

THE BSM IMPLICATIONS OF A MODIFIED ELECTRON YUKAWA COUPLING

...and what we learn from a Higgs pole run at FCC-ee

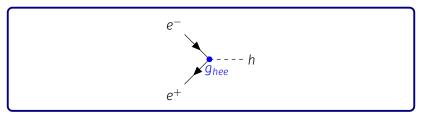
Ben Smith

(based on arXiv:2511.02642 w/ L. Allwicher, M. Mccullough, S. Renner, D. Rocha)

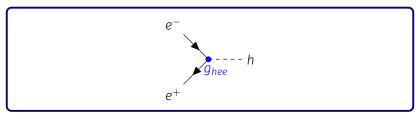
12th November 2025, **FCC-UK**



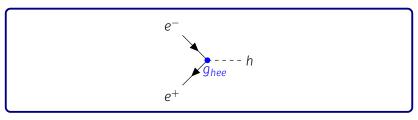
The smallest fundamental coupling in the Standard Model (SM) \rightarrow easily overcome by new physics (NP) effects.



- The smallest fundamental coupling in the Standard Model (SM) \rightarrow easily overcome by new physics (NP) effects.
- · In the SM: $g_{hee} \propto m_e \rightarrow \text{NP}$ can break this relationship.



- The smallest fundamental coupling in the Standard Model (SM) → easily overcome by new physics (NP) effects.
- · In the SM: $g_{hee} \propto m_e \rightarrow \text{NP}$ can break this relationship.
- · Parametrise deviations in terms of $\kappa_{\it e}=rac{g_{\it hee}}{g_{\it hee}^{\it SM}}$

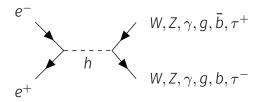


- The smallest fundamental coupling in the Standard Model $(SM) \rightarrow easily$ overcome by new physics (NP) effects.
- · In the SM: $g_{hee} \propto m_e o$ NP can break this relationship.
- · Parametrise deviations in terms of $\kappa_e = \frac{g_{hee}}{g_{hee}^{GN}}$
- · Constraints:
 - \cdot $\kappa_e^{ ext{LHC}} <$ 240 (Tumasyan et al. 2023)
 - \cdot $\kappa_e^{ ext{HL-LHC}} <$ 120 (Cepeda et al. 2019)

1

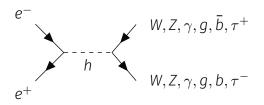
FCC-ee **PROSPECTS**

· Projected $|\kappa_e|<$ 1.6 @ 95% C.L from a dedicated run at the Higgs pole $(\sqrt{s}=m_h)$ (d'Enterria, Poldaru, and Wojcik 2022) .



FCC-ee **PROSPECTS**

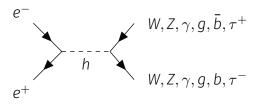
· Projected $|\kappa_e|<$ 1.6 @ 95% C.L from a dedicated run at the Higgs pole $(\sqrt{s}=m_h)$ (d'Enterria, Poldaru, and Wojcik 2022) .



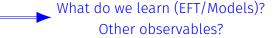
- · Challenges:
 - · Need high precision on Higgs mass (few MeV).
 - · Need monochromatised beams.
 - · Large backgrounds.

FCC-ee **PROSPECTS**

· Projected $|\kappa_e|<$ 1.6 @ 95% C.L from a dedicated run at the Higgs pole $(\sqrt{s}=m_h)$ (d'Enterria, Poldaru, and Wojcik 2022) .



- · Challenges:
 - · Need high precision on Higgs mass (few MeV).
 - · Need monochromatised beams.
 - · Large backgrounds.



