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(SM) — easily overcome by new physics (NP) effects.

- In the SM: gpee ox me — NP can break this relationship.

- Parametrise deviations in terms of ke = e

hee

- Constraints:

HEHC < 240 (Tumasyan et al. )
- kHEHC <120 (Cepeda et al. )



FCC-ee PROSPECTS

- Projected |ke| < 1.6 @ 95% C.L from a dedicated run at the
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- Challenges:

- Need high precision on Higgs mass (few MeV).
- Need monochromatised beams.
- Large backgrounds.

What do we learn (EFT/Models)?
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LEPTON YUKAWAS IN THE SMEFT

Lsmerr = Lsm + Z CéD)O,iD)
kD>

- At leading order (D = 6), only the Warsaw basis operator Ogy
can modify a lepton Yukawa coupling in a manner o g7/,

Oet = (HTH)(I Heg) ]

- Higgs-lepton coupling matrices are modified.

1 VN
[9hecliy = - IMelij — \ﬁ[ceH]ji = Gree K, My!
- We assume first only [Cep]11 # O: “electrophilic”

- We consider real-valued Cep to avoid strong constraints from
electric dipole moments. (Panico, Pomarol, and Riembau )
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INDIRECT CONSTRAINTS ON Cey

- Natural to look at the anomalous magnetic moment of the
electron (ge — 2) as it is the only other observable with the
same chiral structure as gpee.

- In SMEFT, corrections arise from the EW dipole operators.
Oep = loye HB™, Oy = loye T HWI™.
- Leading connection Qe — Oew/Oep IS at the two-loop level.

BH /W

(Panico, Pomarol, and Riembau 2019) 5
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- Aae sets indirect constraints on k. enhancements.
- Assume two benchmark new physics scales A = 2,10 TeV.
- Aaf = (33.8 £16.1) x 107, AaS® = (—102 £ 26.4) x 107",

- Assume |AafitUre| < 5% 107 @ 95% C.L (Di Luzio, Keshavarz,
Masiero, and Paradisi ).

A(TeV) | ke (AGR) | ke (AGRP*CS) | |ke| (Aalvture)
2 [-1200,-39] | [-1200,2700] < 88
10 [-940,-31] [-940,2200] <71

Working the SMEFT alone, Aa, is insufficient to constrain ke
to O(1). .
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RADIATIVELY GENERATING Oy

- Given the high precision of the proposed measurement we
would also have sensitivity to scenarios in which ke
contributions are generated at loop level.

- Within the SMEFT we can study this scenario by looking for
operators which generate Ogy via RGE mixing.

- Small number of operators can generate Oqy, however, they
have complementary collider and flavour constraints.



RADIATIVELY GENERATING Oy
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THE FLAVOUR STRUCTURE OF Cey

- So far we have studied the electrophilic case, however, there
are many possible flavour assumptions for the Cey matrix.

- Strong constraints exist on other entries of Ceyy matrix from

¢ — 'y and lepton flavour conserving and violating Higgs
decays.

- Future experiments probe: (cf. ke < 1.6 @ FCC-ee /s = my,)

- Anarchic: ke <1.02 (1 — e @ COMET)

- Aligned and Universal: xe < 2.6 (h — pu @ FCC-hh)
- MFV: ke <1.0046 (h — 77 @ FCC-ee)

- Electrophilic: ke < 70 (Aqafuture)

Other experiments offer better or competitive constraints for
all but the electrophilic flavour assumption.
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MATCHING PROCEDURE

- Study single field SM extensions which match to Ogy at tree
level using results of (Blas, Criado, Perez-Victoria, and
J. Santiago 2018) .

- Also consider single field extensions which match at one
loop, we compute one-loop matching using SOLD (Guedes,
Olgoso, and José Santiago 2023), (Guedes and Olgoso 2024) .

1
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UV MODEL PERSPECTIVE

- Only a few single field extensions are capable of generating
CeH @é Me.

