

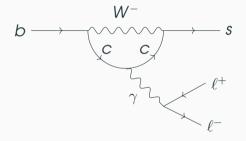
B decays at two loops

Ery McPartland (they/them)

Working with Danny van Dyk and Matthew Kirk Institute for Particle Physics Phenomenology, Durham

Internal Seminar, Oct 24th 2025

What are we doing?

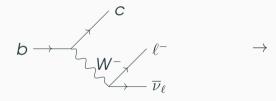


Flavour changing neutral currents only emerge at 1 loop level

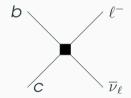
CKM supression $\sim \lambda^4$

Branching ratio $b \to s \ell^+ \ell^- \sim 10^{-6}$

Effective Field Theory tangent



An electroweak interaction

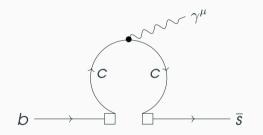


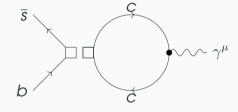
A Four Fermi theory interaction

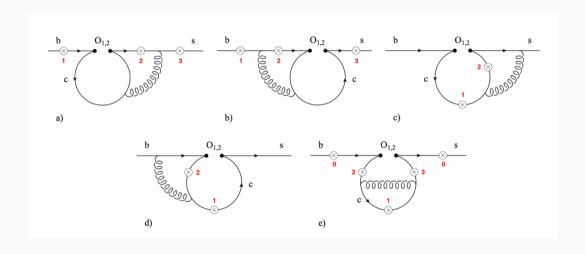
$$\mathcal{L}_{WET} \supset \mathcal{L}_{QCD+QED}^{\{all\ fermions, top\}} + \frac{1}{\Lambda^2} \sum_{i} C_{i}^{(6)} O_{i}^{(6)}$$

$$\mathcal{L}_{WET} \supset \mathcal{L}_{QCD+QED}^{\{all\ fermions, top\}} + \frac{1}{\Lambda^2} \sum_i C_i^{(6)} \mathcal{O}_i^{(6)}$$

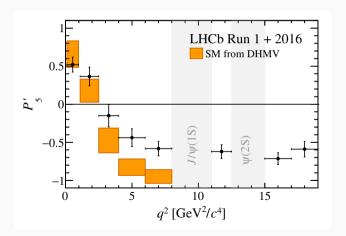
$$\mathcal{O}_{i}^{(6)}\supset[\overline{c}\gamma_{\mu}P_{L}b][\overline{\nu}_{\ell}\gamma^{\mu}P_{L}\ell^{-}]$$

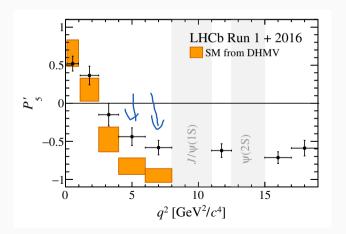


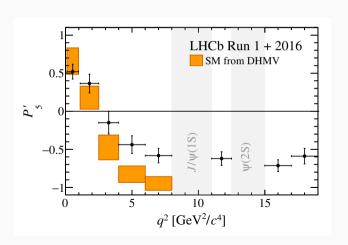


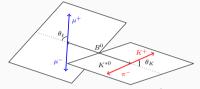


Why are we doing it?



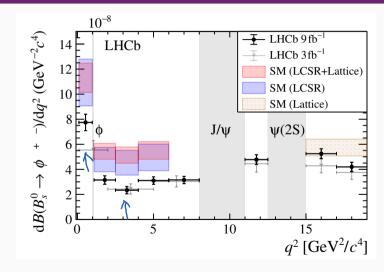




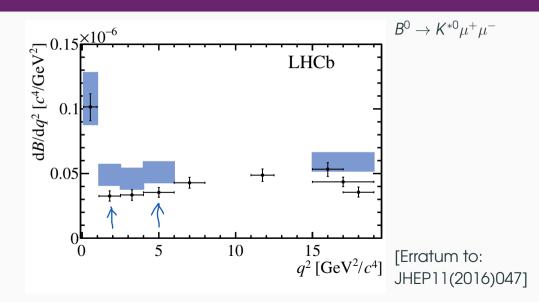


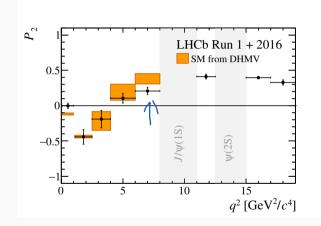
(a) θ_K and θ_ℓ definitions for the B^0 decay