EFT PERSPECTIVE

LEPTON YUKAWAS IN THE SMEFT

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{k,D>4} \mathcal{C}_k^{(D)} \mathcal{O}_k^{(D)}$$

LEPTON YUKAWAS IN THE SMEFT

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \sum_{k,D>4} \mathcal{C}_k^{(D)} \mathcal{O}_k^{(D)}$$

At leading order (D=6), only the Warsaw basis operator \mathcal{O}_{eH} can modify a lepton Yukawa coupling in a manner $\not \propto g_{h\ell\ell}^{SM}$.

$$\mathcal{O}_{eH} = (H^{\dagger}H)(\bar{l}_L H e_R)$$

LEPTON YUKAWAS IN THE SMEFT

$$\mathcal{L}_{\text{SMEFT}} = \mathcal{L}_{\text{SM}} + \sum_{k, D > 4} \mathcal{C}_k^{(D)} \mathcal{O}_k^{(D)}$$

At leading order (D=6), only the Warsaw basis operator \mathcal{O}_{eH} can modify a lepton Yukawa coupling in a manner $\not \propto g_{h\ell\ell}^{SM}$.

$$\mathcal{O}_{eH} = (H^{\dagger}H)(\bar{l}_L H e_R)$$

· Higgs-lepton coupling matrices are modified.

$$[g_{h\ell\ell}]_{ij} = \frac{1}{V}[M_{\ell}]_{ij} - \frac{V^2}{\sqrt{2}}[C_{eH}^*]_{ji} \Rightarrow g_{H\ell\ell} \not\propto M_{\ell}!$$

- · We assume first only $[\mathcal{C}_{eH}]_{11} \neq 0$: "electrophilic"
- · We consider real-valued C_{eH} to avoid strong constraints from electric dipole moments. (Panico, Pomarol, and Riembau 2019)

INDIRECT CONSTRAINTS ON $\mathcal{C}_{ ho H}$

· Natural to look at the anomalous magnetic moment of the electron (g_e-2) as it is the only other observable with the same chiral structure as g_{hee} .

INDIRECT CONSTRAINTS ON \mathcal{C}_{eH}

- · Natural to look at the anomalous magnetic moment of the electron (g_e-2) as it is the only other observable with the same chiral structure as g_{hee} .
- · In SMEFT, corrections arise from the EW dipole operators.

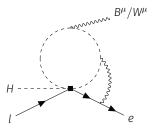
$$\mathcal{O}_{eB} = \bar{l}\sigma_{\mu\nu}eHB^{\mu\nu}, \quad \mathcal{O}_{eW} = \bar{l}\sigma_{\mu\nu}e\tau^lHW_l^{\mu\nu}.$$

INDIRECT CONSTRAINTS ON \mathcal{C}_{eH}

- · Natural to look at the anomalous magnetic moment of the electron (g_e-2) as it is the only other observable with the same chiral structure as g_{hee} .
- · In SMEFT, corrections arise from the EW dipole operators.

$$\mathcal{O}_{eB} = \bar{l}\sigma_{\mu\nu}eHB^{\mu\nu}, \quad \mathcal{O}_{eW} = \bar{l}\sigma_{\mu\nu}e\tau^lHW_l^{\mu\nu}.$$

· Leading connection $\mathcal{O}_{eH} \to \mathcal{O}_{eW}/\mathcal{O}_{eB}$ is at the two-loop level.



$$\Delta a_e = a_e^{\text{exp}} - a_e^{\text{SM}}, \text{ with: } a_e = (g_e - 2)/2$$

· Δa_e sets indirect constraints on κ_e enhancements.

$$\Delta a_e = a_e^{\text{exp}} - a_e^{\text{SM}}$$
, with: $a_e = (g_e - 2)/2$

- · Δa_e sets indirect constraints on κ_e enhancements.
- · Assume two benchmark new physics scales $\Lambda = 2,10$ TeV.

$$\Delta a_e = a_e^{\rm exp} - a_e^{\rm SM}, \text{ with: } a_e = (g_e - 2)/2$$

- · Δa_e sets indirect constraints on κ_e enhancements.
- · Assume two benchmark new physics scales $\Lambda=2,10$ TeV.