- For single and multi-field extensions, matching at any loop
order, we find you should generally expect to generate
Oes/Oew at most one-loop order higher than Ogy.

i B/W

Grey blob = diagram of arbitrary loop order involving heavy
state exchange.
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THE ¢ (2HDM) EXCEPTION

- If extension is a scalar doublet ¢ ~ (1,2, 7), can generate
Oy at tree level.

e H
/// )\ e \*
'"Zp""*\'\"HT — Cer = go/%:) :
[ H
However, we do not generate Qep/Oew at one loop
q
&
emai()in x qe}(q) = 0
12 ' S/ H



UV MODEL PERSPECTIVE

State ‘ Spin ‘ SM charges ‘ Ceti ‘ Ces/Cew
S 0 |(1,1,0) tree 1 loop
¢ (with Higgs coupling) | 0 | (1,2,3) tree | 2 loop
= 0 |(1,3,0) tree 1 loop
= 0 | (1,37 tree 1 loop
E =1 tree | 1 loop
A 12,3 tree 1 loop
s I 1(,2,-3) tree 1 loop
¥ 3 1(1,3,0) tree | 1loop
pu T (1,3,-1) tree | 1 loop
 (with top coupling) 0 [(1,2,9) 1loop | 2 loop
W 0 [(31,-1) 1 loop | 1 loop
my 0 | (32% 1 loop | 1 loop
U 1 |(,1,32) 1 loop | 1 loop
Qs 1 (,2-2) 1 loop | 1 loop

Blue = non-renormalisable interaction required to match to

Cely, Cog, Cow = See (Erdelyi, Grober, and Selimovic 2025) .
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SCHEMATIC BOUNDS

Ce'y = (COS(HV\/)CQB — sin(@W)CeW) =
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0 |[0.80,0.996] | [0.80,1.4] < 1.01
1 [-20, 0.4] [-20, 60] <3
2 [-90, -4000] | [-4000, 9000] <300




SCHEMATIC BOUNDS

: e 2\ Mioops—1
Cey = (cos(0w)Cep — sin(Bw)Cew) = 1672 (1g7T2> o

Nioops Ke (Aa?b) Ke (Aasb*cs) |Kel (A(J‘;“t”re)
0 |[[0.80,0.996] | [0.80,1.4] < 1.01
1 [-20, 0.4] [-20, 60] <3
2 [-90, -4000] | [-4000, 9000] <300

Two loop suppression between k. and Ad,
required for large enhancements.



ELECTROPHILIC ¢ PARAMETER SPACE

M, =2 TeV
L NS SRR DU Jo.-.
10! ;
. (LHO)_|
1
1
.................... 1, (FCC
10° iKi’FCChh)
VK Aa‘l}b
S fut
~ B Agtire
10! ---- Perturbativity
1072

e

y(l’
- Re from (Greljo, Tiblom, and Valenti 2024)

- k)(FCC-ee) from (Hoeve, Mantani, Rojo, Rossia, and Vryonidou
2025) 16



SUMMARY

- A Higgs pole run at FCC-ee would provide unparalleled
sensitivity to the electron Yukawa coupling.

17



SUMMARY

- A Higgs pole run at FCC-ee would provide unparalleled
sensitivity to the electron Yukawa coupling.

- Within the SMEFT, indirect constraints on s, from its
two-loop connection to Aa, are about two orders of
magnitude weaker.

17



SUMMARY

- A Higgs pole run at FCC-ee would provide unparalleled
sensitivity to the electron Yukawa coupling.

- Within the SMEFT, indirect constraints on s, from its
two-loop connection to Aa, are about two orders of
magnitude weaker.

- Other collider constraints can be avoided if Cey is generated
at leading order and with an electrophilic flavour structure.

17



SUMMARY

- A Higgs pole run at FCC-ee would provide unparalleled
sensitivity to the electron Yukawa coupling.

- Within the SMEFT, indirect constraints on s, from its
two-loop connection to Aa, are about two orders of
magnitude weaker.

- Other collider constraints can be avoided if Cey is generated
at leading order and with an electrophilic flavour structure.

- In most UV completions, the link ke — Aae is stronger than
two loop and gives competitive constraints to FCC-ee.

17



SUMMARY

- A Higgs pole run at FCC-ee would provide unparalleled
sensitivity to the electron Yukawa coupling.

- Within the SMEFT, indirect constraints on s, from its
two-loop connection to Aa, are about two orders of
magnitude weaker.

- Other collider constraints can be avoided if Cey is generated
at leading order and with an electrophilic flavour structure.

- In most UV completions, the link ke — Aae is stronger than
two loop and gives competitive constraints to FCC-ee.

- Nevertheless, in certain electrophilic models, a direct
measurement of ke remains the only probe of the relevant
parameter space. 17
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Thank you!
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FINE-TUNING

1 3v? 2C,
5(Ve — 5Cen) —Vy:H B ¢

K_ghee_ V2 —1_ 1_
e — e 2 - 2 -
T e~ %Ca) 1 S 1-¢/2

VZCeH

Large k. requires tuning ¢ (= s ) close to 1.

dlnk
dIn(

:’(1—@(3—@
2K

A:’

which behaves as
imA ="
K>1 2

= ke = 10 requires ~ 20% tuning.
21
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