$$B^0 o K^{*0} \mu^+ \mu^-$$



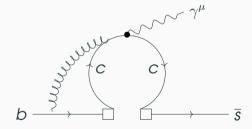
[PRL 127 (2021) 151801]





[CERN-EP-2020-027]

$$\mathcal{O}_1 = (\bar{s}\gamma_\mu P_L T^a c)(\bar{c}\gamma^\mu P_L T^a b) , \qquad \qquad \mathcal{O}_2 = (\bar{s}\gamma_\mu P_L c)(\bar{c}\gamma^\mu P_L b) ,$$



How are we doing it?

Four-quark
$$(q \neq s)$$
:

$$\mathcal{O}_{1}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu} b) (\overline{q} \gamma^{\mu} q),$$

$$\mathcal{O}_{3}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu\nu\rho} b) (\overline{q} \gamma^{\mu\nu\rho} q),$$

$$\mathcal{O}_5^{sbqq} = (\overline{s} \, P_R \, b)(\overline{q} \, q) \,,$$

$$\mathcal{O}_7^{sbqq} = (\overline{s} \, P_R \, \sigma^{\mu\nu} \, b)(\overline{q} \, \sigma_{\mu\nu} \, q) \,,$$

$$\mathcal{O}_9^{sbqq} = (\overline{s} \, P_R \, \gamma_{\mu\nu\rho\sigma} \, b) \, (\overline{q} \gamma^{\mu\nu\rho\sigma} q) \, ,$$

$$\mathcal{O}_2^{sbqq} = (\overline{s} P_R \gamma_\mu T^A b) (\overline{q} \gamma^\mu T^A q),$$

$$\mathcal{O}_4^{sbqq} = (\overline{s} \, P_R \, \gamma_{\mu\nu\rho} T^A b) \, (\overline{q} \gamma^{\mu\nu\rho} \, T^A q) \,,$$

$$\mathcal{O}_6^{sbqq} = (\overline{s} P_R T^A b)(\overline{q} T^A q) ,$$

$$\mathcal{O}_8^{sbqq} = (\overline{s} P_R \sigma^{\mu\nu} T^A b) (\overline{q} \sigma_{\mu\nu} T^A q) ,$$

$$\mathcal{O}_{10}^{sbqq} = (\overline{s} \, P_R \, \gamma_{\mu\nu\rho\sigma} \, T^A b) \, (\overline{q} \gamma^{\mu\nu\rho\sigma} \, T^A q)$$

Four-quark $(q \neq s)$:

$$\mathcal{A} \mathcal{O}_{1}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu} b) (\overline{q} \gamma^{\mu} q),$$

$$\mathcal{O}_{3}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu\nu\rho} b) (\overline{q} \gamma^{\mu\nu\rho} q),$$

$$\mathcal{O}_{5}^{sbqq} = (\overline{s} P_{R} b) (\overline{q} q),$$

$$\mathcal{O}_{7}^{sbqq} = (\overline{s} P_{R} \sigma^{\mu\nu} b) (\overline{q} \sigma_{\mu\nu} q),$$

$$\mathcal{O}_{9}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu\nu\rho\sigma} b) (\overline{q} \gamma^{\mu\nu\rho\sigma} q),$$