$$\Delta a_e^{\text{Rb}} = (33.8 \pm 16.1) \times 10^{-14}, \ \Delta a_e^{\text{Cs}} = (-102 \pm 26.4) \times 10^{-14}.$$

$$\Delta a_e = a_e^{\rm exp} - a_e^{\rm SM}, \text{ with: } a_e = (g_e - 2)/2$$

- · Δa_e sets indirect constraints on κ_e enhancements.
- · Assume two benchmark new physics scales $\Lambda=2,10$ TeV.
- $\Delta a_e^{\text{Rb}} = (33.8 \pm 16.1) \times 10^{-14}, \ \Delta a_e^{\text{Cs}} = (-102 \pm 26.4) \times 10^{-14}.$
- · Assume $|\Delta a_e^{\rm future}|\lesssim 5\times 10^{-14}$ @ 95% C.L (Di Luzio, Keshavarzi, Masiero, and Paradisi 2025) .

$$\Delta a_e = a_e^{\text{exp}} - a_e^{\text{SM}}$$
, with: $a_e = (g_e - 2)/2$

- · Δa_e sets indirect constraints on κ_e enhancements.
- · Assume two benchmark new physics scales $\Lambda=2,10$ TeV.
- $\Delta a_e^{\text{Rb}} = (33.8 \pm 16.1) \times 10^{-14}, \ \Delta a_e^{\text{Cs}} = (-102 \pm 26.4) \times 10^{-14}.$
- · Assume $|\Delta a_e^{\rm future}| \lesssim 5 \times 10^{-14}$ @ 95% C.L (Di Luzio, Keshavarzi, Masiero, and Paradisi 2025) .

∧ (TeV)	κ_e (Δa_e^{Rb})	κ_e (Δa_e^{Rb+Cs})	$ \kappa_e $ ($\Delta a_e^{ ext{future}}$)
2	[-1200,-39]	[-1200,2700]	< 88
10	[-940,-31]	[-940,2200]	< 71

$$\Delta a_e = a_e^{\text{exp}} - a_e^{\text{SM}}$$
, with: $a_e = (g_e - 2)/2$

- · Δa_e sets indirect constraints on κ_e enhancements.
- · Assume two benchmark new physics scales $\Lambda = 2,10$ TeV.

$$\Delta a_e^{\text{Rb}} = (33.8 \pm 16.1) \times 10^{-14}, \ \Delta a_e^{\text{Cs}} = (-102 \pm 26.4) \times 10^{-14}.$$

· Assume $|\Delta a_e^{\rm future}| \lesssim 5 \times 10^{-14}$ @ 95% C.L (Di Luzio, Keshavarzi, Masiero, and Paradisi 2025) .

Λ (TeV)	κ_e (Δa_e^{Rb})	$\kappa_e \left(\Delta a_e^{\text{Rb+Cs}} \right)$	$ \kappa_e $ ($\Delta a_e^{\text{future}}$)
2	[-1200,-39]	[-1200,2700]	< 88
10	[-940,-31]	[-940,2200]	< 71

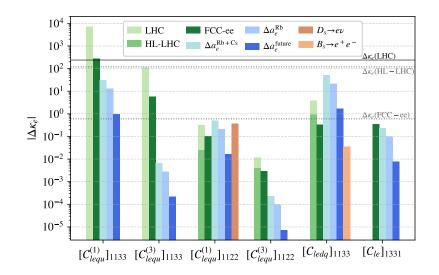
Working the SMEFT alone, Δa_e is insufficient to constrain κ_e to $\mathcal{O}(1)$.

· Given the high precision of the proposed measurement we would also have sensitivity to scenarios in which κ_e contributions are generated at loop level.

- · Given the high precision of the proposed measurement we would also have sensitivity to scenarios in which κ_e contributions are generated at loop level.
- · Within the SMEFT we can study this scenario by looking for operators which generate \mathcal{O}_{eH} via RGE mixing.

