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What is the nature of electroweak symmetry breaking?

Models with a vastly different prediction from SM remain viable ...
they must be non-decoupling
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What is the nature of electroweak symmetry breaking?

Models vastly different from SM prediction remain viable ...
they must be non-decoupling

extra EWSB source (see, e.g, Cohen et al. 2021)
@ extended scalar sectors, composite Higgs
@ predict deviations to hWW and hZZ

@ constrained to small regions of parameter space

Loryons — acquire most of their mass from the Higgs (Banta et al. 2022)
@ can be scalars or vector-like fermions
@ are capped at the TeV scale by unitarity

@ are a finite target for future colliders

Graeme Crawford (University of Glasgow) FCC UK 2025 November 12, 2025 2/13


https://link.springer.com/article/10.1007/JHEP03(2021)237
https://link.springer.com/article/10.1007/JHEP02(2022)029

The Loryon Model

Emass = - (mgx + Ao |H‘2) |¢|2
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M? = mgx + %)\h(,v2 Common mass component for any scalar
,\),(,V2 . . . .
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2 V2
n= e Splits mass based on isospin
A 2 1
n= e Mixes and splits mass for |Y| = 5 irreps

Mex is a small explicit mass term
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Non-decoupling theories require HEFT

Integrate out a singlet S at tree-level,

Lyy = %(85)2 —gSJ— %/\42(|q>|2)52

g2J2
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= LerT =

M?(|017) = mgc + 3 Ano |0
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Non-decoupling theories require HEFT

Expand around |®| =0, a la SMEFT. Then move to broken phase.
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Oblique parameters measure mass splittings

Impose Z, symmetry: study deviations to gauge 2-pt functions at 1-loop.

Observable Representative diagram General Scaling
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Constraining r; and r, at FCC-ee

Triplet Inert 2HDM
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FCC-ee ellipse: (de Blas et al. 2021)
= ~ 10% sensitivity to 2HDM splittings, ~ 10GeV for triplets.
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https://link.springer.com/article/10.1007/JHEP01(2020)139

Higgs coupling modifiers provide indirect bounds

Observable Representative diagram  General Scaling

on O M2F2d(j)

= <[x F(CG) + Y2d(j))
a <[ M4 Fd(j)

(kappa framework — LHCHXSWG et al. 2011)

C()=Tr(T°)] = 3G+ 3)(+ 1), d(j)=2j+1
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https://arxiv.org/abs/1101.0593

t, — Any charged Loryon can be found at FCC-ee *
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Using 20 projected k- sensitivities from (Tab. 4.2, Abada et al. 2022).

= sensitive to everything above f > 0.5.

Lor similar machine
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https://link.springer.com/article/10.1140/epjc/s10052-019-6904-3

Electroweak Phase Transition (EWPT)

o Particles at TeV scale with strong Higgs couplings modify EWPT.
e EW baryogenesis requires strong first order phase transition (SFOPT).

°o V= Vtree + Vl—loop + Vthermal

V(D)
T> T SFOPT:
Vnuc / Thuc 2 1,
/ b 100 < S3/ Thue < 200,
e S3 =bounce action.
T < The

strong transition ensures baryon asymmetry not washed out at later time.
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Gravitational wave production

@ During transition, bubbles of the new phase collide
= produce gravitational wave (GW) background.

@ Determined by the energy released («) and the duration of the phase
transition (~ /),

Tnuc dv gef'f7r2T4
—(Ay - ImepSY /7“
“ ( dT) 30

4
_dSs S5
=T |, T T

(Caprini et al. 2016, 2020)

@ Approx bounds for LISA:  log(8/H.) — 1.2 log(a) < 8.8
(Banta 2022)

g = effective relativistic d.o.f
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https://iopscience.iop.org/article/10.1088/1475-7516/2016/04/001
https://iopscience.iop.org/article/10.1088/1475-7516/2020/03/024
https://link.springer.com/article/10.1007/JHEP06(2022)099

SFOPT/GW constraints (see ESPP update 2026)
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2-loop effects on oblique parameters at Z-pole can close window on
neutral singlet (Maura, Stefanek, You 2024)

following on from (Banta 2022)
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https://cds.cern.ch/record/2944678/
https://arxiv.org/abs/2412.14241
https://link.springer.com/article/10.1007/JHEP06(2022)099

@ Motivation: non-decoupling physics may have important implications
in understanding the nature of EWSB.

@ Pheno: scalar Loryons can induce a SFOPT in the early Universe —
potential source of baryogenesis — and a residual GW background.

@ Search: present a finite target for future colliders — virtually all of
the parameter space accessible by FCC-ee.
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Backup — Mass spectrum of charged multiplets

Real triplet (Y =0) Inert 2HDM (Y = 1)
H* i+
P L (H +iA)
H~ V2
1
m,z_,i = M? <1 - 2r1>
mi, =M?(1—n) X
Masses m,2_,0 =M? m?, = M? <1 4+ 5n + 2,2>

m?_ =M?*(1+n)

Neutral singlet: m? = M?
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Backup — Perturbative Unitarity

Observable Representative diagram Scaling

Perturbative Unitarity : M3£2

Constraint dominated by 2 — 2 elastic scattering of Loryon with exchange
of a Higgs — only tree-level diagram that grows as )\%¢.

For f = 0.5, Apy will run into non-perturbative regime at ~ 30,000 TeV
(must be accompanied by extra states).
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Backup — W and Y parameters

Contributions of an arbitrary multiplet to the oblique parameters W and
Y are given by;
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A lower bound for the Real Triplet and Inert 2HDM models were found
using 2d sensitivities for AW and AY (de Blas et al. 2016).
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https://link.springer.com/article/10.1007/JHEP01(2020)139

Backup — m% dependent shift to S
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For each scalar multiplet, the mZZ shift in S up to O(mzz) is negligible.
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Backup — Fermionic Constraints
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Green: EWPO  Blue: Perturbative Unitarity =~ Orange: Direct Search

Adding in k. constraints rule out each individual fermion; extra fermions
or scalars are required (plot from Banta et al. 2022).
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https://link.springer.com/article/10.1007/JHEP02(2022)029

Backup — Effective Potential

Verr(h) = Vo(b)
+ Z i Vaw bos(mz(h)) + ne Vow fer (MZ()) + no Vow bos(ma (h))

N

zero temperature corrections

+ > 1V bos(mi(h), T) + 0tV fer (M (5), T) + 10 Ve pos(m ()

TV
finite temperature corrections

Boson ensmeble: i = {Wy, Wy, Z1,Z;, h, x, v}
Degrees of freedom: n; = {4, 2,2, 1,1, 3, 1}

Field-dependent masses: v > h=v+ h
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Backup — Daisy Resummation

Field-dependent masses are shifted by contributions of hard thermal loops;
0%V
I_Ii = 2T )
of;
e.g, the Higgs and Goldstones shift by,

1 3 9
MN,="n, = ﬂT2 <2g/2 + §g2 + 12Xpp + 6yt2 + nLoryonsA> .

We use the Parwani scheme, inserting m?(h) — m?(h) + M;(h, T) directly
into Veg(h) (Parwani 1991).
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https://journals.aps.org/prd/abstract/10.1103/PhysRevD.48.5965.2
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