$$\begin{split} \swarrow & \mathcal{O}_2^{sbqq} = (\overline{s}\,P_R\,\gamma_\mu\,T^{\scriptscriptstyle A}b)\;(\overline{q}\gamma^\mu\,T^{\scriptscriptstyle A}q)\,,\\ & \mathcal{O}_4^{sbqq} = (\overline{s}\,P_R\,\gamma_{\mu\nu\rho}T^{\scriptscriptstyle A}b)\;(\overline{q}\gamma^{\mu\nu\rho}\,T^{\scriptscriptstyle A}q)\,,\\ & \mathcal{O}_6^{sbqq} = (\overline{s}\,P_R\,T^{\scriptscriptstyle A}b)(\overline{q}\,T^{\scriptscriptstyle A}q)\;,\\ & \mathcal{O}_8^{sbqq} = (\overline{s}\,P_R\,\sigma^{\mu\nu}\,T^{\scriptscriptstyle A}b)(\overline{q}\sigma_{\mu\nu}\,T^{\scriptscriptstyle A}q)\;,\\ & \mathcal{O}_8^{sbqq} = (\overline{s}\,P_R\,\sigma^{\mu\nu}\,T^{\scriptscriptstyle A}b)(\overline{q}\sigma_{\mu\nu}\,T^{\scriptscriptstyle A}q)\;,\\ & \mathcal{O}_{10}^{sbqq} = (\overline{s}\,P_R\,\gamma_{\mu\nu\rho\sigma}\,T^{\scriptscriptstyle A}b)\;(\overline{q}\gamma^{\mu\nu\rho\sigma}\,T^{\scriptscriptstyle A}q) \end{split}$$

Four-quark
$$(q \neq s)$$
:

$$\mathcal{O}_{1}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu} b) (\overline{q} \gamma^{\mu} q) , \qquad \mathcal{O}_{2}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu} T^{A} b) (\overline{q} \gamma^{\mu} T^{A} q) ,$$

$$\mathcal{O}_{3}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu\nu\rho} b) (\overline{q} \gamma^{\mu\nu\rho} q) , \qquad \mathcal{O}_{4}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu\nu\rho} T^{A} b) (\overline{q} \gamma^{\mu\nu\rho} T^{A} q) ,$$

$$\mathcal{O}_{5}^{sbqq} = (\overline{s} P_{R} b) (\overline{q} q) , \qquad \mathcal{O}_{6}^{sbqq} = (\overline{s} P_{R} T^{A} b) (\overline{q} T^{A} q) ,$$

$$\mathcal{O}_{7}^{sbqq} = (\overline{s} P_{R} \sigma^{\mu\nu} b) (\overline{q} \sigma_{\mu\nu} q) , \qquad \mathcal{O}_{8}^{sbqq} = (\overline{s} P_{R} \sigma^{\mu\nu} T^{A} b) (\overline{q} \sigma_{\mu\nu} T^{A} q) ,$$

$$\mathcal{O}_{9}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu\nu\rho\sigma} b) (\overline{q} \gamma^{\mu\nu\rho\sigma} q) , \qquad \mathcal{O}_{10}^{sbqq} = (\overline{s} P_{R} \gamma_{\mu\nu\rho\sigma} T^{A} b) (\overline{q} \gamma^{\mu\nu\rho\sigma} T^{A} q) ,$$

Four-quark
$$(q = s)$$
:

$$\mathcal{L} \mathcal{O}_{1}^{sbss} = (\overline{s} \gamma_{\mu} P_{L} b) (\overline{s} \gamma^{\mu} s) , \qquad \mathcal{L} \mathcal{O}_{1'}^{sbss} = (\overline{s} \gamma_{\mu} P_{R} b) (\overline{s} \gamma^{\mu} s) ,$$

$$\mathcal{O}_{3}^{sbss} = (\overline{s} \gamma_{\mu\nu\rho} P_{L} b) (\overline{s} \gamma^{\mu\nu\rho} s) , \qquad \mathcal{O}_{3'}^{sbss} = (\overline{s} \gamma_{\mu\nu\rho} P_{R} b) (\overline{s} \gamma^{\mu\nu\rho} s) ,$$

$$\mathcal{O}_{5}^{sbss} = (\overline{s} P_{L} b) (\overline{s} s) , \qquad \mathcal{O}_{5'}^{sbss} = (\overline{s} P_{R} b) (\overline{s} s) ,$$

$$\mathcal{O}_{7'}^{sbss} = (\overline{s} \sigma^{\mu\nu} P_{L} b) (\overline{s} \sigma_{\mu\nu} s) , \qquad \mathcal{O}_{7'}^{sbss} = (\overline{s} \sigma^{\mu\nu} P_{R} b) (\overline{s} \sigma_{\mu\nu} s) ,$$