- · Given the high precision of the proposed measurement we would also have sensitivity to scenarios in which κ_e contributions are generated at loop level.
- · Within the SMEFT we can study this scenario by looking for operators which generate \mathcal{O}_{eH} via RGE mixing.
- · Small number of operators can generate \mathcal{O}_{eH} , however, they have complementary collider and flavour constraints.

$$\Delta \kappa_e = \kappa_e - 1, \Lambda = 2 \text{ TeV}$$



· So far we have studied the electrophilic case, however, there are many possible flavour assumptions for the C_{eH} matrix.

- · So far we have studied the electrophilic case, however, there are many possible flavour assumptions for the C_{eH} matrix.
- · Strong constraints exist on other entries of \mathcal{C}_{eH} matrix from $\ell \to \ell' \gamma$ and lepton flavour conserving and violating Higgs decays.

- · So far we have studied the electrophilic case, however, there are many possible flavour assumptions for the C_{eH} matrix.
- · Strong constraints exist on other entries of \mathcal{C}_{eH} matrix from $\ell \to \ell' \gamma$ and lepton flavour conserving and violating Higgs decays.
- Future experiments probe: (cf. $\kappa_e <$ 1.6 @ FCC-ee $\sqrt{s} = m_h$)
 - Anarchic: $\kappa_e \lesssim$ 1.02 ($\mu \to e$ @ COMET)

- · So far we have studied the electrophilic case, however, there are many possible flavour assumptions for the \mathcal{C}_{eH} matrix.
- · Strong constraints exist on other entries of \mathcal{C}_{eH} matrix from $\ell \to \ell' \gamma$ and lepton flavour conserving and violating Higgs decays.
- Future experiments probe: (cf. $\kappa_e <$ 1.6 @ FCC-ee $\sqrt{s} = m_h$)
 - Anarchic: $\kappa_e \lesssim$ 1.02 ($\mu \to e$ @ COMET)
 - · Aligned and Universal: $\kappa_e \lesssim 2.6$ ($h \to \mu\mu$ @ FCC-hh)

- · So far we have studied the electrophilic case, however, there are many possible flavour assumptions for the \mathcal{C}_{eH} matrix.
- · Strong constraints exist on other entries of \mathcal{C}_{eH} matrix from $\ell \to \ell' \gamma$ and lepton flavour conserving and violating Higgs decays.
- Future experiments probe: (cf. $\kappa_e <$ 1.6 @ FCC-ee $\sqrt{s} = m_h$)
 - · Anarchic: $\kappa_e\lesssim$ 1.02 ($\mu\to e$ @ COMET)
 - · Aligned and Universal: $\kappa_e \lesssim 2.6$ ($h \to \mu\mu$ @ FCC-hh)
 - · MFV: $\kappa_e \lesssim$ 1.0046 ($h \rightarrow \tau \tau$ @ FCC-ee)

- · So far we have studied the electrophilic case, however, there are many possible flavour assumptions for the \mathcal{C}_{eH} matrix.
- · Strong constraints exist on other entries of \mathcal{C}_{eH} matrix from $\ell \to \ell' \gamma$ and lepton flavour conserving and violating Higgs decays.
- Future experiments probe: (cf. $\kappa_e <$ 1.6 @ FCC-ee $\sqrt{s} = m_h$)
 - · Anarchic: $\kappa_e \lesssim$ 1.02 ($\mu \rightarrow e$ @ COMET)
 - · Aligned and Universal: $\kappa_e \lesssim 2.6$ ($h \to \mu\mu$ @ FCC-hh)
 - MFV: $\kappa_e \lesssim 1.0046$ ($h \rightarrow \tau \tau$ @ FCC-ee)
 - · Electrophilic: $\kappa_e \lesssim 70$ ($\Delta a_e^{\text{future}}$)

