\Delta \phi_{\ell\ell} = \phi(\ell_1) - \phi(\ell_2) \text{ for } \eta(\ell_1) > \eta(\ell_2)$$

144

Azimuthal angle between decay planes

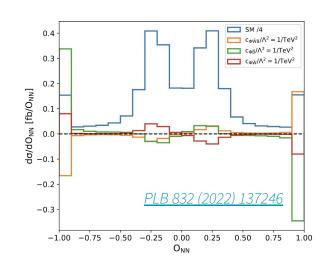

$$\Phi_{4\ell} = \frac{\mathbf{q}_1 \cdot (\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2)}{|\mathbf{q}_1 \cdot (\hat{\mathbf{n}}_1 \times \hat{\mathbf{n}}_2)|} \arccos(\hat{\mathbf{n}}_1 \cdot \hat{\mathbf{n}}_2).$$

$$\hat{\mathbf{n}}_1 = rac{\mathbf{q}_{11} imes \mathbf{q}_{12}}{|\mathbf{q}_{11} imes \mathbf{q}_{12}|} \qquad \hat{\mathbf{n}}_2 = rac{\mathbf{q}_{21} imes \mathbf{q}_{22}}{|\mathbf{q}_{21} imes \mathbf{q}_{22}|}$$

/BF

Signed Azimuthal difference between jets

$$\Delta \phi_{jj} = \phi(j_1) - \phi(j_2)$$
 for $\eta(j_1) > \eta(j_2)$



CP Sensitive Observables - NN

NN-based Observables:

- CP-asymmetries arise from the interference between SM and CP-odd amplitudes
- o generate interference-only contribution to process
- split interference sample into positive and negative interference
- train NN to distinguish between the 2 (binary classification)
- o can include SM as well (multiclass classification)
- construct observable from classification result one per operator

$$O_{NN} = P_+ - P_1$$

methodology demonstrated in: PLB 832 (2022) 137246; PRD 107 (2023) 016008

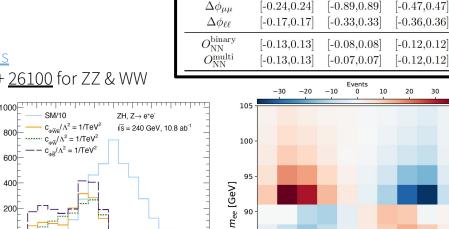
Limit Setting

- 95% confidence intervals set on Wilson coefficients (c/Λ^2) :
 - derived using a binned likelihood ratio test
 - using Wilks theorem 0

predicted n under SMEFT hypothesis
$$\mathcal{L}(\{c_j\}/\Lambda^2) = \prod_k \exp\{-\lambda_k\} \frac{\lambda_k^{n_k}}{n_k!}$$
 expected n under SM-only hypothesis

- Does not account for systematics:
 - impact of systematics is typically suppressed when searching for these types of asymmetries

ZH production at FCC-ee


- **Inclusive Higgs boson decays**
 - Signal sample: e⁺e⁻ → l⁺l⁻H
- Dominant ZZ and WW backgrounds generated separately
- k-factor to account for ISR effects
- followed selection for LEP3 analysis

ZH, $Z \rightarrow e^+e^-$

 \sqrt{s} = 240 GeV, 10.8 ab⁻¹

<u>77300 signal</u>events + <u>2470</u> + <u>26100</u> for ZZ & WW

 $\Delta \phi_{\alpha \alpha}$ [rad]

Observable

 $\Delta \phi_{ee}$

sensitivity driven by electron channel

 $[\text{TeV}^{-2}]$

 $\underline{c_{\Phi \widetilde{W}B}}/\Lambda^2$

[-0.57, 0.57]

[-0.47, 0.47]

95% confidence intervals

 $c_{\Phi \widetilde{B}}/\Lambda^2$

[-0.36, 0.36]

[-0.89, 0.89]

 $\Delta \phi_{ee}$ [rad]

 $c_{\Phi \widetilde{W}}/\Lambda^2$

[-0.25, 0.25]

[-0.24, 0.24]

O_{NN} leads to factor 3-4 improvement

sign-flip only observed for electron channel interference with VBF

400

300

200

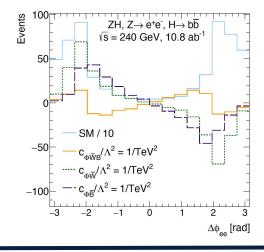
100

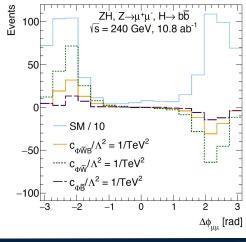
-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

85

80

ZH production at FCC-ee


- Dedicated study for dominant H→bb channel
- Dedicated e⁺e⁻ → l⁺l⁻bb sample produced
 - includes both signal (ZH) and bkgd(ZZ)
- followed selection for <u>LEP3 analysis</u> but explicitly requiring two b-tagged jets
 - o <u>12900 SM events</u> predicted