$$\mathcal{O}_{9'}^{sbss} = (\overline{s} \gamma_{\mu\nu\rho\sigma} P_{R} b) (\overline{s} \gamma^{\mu\nu\rho\sigma} s) .$$

$$\mathcal{O}_{9'}^{sbss} = (\overline{s} \gamma_{\mu\nu\rho\sigma} P_{R} b) (\overline{s} \gamma^{\mu\nu\rho\sigma} s) .$$

Reduce number of integrals that need to be computed

Reduce number of integrals that need to be computed

Simplify integral process

Reduce to scalar integrals (Passarino-Veltman or projector method) Reduce to scalar integrals (Passarino-Veltman or projector method)

 Reduce to minimum number of master integrals (Laporta algorithm)

Laporta Algorithm

[hep-ph 1705.05610]_{15/25}

► Write all integrals as a **linear combination** of master integrals

► Write all integrals as a **linear combination** of master integrals

Write complex integrals in terms of simpler ones

▶ Write all integrals as a **linear combination** of master integrals

Write complex integrals in terms of simpler ones

 For example, integrals with higher propagator powers are more complex For example

$$T(d, a_1, a_2) = \int d^d \ell \frac{1}{(\ell^2 - m_1^2)^{a_1} ((\ell + p)^2 - m_1^2)^{a_2}}$$

Symmetry Relations

For example

$$T(d, a_1, a_2) = \int d^d \ell \frac{1}{(\ell^2 - m_1^2)^{a_1} ((\ell + p)^2 - m_1^2)^{a_2}}$$

obeys

$$T(d, a_1, a_2) = T(d, a_2, a_1)$$

under

$$\ell \rightarrow -\ell - p$$

Our integrals are invariant under Lorentz transformations, so under

$$\mathcal{P}^{\mu} o \mathcal{P}^{\mu} + \delta \mathcal{P}^{\mu} = \mathcal{P}^{\mu} + \delta \epsilon^{\mu}_{\nu} \mathcal{P}^{\nu}$$
 with $\delta \epsilon^{\mu}_{\nu} = -\delta \epsilon^{\nu}_{\mu}$

Our integrals are invariant under Lorentz transformations, so under

$$p^{\mu} o p^{\mu} + \delta p^{\mu} = p^{\mu} + \delta \epsilon^{\mu}_{\nu} p^{\nu}$$
 with $\delta \epsilon^{\mu}_{\nu} = -\delta \epsilon^{\nu}_{\mu}$

we get

$$\sum_{i=1}^{E} \left(p_i^{\nu} \frac{\partial}{\partial p_{i,\mu}} - p_i^{\mu} \frac{\partial}{\partial p_{i,\nu}} \right) I(p_1, \dots, p_n) = 0$$

Our integrals are invariant under Lorentz transformations, so under

$$p^{\mu} \rightarrow p^{\mu} + \delta p^{\mu} = p^{\mu} + \delta \epsilon^{\mu}_{\nu} p^{\nu}$$
 with $\delta \epsilon^{\mu}_{\nu} = -\delta \epsilon^{\nu}_{\mu}$

we get

$$\sum_{i=1}^{E} \left(p_i^{\nu} \frac{\partial}{\partial p_{i,\mu}} - p_i^{\mu} \frac{\partial}{\partial p_{i,\nu}} \right) I(p_1, \dots, p_n) = 0$$

which we contract with all antisymmetric combinations of

$$p_{r,\mu}p_{s,\nu}-p_{s,\mu}p_{r,\nu}$$

$$\int d^{\alpha} \ell \frac{\partial}{\partial \ell^{\mu}} \left[\left(\frac{\ell^{\mu}}{(\ell^2 - m_1^2)^n} \right) \right] = 0$$

$$\int d^d\ell \frac{\partial}{\partial \ell^\mu} \left[\left(\frac{\ell^\mu}{(\ell^2 - m_1^2)^n} \right) \right] = 0$$