- · So far we have studied the electrophilic case, however, there are many possible flavour assumptions for the \mathcal{C}_{eH} matrix.
- · Strong constraints exist on other entries of \mathcal{C}_{eH} matrix from $\ell \to \ell' \gamma$ and lepton flavour conserving and violating Higgs decays.
- Future experiments probe: (cf. $\kappa_e <$ 1.6 @ FCC-ee $\sqrt{s} = m_h$)
 - Anarchic: $\kappa_e \lesssim$ 1.02 ($\mu \to e$ @ COMET)
 - · Aligned and Universal: $\kappa_e \lesssim 2.6$ ($h \to \mu\mu$ @ FCC-hh)
 - · MFV: $\kappa_e \lesssim 1.0046$ ($h \rightarrow \tau \tau$ @ FCC-ee)
 - Electrophilic: $\kappa_e \lesssim 70 \; (\Delta a_e^{\text{future}})$

Other experiments offer better or competitive constraints for all but the electrophilic flavour assumption.

UV MODEL PERSPECTIVE

MATCHING PROCEDURE

- · Study single field SM extensions which match to \mathcal{O}_{eH} at tree level using results of (Blas, Criado, Perez-Victoria, and J. Santiago 2018) .
- · Also consider single field extensions which match at one loop, we compute one-loop matching using *SOLD* (Guedes, Olgoso, and José Santiago 2023), (Guedes and Olgoso 2024).

UV MODEL PERSPECTIVE

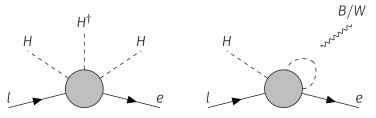
· Only a few single field extensions are capable of generating $C_{eH} \not \propto m_e$.

UV MODEL PERSPECTIVE

- · Only a few single field extensions are capable of generating $C_{eH} \not\propto m_e$.
- For single and multi-field extensions, matching at any loop order, we find you should generally expect to generate $\mathcal{O}_{eB}/\mathcal{O}_{eW}$ at most one-loop order higher than \mathcal{O}_{eH} .

UV MODEL PERSPECTIVE

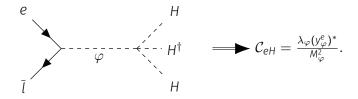
- · Only a few single field extensions are capable of generating $C_{eH} \not\propto m_e$.
- For single and multi-field extensions, matching at any loop order, we find you should generally expect to generate $\mathcal{O}_{eB}/\mathcal{O}_{eW}$ at most one-loop order higher than \mathcal{O}_{eH} .



Grey blob = diagram of arbitrary loop order involving heavy state exchange.

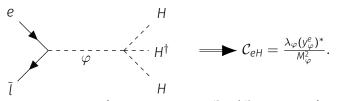
THE φ (2HDM) EXCEPTION

· If extension is a scalar doublet $\varphi \sim (1, 2, \frac{1}{2})$, can generate \mathcal{O}_{eH} at tree level.

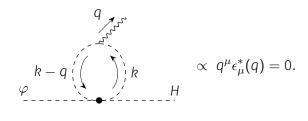


THE φ (2HDM) EXCEPTION

· If extension is a scalar doublet $\varphi \sim (1, 2, \frac{1}{2})$, can generate \mathcal{O}_{eH} at tree level.



· However, we do *not* generate $\mathcal{O}_{eB}/\mathcal{O}_{eW}$ at one loop.



UV MODEL PERSPECTIVE

State	Spin	SM charges	\mathcal{C}_{eH}	$\mathcal{C}_{eB}/\mathcal{C}_{eW}$
8	0	(1, 1, 0)	tree	1 loop
arphi (with Higgs coupling)	0	$(1,2,\frac{1}{2})$	tree	2 loop
Ξ	0	(1, 3, 0)	tree	1 loop
Ξ ₁	0	(1, 3, 1)	tree	1 loop
Ε	$\frac{1}{2}$	(1, 1, -1)	tree	1 loop
Δ_1	1212121212	$(1,2,-\frac{1}{2})$	tree	1 loop
Δ_3	$\frac{1}{2}$	$(1,2,-\frac{3}{2})$	tree	1 loop
Σ	$\frac{1}{2}$	(1, 3, 0)	tree	1 loop
Σ_1	$\frac{1}{2}$	(1,3,-1)	tree	1 loop
φ (with top coupling)	0	$(1,2,\frac{1}{2})$	1 loop	2 loop
ω_1	0	$(3,1,-\frac{1}{3})$	1 loop	1 loop
Π_7	0	$(3,2,\frac{7}{6})$	1 loop	1 loop
\mathcal{U}_2	1	$(3, 1, \frac{2}{3})$	1 loop	1 loop
\mathcal{Q}_5	1	$(3,2,-\frac{5}{6})$	1 loop	1 loop