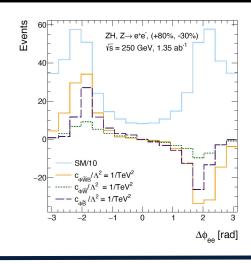

Similar features to what is seen in inclusive study

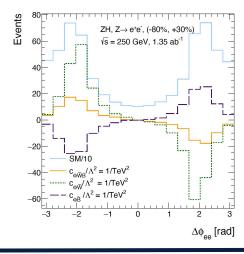
Higgs boson decay products carry no information on CPV

Observable	95% confidence intervals [TeV ⁻²]			
Observable	$c_{\Phi \widetilde{W}}/\Lambda^2$	$c_{\Phi \widetilde{B}}/\Lambda^2$	$c_{\Phi \widetilde{W}B}/\Lambda^2$	
$\Delta \phi_{ee}$	[-0.35, 0.35]	[-0.31,0.31]	[-0.67, 0.67]	
$\Delta\phi_{\mu\mu}$	[-0.46, 0.46]	[-2.2, 2.2]	[-1.0, 1.0]	
$\Delta\phi_{\ell\ell}$	[-0.28, 0.28]	[-0.31, 0.31]	[-0.56, 0.56]	
$O_{ m NN}^{ m binary}$	[-0.23,0.23]	[-0.08,0.08]	[-0.14,0.14]	

electron channel has similar sensitivity to the one obtained in inclusive study due to different H→bb efficiency for SM and interference samples

Impact of beam polarisation at LCF

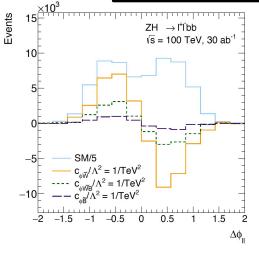

- Inclusive Higgs boson decays
 - Signal sample: e⁺e⁻ → l⁺l⁻H
- ZZ and WW backgrounds generated separately
- Samples generated for each of the 4
 initial-state polarisation configurations
- same selection as for inclusive H at FCC-ee
 - o <u>25300 signal</u> events + <u>1110</u> + <u>7960</u> for ZZ & WW

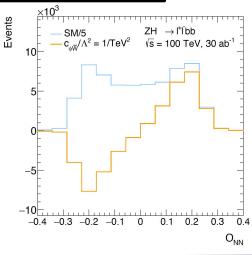

Shape of interference sample highly dependent on beam polarisation

Separate NN training for each configuration

Observable	95% confidence intervals $[\text{TeV}^{-2}]$		
	$c_{\Phi \widetilde{W}}/\Lambda^2$	$c_{\Phi \widetilde{B}}/\Lambda^2$	$c_{\Phi \widetilde{W}B}/\Lambda^2$
$\Delta\phi_{\ell\ell} \; ext{(pol)} \ \Delta\phi_{\ell\ell} \; ext{(unpol)}$	[-0.28,0.28]	[-0.35,0.35]	[-0.38,0.38]
	[-0.33,0.33]	[-0.63,0.63]	[-0.69,0.69]
$O_{ m NN}^{ m binary} ~{ m (pol)}$ $O_{ m NN}^{ m binary} ~{ m (unpol)}$	[-0.21,0.21]	[-0.11,0.11]	[-0.19,0.19]
	[-0.25,0.25]	[-0.14,0.14]	[-0.23,0.23]

beam polarisation improves results by factor of 1.2-1.8


ZH production at pp colliders

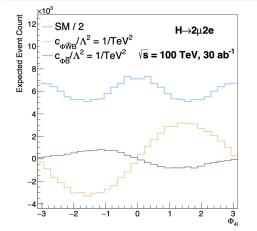

- Two samples: ZH+ZZ & Z+jets
 - k-factor derived for ZH+ZZ production to account for NLO QCD effects
- Followed selection from <u>relevant ATLAS analysis</u> (boosted Higgs region, **H→bb channel**)
- 133 ZH+ZZ events predicted for LHC, 207000 for FCC-hh
 - Good agreement with ATLAS signal yields
- Z+jets underestimated wrt ATLAS due to missing higher order contributions
 - scaling factor derived at LHC level

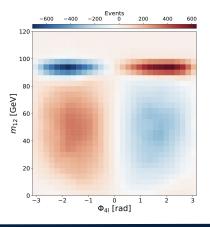
Overall lower sensitivity wrt FCC-ee

O_{NN} leads to factor ~30% improvement (negligible improvement from multiclass)

Collider	Observable	95% confidence intervals $[\text{TeV}^{-2}]$		
	0.0001.40010	$c_{\Phi \widetilde{W}}/\Lambda^2$	$c_{\Phi \widetilde{B}}/\Lambda^2$	$c_{\Phi \widetilde{W}B}/\Lambda^2$
LHC	$rac{\Delta\phi_{\ell\ell}}{O_{ m NN}^{ m binary}}$	[-5.5, 6.0] [-3.8, 3.8]	[-50, 50] [-36, 36]	[-15, 14] [-9.7, 9.7]
HL-LHC	$rac{\Delta\phi_{\ell\ell}}{O_{ m NN}^{ m binary}}$	[-1.2, 1.2] [-0.83, 0.83]	[-15, 15] [-7.7, 7.7]	[-4.3, 2.2] [-2.1, 2.1]
FCC-hh	$rac{\Delta\phi_{\ell\ell}}{O_{ m NN}^{ m binary}}$	[-0.31, 0.31] [-0.22, 0.22]	[-2.6, 2.6] [-2.2, 2.2]	[-0.82, 0.82] [-0.56, 0.56]