$$\frac{\partial}{\partial \ell^{\mu}} \left[\ell^{\mu} \right] \int d^d \ell \left(\frac{\ell^{\mu}}{(\ell^2 - m_1^2)^n} \right) - 2n \int d^d \ell \left(\frac{\ell^2}{(\ell^2 - m_1^2)^{n+1}} \right) = 0$$

$$\begin{split} \int d^d\ell \frac{\partial}{\partial \ell^\mu} \left[\left(\frac{\ell^\mu}{(\ell^2 - m_1^2)^n} \right) \right] &= 0 \\ \frac{\partial}{\partial \ell^\mu} \left[\ell^\mu \right] \int d^d\ell \left(\frac{\ell^\mu}{(\ell^2 - m_1^2)^n} \right) - 2n \int d^d\ell \left(\frac{\ell^2}{(\ell^2 - m_1^2)^{n+1}} \right) &= 0 \\ (d-2n) \int d^d\ell \left(\frac{1}{(\ell^2 - m_1^2)^n} \right) - 2nm^2 \int d^d\ell \left(\frac{1}{(\ell^2 - m_1^2)^{n+1}} \right) &= 0 \end{split}$$

$$\int d^{d}\ell \frac{\partial}{\partial \ell^{\mu}} \left[\left(\frac{\ell^{\mu}}{(\ell^{2} - m_{1}^{2})^{n}} \right) \right] = 0$$

$$\frac{\partial}{\partial \ell^{\mu}} \left[\ell^{\mu} \right] \int d^{d}\ell \left(\frac{\ell^{\mu}}{(\ell^{2} - m_{1}^{2})^{n}} \right) - 2n \int d^{d}\ell \left(\frac{\ell^{2}}{(\ell^{2} - m_{1}^{2})^{n+1}} \right) = 0$$

$$(d - 2n) \int d^{d}\ell \left(\frac{1}{(\ell^{2} - m_{1}^{2})^{n}} \right) - 2nm^{2} \int d^{d}\ell \left(\frac{1}{(\ell^{2} - m_{1}^{2})^{n+1}} \right) = 0$$

$$= 0$$

$$\int \prod_{j=1}^{L} d^{\alpha} \ell_{j} \frac{\partial}{\partial \ell_{f}^{\mu}} \left[\left(\frac{q_{l}^{\mu}}{P_{1}^{\alpha_{1}} \dots P_{N}^{\alpha_{N}}} \right) \right] = 0$$

With
$$f = 1, ..., L$$
 and $I = 1, ..., L + E$

$$\int \prod_{j=1}^{L} d^{a} \ell_{j} \frac{\partial}{\partial \ell_{f}^{\mu}} \left[\left(\frac{q_{i}^{\mu}}{P_{1}^{a_{1}} \dots P_{N}^{a_{N}}} \right) \right] = 0$$

With
$$f = 1, ..., L$$
 and $f = 1, ..., L + E$
giving $L(L + E)$ identities for fixed a

Compare to known integrals

► Compare to known integrals

or

Differential equations and canonical form

For a vector of master integrals $\vec{M}(\epsilon, \{x\})$, the aim is to get it in a form

$$\partial \vec{M}(\epsilon, \{X\}) = \epsilon \alpha(X) \vec{M}(\epsilon, \{X\})$$

which allows us to solve for \vec{M} order by order in ϵ .

For a vector of master integrals $\vec{M}(\epsilon, \{x\})$, the aim is to get it in a form

$$\partial \vec{M}(\epsilon, \{X\}) = \epsilon \alpha(X) \vec{M}(\epsilon, \{X\})$$

which allows us to solve for \vec{M} order by order in ϵ . Even better, is to get it in dlog form

$$\partial \vec{M}(\epsilon, \{x\}) = \epsilon A_l dlog(L_l(\{x\})) \vec{M}(\epsilon, \{x\})$$

Assume the only master integral M has no poles (or multiply by ϵ^n)

$$M = \sum_{n=0}^{N} \epsilon^n M^{(n)}$$
 and $M = \epsilon A(x)M$

Assume the only master integral M has no poles (or multiply by ϵ^n)

$$M = \sum_{n=0}^{N} \epsilon^n M^{(n)}$$
 and $M = \epsilon A(x)M$

Then we have

$$dM^{(0)} = 0$$
, so $M^{(0)} = C$
 $dM^{(1)} = CA(x)$, so $M^{(1)} = C \int dx A(x)$ (etc.)