Blue = non-renormalisable interaction required to match to $\mathcal{C}_{eH}, \mathcal{C}_{eB}, \mathcal{C}_{eW} \Rightarrow \text{See}$ (Erdelyi, Gröber, and Selimovic 2025).

UV MODEL PERSPECTIVE

	State	Spin	SM charges	\mathcal{C}_{eH}	$\mathcal{C}_{eB}/\mathcal{C}_{eW}$
_	S	0	(1, 1, 0)	tree	1 loop
	arphi (with Higgs coupling)	0	$(1,2,\frac{1}{2})$	tree	2 loop
	Ξ	0	(1, 3, 0)	tree	1 loop
	Ξ ₁	0	(1, 3, 1)	tree	1 loop
	Ε	1 2	(1, 1, -1)	tree	1 loop
	Δ_1	1 1 1 2 1 2 1 2 1 2 1 2	$(1,2,-\frac{1}{2})$	tree	1 loop
	Δ_3	1/2	$(1,2,-\frac{3}{2})$	tree	1 loop
	Σ	$\frac{1}{2}$	(1, 3, 0)	tree	1 loop
	Σ_1	$\frac{1}{2}$	(1,3,-1)	tree	1 loop
	arphi (with top coupling)	0	$(1, 2, \frac{1}{2})$	1 loop	2 loop
	ω_1	0	$(3,1,-\frac{1}{3})$	1 loop	1 loop
	Π_7	0	$(3,2,\frac{7}{6})$	1 loop	1 loop
	\mathcal{U}_2	1	$(3,1,\frac{2}{3})$	1 loop	1 loop
	\mathcal{Q}_5	1	$(3,2,-\frac{5}{6})$	1 loop	1 loop

Blue = non-renormalisable interaction required to match to $\mathcal{C}_{eH}, \mathcal{C}_{eB}, \mathcal{C}_{eW} \Rightarrow \text{See}$ (Erdelyi, Gröber, and Selimovic 2025).

SCHEMATIC BOUNDS

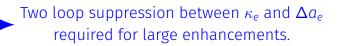
$$\mathcal{C}_{e\gamma} = (\cos(heta_{\scriptscriptstyle W})\mathcal{C}_{e\scriptscriptstyle B} - \sin(heta_{\scriptscriptstyle W})\mathcal{C}_{e\scriptscriptstyle W}) = rac{e}{16\pi^2} \left(rac{g^2}{16\pi^2}
ight)^{N_{
m loops}-1} \mathcal{C}_{e\scriptscriptstyle H}$$

N _{loops}	$\kappa_e \left(\Delta a_e^{Rb} \right)$	$\kappa_e \left(\Delta a_e^{\text{Rb+Cs}} \right)$	$ \kappa_e $ ($\Delta a_e^{ ext{future}}$)
0	[0.80, 0.996]	[0.80, 1.4]	< 1.01
1	[-20, 0.4]	[-20, 60]	< 3
2	[-90, -4000]	[-4000, 9000]	< 300

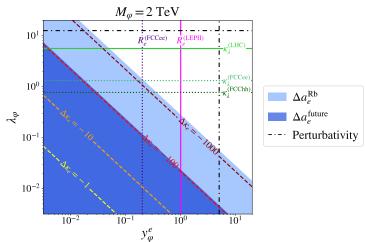
SCHEMATIC BOUNDS

$$\mathcal{C}_{e\gamma} = (\cos(heta_{\scriptscriptstyle W})\mathcal{C}_{e\scriptscriptstyle B} - \sin(heta_{\scriptscriptstyle W})\mathcal{C}_{e\scriptscriptstyle W}) = rac{e}{16\pi^2} \left(rac{g^2}{16\pi^2}
ight)^{N_{
m loops}-1} \mathcal{C}_{e\scriptscriptstyle H}$$