H → 4l at pp colliders


- Two samples: gg→H→2e2μ and pp→2e2μ
 - k-factor derived for gg→H production to account for N³LO QCD effects.
 - Additional correction derived for branching ratio for H→4l
- Followed selection from <u>ATLAS H→4L</u> differential x-section measurement
- <u>79 H→2e2µ events</u> predicted for LHC, and <u>367000 for FCC-hh</u>
 - Good agreement with ATLAS signal yields
- Bkgd predictions scaled by factor N_{ATLAS}/N_{study}

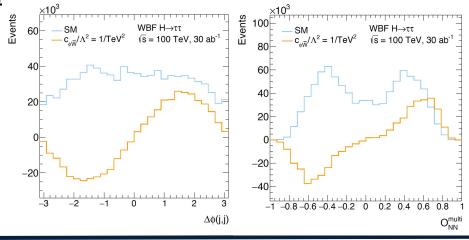

constraints at FCC-hh are 20x better than HL-LHC

O(10) better constraints wrt to ZH @FCC-ee

Collider Observable		95% confidence intervals $[\text{TeV}^{-2}]$		
Comder	O BBOT VAIBLE	$c_{\Phi \widetilde{B}}/\Lambda^2$	$c_{\Phi \widetilde{W}B}/\Lambda^2$	
LHC	$\Phi_{4\ell}$ $\Phi_{4\ell} \text{ vs } m_{12}$	[-1.4, 1.4] [-0.83, 0.84]	[-5.5, 5.5] [-1.7, 1.7]	
HL-LHC	$\Phi_{4\ell}$ $\Phi_{4\ell} \text{ vs } m_{12}$	[-0.29, 0.29] [-0.14, 0.14]	[-1.2, 1.2] [-0.27, 0.27]	
FCC-hh	$\Phi_{4\ell}$ $\Phi_{4\ell} \text{ vs } m_{12}$	[-0.017, 0.017] [-0.007, 0.007]	[-0.077, 0.077] [-0.015, 0.015]	

sign-flip when moving from Z boson off-shell to on-shell regime

Hjj production at pp colliders


- Two samples: **Hjj signal** & **Zjj** (dominant background)
 - k-factor derived for WBF production to account for NNLO QCD effects
- Analysis performed in H→ττ channel
 - following VBF region selection from <u>ATLAS H→ττ x-sec measurement</u>
 - **three ττ final states**: lep-lep, lep-had and had-had
 - o extra requirement on m₁₇₇ coll > 110 GeV
- <u>212 H(→ττ)jj events</u> predicted for LHC and <u>862000 for FCC-hh</u>
 - Good agreement with ATLAS signal yields
- Bkgd prediction scaled by factor N_{ATLAS}/N_{study}

LHC sensitivity similar to <u>recent ATLAS results</u>

constraints at FCC-hh are 20x better than HL-LHC

O(10) better wrt to ZH @ FCC-ee

Collider	Observable	$c_{\Phi \widetilde{W}}/\Lambda^2 [\text{TeV}^{-2}]$
LHC	$\Delta\phi_{jj} \ O_{ m NN}^{ m multi}$	[-0.89, 0.89] [-0.74, 0.73]
HL-LHC	$\Delta\phi_{jj} \ O_{ m NN}^{ m multi}$	[-0.19, 0.19] [-0.16, 0.16]
FCC-hh	$\Delta\phi_{jj} \ O_{ m NN}^{ m multi}$	[-0.016, 0.016] [-0.007, 0.007]

Summary

• CPV Higgs couplings make a strong case for FCC-hh

- take advantage of wide range of production mechanisms and final states and extra kinematic info!
- o constraints on CP-odd Wilson coeffs are O(1), O(0.1) and O(0.01) for LHC, HL-LHC/FCC-ee/LCF and FCC-hh respectively
- FCC-hh constraints are one order of magnitude better than HL-LHC constraints and ZH FCC-ee constraints
- Paper submitted to Arxiv yesterday [link]
- Included as inputs for European strategy
 - o <u>ECFA Higgs, electroweak, and top</u> factory study
 - Prospects for physics at FCC-hh

Wilson c.	FCC-ee	LCF	HL-LHC	FCC-hh
$c_{H ilde{B}}$	[-0.07,0.07]	[-0.11,0.11]	[-0.14,0.14]	[-0.007,0.007]
$c_{H ilde{W}B}$	[-0.12,0.12]	[-0.19,0.19]	[-0.27,0.27]	[-0.015,0.015]
$c_{H ilde{W}}$	[-0.13,0.13]	[-0.21,0.21]	[-0.16,0.16]	[-0.007,0.007]

best limits, regardless of process