Conclusions

► For the 40 + 40 operators, **all integrals** reduced to master integrals

 \blacktriangleright For the 40 + 40 operators, **all integrals** reduced to master integrals

► For one family in the first 10 + 10 operators, we have integrals in dlog form

 \blacktriangleright For the 40 + 40 operators, **all integrals** reduced to master integrals

► For one family in the first 10 + 10 operators, we have integrals in dlog form

 For remaining families, we have compared to known integrals using Laporta algorithm ► Compare **one loop reducible** integrals of sbcc operators to literature

► Compare **one loop reducible** integrals of sbcc operators to literature

► Get all remaining (i.e. non-sbcc) operators into canonical form

► Compare **one loop reducible** integrals of sbcc operators to literature

► Get all remaining (i.e. non-sbcc) operators into canonical form

Express the full amplitude in terms of polylogs of invariants

▶ B decays are an important and interesting area of work

 The multi-loop toolkit is invaluable (Laporta algorithm and canonical form)

▶ I'm looking at 2 loop calculations (where SM is not assumed)

Backup Slides

Laporta Complexity

Let our integral be

$$\frac{1}{D_1^{\alpha_1}D_2^{\alpha_2}\dots D_n^{\alpha_n}}$$

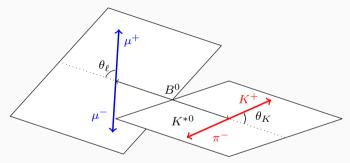
with

$$\alpha_i = \left\{ \begin{array}{ll} \alpha_i, & \alpha_i \geq 0, \\ b_i, & \alpha_i < 0. \end{array} \right.$$

The most complicated integrals have

- 1. Largest n
- 2. Largest $\sum_i a_i$
- 3. Largest $\sum_i b_i$
- 4. Largest i_1 , largest i_2 , ..., largest i_n
- 5. Largest a_1 , largest a_2 , ..., largest a_n
- 6. Largest $-b_1$, largest $-b_2$, ..., largest $-b_n$

Explain $\overline{P_5}$



(a) θ_K and θ_ℓ definitions for the B^0 decay

$$B^0 o K^{*0} \mu^+ \mu^-$$

P_5' and P_2

The angular distribution of $B^0 o K^{*0} \mu^+ \mu^-$ decay is given by

$$\begin{split} &\frac{1}{\mathrm{d}\left(\Gamma+\bar{\varGamma}\right)\mathrm{d}q}\frac{\mathrm{d}^4\left(\Gamma+\bar{\varGamma}\right)}{\mathrm{d}q^2\mathrm{d}\bar{\varOmega}}\bigg|_P = \frac{9}{32\pi}\bigg[\frac{3}{4}(1-F_\mathrm{L})\sin^2\theta_K + F_\mathrm{L}\cos^2\theta_K \\ &+\frac{1}{4}(1-F_\mathrm{L})\sin^2\theta_K\cos2\theta_\ell - F_\mathrm{L}\cos^2\theta_K\cos2\theta_\ell + S_3\sin^2\theta_K\sin^2\theta_\ell\cos2\phi \\ &+S_4\sin2\theta_K\sin2\theta_\ell\cos\phi + S_5\sin2\theta_K\sin\theta_\ell\cos\phi + \frac{4}{3}A_\mathrm{FB}\sin^2\theta_K\cos\theta_\ell \\ &+S_7\sin2\theta_K\sin\theta_\ell\sin\phi + S_8\sin2\theta_K\sin2\theta_\ell\sin\phi + S_9\sin^2\theta_K\sin^2\theta_\ell\sin2\phi\bigg] \end{split}$$

 F_L is a fraction of longitudinal polarization of K^{*0} ;

$$P_5' \frac{S_5}{\sqrt{F_L(1 - F_L)}}$$
 and $P_2 = \frac{2}{3} \frac{A_{FB}}{(1 - F_L)}$