N _{loops}	$\kappa_e \left(\Delta a_e^{Rb} \right)$	$\kappa_e \left(\Delta a_e^{\text{Rb+Cs}} \right)$	$ \kappa_e $ ($\Delta a_e^{ ext{future}}$)
0	[0.80, 0.996]	[0.80, 1.4]	< 1.01
1	[-20, 0.4]	[-20, 60]	< 3
2	[-90, -4000]	[-4000, 9000]	< 300



ELECTROPHILIC φ PARAMETER SPACE



- · Re from (Greljo, Tiblom, and Valenti 2024)
- κ_{λ} (FCC-ee) from (Hoeve, Mantani, Rojo, Rossia, and Vryonidou 2025)

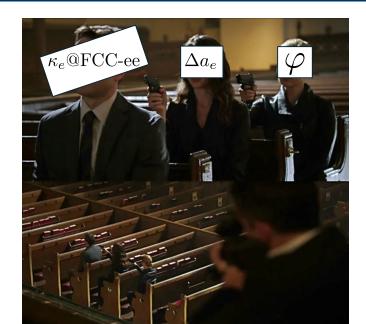
· A Higgs pole run at FCC-ee would provide unparalleled sensitivity to the electron Yukawa coupling.

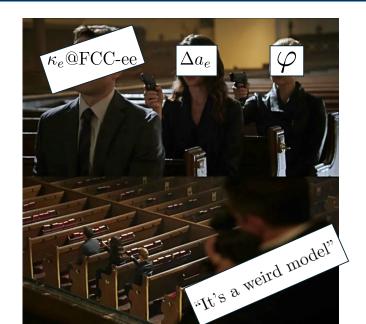
- A Higgs pole run at FCC-ee would provide unparalleled sensitivity to the electron Yukawa coupling.
- · Within the SMEFT, indirect constraints on κ_e from its two-loop connection to Δa_e are about two orders of magnitude weaker.

- · A Higgs pole run at FCC-ee would provide unparalleled sensitivity to the electron Yukawa coupling.
- · Within the SMEFT, indirect constraints on κ_e from its two-loop connection to Δa_e are about two orders of magnitude weaker.
- · Other collider constraints can be avoided if \mathcal{C}_{eH} is generated at leading order and with an electrophilic flavour structure.

- · A Higgs pole run at FCC-ee would provide unparalleled sensitivity to the electron Yukawa coupling.
- · Within the SMEFT, indirect constraints on κ_e from its two-loop connection to Δa_e are about two orders of magnitude weaker.
- · Other collider constraints can be avoided if \mathcal{C}_{eH} is generated at leading order and with an electrophilic flavour structure.
- · In most UV completions, the link $\kappa_e \to \Delta a_e$ is stronger than two loop and gives competitive constraints to FCC-ee.

- · A Higgs pole run at FCC-ee would provide unparalleled sensitivity to the electron Yukawa coupling.
- · Within the SMEFT, indirect constraints on κ_e from its two-loop connection to Δa_e are about two orders of magnitude weaker.
- · Other collider constraints can be avoided if \mathcal{C}_{eH} is generated at leading order and with an electrophilic flavour structure.
- · In most UV completions, the link $\kappa_e \to \Delta a_e$ is stronger than two loop and gives competitive constraints to FCC-ee.
- · Nevertheless, in certain electrophilic models, a direct measurement of κ_e remains the only probe of the relevant parameter space.





Thank you!

BACKUP SLIDES

FINE-TUNING

$$\kappa_e = \frac{g_{hee}}{\frac{m_e}{v}} = \frac{\frac{1}{2}(y_e - \frac{3v^2}{\sqrt{2}}C_{eH})}{\frac{1}{\sqrt{2}}(y_e - \frac{v^2}{2}C_{eH})} = 1 - \frac{\frac{v^2C_{eH}}{y_e}}{1 - \frac{v^2C_{eH}}{2y_e}} = 1 - \frac{\zeta}{1 - \zeta/2}$$

Large κ_e requires tuning ζ (= $\frac{v^2 C_{eH}}{2y_e}$) close to 1.

$$\Delta = \left| \frac{\partial \ln \kappa}{\partial \ln \zeta} \right| = \left| \frac{(1 - \kappa)(3 - \kappa)}{2\kappa} \right| \ ,$$

which behaves as

$$\lim_{\kappa \gg 1} \Delta = \frac{\kappa}{2} .$$

 $\Rightarrow \kappa_e =$ 10 requires \sim 20% tuning.

BIBLIOGRAPHY I

Blas, J. de et al. (2018). "Effective description of general extensions of the Standard Model: the complete tree-level dictionary". In: JHEP 03, p. 109. DOI: 10.1007/JHEP03(2018)109. arXiv: 1711.10391 [hep-ph].

Cepeda, M. et al. (2019). "Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC". In: CERN Yellow Rep. Monogr. 7. Ed. by Andrea Dainese et al., pp. 221–584. DOI: 10.23731/CYRM-2019-007.221. arXiv: 1902.00134 [hep-ph].

d'Enterria, David, Andres Poldaru, and George Wojcik (2022). "Measuring the electron Yukawa coupling via resonant s-channel Higgs production at FCC-ee". In: Eur. Phys. J. Plus 137.2, p. 201. DOI: 10.1140/epip/s13360-021-02204-2. arXiv: 2107.02686 [hep-ex].

Di Luzio, Luca et al. (2025). "Model-Independent Tests of the Hadronic Vacuum Polarization Contribution to the Muon g-2". In: *Phys. Rev. Lett.* 134.1, p. 011902. DOI: 10.1103/PhysRevLett.134.011902. arXiv: 2408.01123 [hep-ph].

Erdelyi, Barbara Anna, Ramona Gröber, and Nudzeim Selimovic (2025). "Probing new physics with the electron Yukawa coupling". In: JHEP 05, p. 135. DOI: 10.1007/JHEP05(2025)135. arXiv: 2501.07628 [hep-ph].

Greljo, Admir, Hector Tiblom, and Alessandro Valenti (Nov. 2024). "New Physics Through Flavor Tagging at FCC-ee". In: arXiv: 2411.02485 [hep-ph].

Guedes, Guilherme and Pablo Olgoso (Dec. 2024). "From the EFT to the UV: the complete SMEFT one-loop dictionary". In: arXiv: 2412.14253 [hep-ph].

BIBLIOGRAPHY II

Guedes, Guilherme, Pablo Olgoso, and José Santiago (2023). "Towards the one loop IR/UV dictionary in the SMEFT: One loop generated operators from new scalars and fermions". In: SciPost Phys. 15.4, p. 143. DOI: 10.21468/SciPostPhys.15.4.143. arXiv: 2303.16965 [hep-ph].

Hoeve, Jaco ter et al. (2025). "Higgs trilinear coupling in the standard model effective field theory at the high luminosity LHC and the FCC-ee". In: *Phys. Rev. D* 112.1, p. 013008. DOI: 10.1103/qtz8-bkd4. arXiv: 2504.05974 [hep-ph].

Panico, Giuliano, Alex Pomarol, and Marc Riembau (2019). "EFT approach to the electron Electric Dipole Moment at the two-loop level". In: JHEP 04, p. 090. DOI: 10.1007/JHEP04(2019)090. arXiv: 1810.09413 [hep-ph].

Tumasyan, Armen et al. (2023). "Search for the Higgs boson decay to a pair of electrons in proton-proton collisions at s=13TeV". In: Phys. Lett. B 846, p. 137783. DOI: 10.1016/j.physletb.2023.137783. arXiv: 2208.00265 [hep-ex].