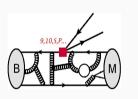
$|\mathit{sb}\{\gamma,\ell\ell\}$ basis |

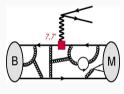
$$J_7 = 2im_b q_\nu [\bar{s}\sigma^{\mu\nu}P_R b]$$

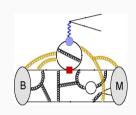
$$J_9 = (q^\mu q^\nu - q^2 g^{\mu\nu})[\bar{s}\gamma_\nu P_L b]$$

sbcc operators

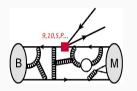
Form Factors

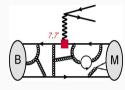






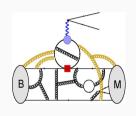
Form Factors





▶ Local $\mathcal{P}_{\mu}\langle \overline{M}(k)|\overline{s}\Gamma^{\mu}b|\overline{B}(k+q)\rangle$

Form Factors



▶ Non-local $i\mathcal{P}_{\mu}\int d^4x e^{iq.x} \langle \overline{M}(k)|T\{J_{\text{em}}^{\mu}(x), \mathcal{C}_{i}^{\text{sbcc}}\mathcal{O}_{i}^{\text{sbcc}}\}|\overline{B}(k+q)\rangle$

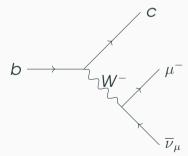
Weak Effective Theory Sectors

Sector: Complete set of operators so that at leading order in G_F they can only mix into each other

Weak Effective Theory Sectors

Sector: Complete set of operators so that at leading order in G_F they can only mix into each other

e.g. $cb\mu\nu_{\mu}$.



Mixing

sbqq mixes into $sb\ell\ell$ through non-local operator.

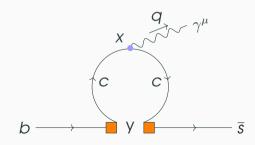
$$\int d^4x e^{iq.x} T\{J_{em}^{\mu}(x-y), C_i^{\text{sbcc}} \mathcal{O}_i^{\text{sbcc}}(y)\}$$

Mixing

sbqq mixes into *sbll* through non-local operator.

$$\int d^4x e^{iq.x} T\{J_{em}^{\mu}(x-y), C_i^{\text{sbcc}} \mathcal{O}_i^{\text{sbcc}}(y)\}$$

for example:



Operator Product Expansion

Technical point: **Pertubation constraints:** $|q^2 - 4m_c^2| > \Lambda_{hadronic}^2$

Operator Product Expansion

Technical point: **Pertubation constraints:** $|q^2 - 4m_c^2| > \Lambda_{hadronic}^2$

$$\int d^4x e^{iq.x} T\{J_{em}^{\mu}(x), C_i^{\text{sbcc}} \mathcal{O}_i^{\text{sbcc}}\}$$

$$= \sum_{ij} F_{ij} C_i^{\text{sbcc}} \left[\overline{s} \Gamma_j^{\mu} b\right]$$

Example

$$F_{29} C_2^{\text{sbcc}} [\overline{s} \Gamma_9^{\mu} b]$$

$$= \frac{2}{9} (4\pi e^{-\gamma})^{\epsilon} \left[\frac{12m_c^2}{q^2} + \left(2 + \frac{3}{\epsilon} + 3\log\frac{\mu^2}{m_c^2}\right) + 3\mathrm{DiscB}(q^2, m_c, m_c) \frac{(2m_c^2 + q^2)}{q^2} \right] \\ \times \frac{\mathcal{C}_2^{\mathrm{sbcc}}}{2} (q^2 g^{\mu\nu} - q^{\mu} q^{\nu}) [\overline{s} \gamma_{\nu} P_{\mathsf{L}} b]$$

DiscB

$$\mathsf{DiscB}(q^2, m_c, m_c) = \frac{\sqrt{q^2(q^2 - 4m_c^2)}}{q^2} + \log\left(\frac{2m_c^2 - q^2 + \sqrt{q^2(q^2 - 4m_c^2)}}{2m_c^2}\right)$$