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Figure 2: The ve classes of two-loop diagrams that contribute to the functions F
(7,9)
1,2 . Crosses

denote insertion of the EM current, which are numbered for proper reference. The two dia-

grams of type (e) labeled as 0 vanish.

and the Ward Identity is respected if and only if the coecients C(i) satisfy:

C(i) = − q2

mb

A(i) −
m2

b + q2

2mb

B(i)  (3.5)

This condition applies to gauge-invariant combinations and not to single diagrams. We will

detail which are the gauge-invariant combinations below.

We evaluate scalar quantities A(i), B(i), C(i) for all the two-loop diagrams listed in Figure 2,

grouped in dierent classes i = a, b, c, d, e, as detailed in the gure. The results for the

functions A(i), B(i), C(i) are given in terms of dimensionless two-loop scalar integrals of the

type:

j[i;ni1 , ni2 , ni3 , ni4 , ni5 , ni6 , ni7 ] = (2π)−2d

∫
(m2

b)
Ni−4(µ̃2)2 dd` ddr

P
ni1
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P
ni7
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(3.6)

where the numbers ni are integers (positive or negative), with Ni =
7

j=1 nij , the objects Pi

are propagators (see below), and the indices i1,    , i7 depend on the class. In addition,

d = 4 − 2, and µ̃2 ≡ µ2eγE4π, with µ the MS scale. Our choice of momentum routings

xes the rst ve propagators in each class, and the other two are chosen to be linear in loop

momenta and such that the seven propagators form a linearly-independent set. The complete
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models. The pseudoexperiments are generated with signal
yields many times larger than the data, in order to render
statistical fluctuations negligible.

The size of the total systematic uncertainty varies
depending on the angular observable and the q2 bin.

The majority of observables in both the Si and Pð0Þ
i basis

have a total systematic uncertainty between 5% and 25% of
the statistical uncertainty. For FL, the systematic uncer-
tainty tends to be larger, typically between 20% and 50%.
The systematic uncertainties are given in Table 3
of Ref. [70].

The dominant systematic uncertainties arise from the
peaking backgrounds that are neglected in the analysis, the
bias correction, and, for the narrow q2 bins, from the
uncertainty associated with evaluating the acceptance at a
fixed point in q2. For the peaking backgrounds, the
systematic uncertainty is evaluated by injecting additional
candidates, drawn from the angular distributions of the
background modes, into the pseudoexperiment data. The
systematic uncertainty for the bias correction is determined
directly from the pseudoexperiments used to validate the
fit. The systematic uncertainty from the variation of the
acceptance with q2 is determined by moving the point in q2

at which the acceptance is evaluated to halfway between the
bin center and the upper or the lower edge. The largest

deviation is taken as the systematic uncertainty. Examples
of further sources of systematic uncertainty investigated
include the mðKþπ−Þ line shape for the S-wave contribu-
tion, the assumption that the acceptance function is flat
across themðKþπ−Þ mass, the effect of the Bþ → Kþμþμ−

veto on the angular distribution of the background and the
order of polynomial used for the background parametriza-
tion. These sources make a negligible contribution to the
total uncertainty. With respect to the analysis of Ref. [1],
the systematic uncertainty from residual differences
between data and simulation is significantly reduced,
owing to an improved decay model for B0 → J=ψK0

decays [68].
The CP-averaged observables FL, AFB, S5, and P0

5 that

are obtained from the Si and Pð0Þ
i fits are shown together

with their respective SM predictions in Fig. 2. The results
for all observables are given in Figs. 1 and 2 and Tables 1
and 2 of Ref. [70]. In addition, the statistical correlation
between the observables is provided in Tables 4–23. The
SM predictions are based on the prescription of Ref. [44],
which combines light-cone sum rule calculations [43],
valid in the low-q2 region, with lattice determinations at
high q2 [71,72] to yield more precise determinations of the

form factors over the full q2 range. For the Pð0Þ
i observables,

predictions from Ref. [73] are shown using form factors
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FIG. 2. Results for the CP-averaged angular observables FL, AFB, S5, and P0
5 in bins of q2. The data are compared to SM predictions

based on the prescription of Refs. [43,44], with the exception of the P0
5 distribution, which is compared to SM predictions based on

Refs. [73,74].
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models. The pseudoexperiments are generated with signal
yields many times larger than the data, in order to render
statistical fluctuations negligible.
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T 1: D B(B0
s → φµ+µ−)/q2  ,     

  ,    q2. T  ,  , , ,
            .

q2 interval dB(B0
s → φµ+µ−)B(B0

s → Jψφ)dq2 dB(B0
s → φµ+µ−)dq2

[ GeV2c4] [10−5GeV−2c4] [10−8GeV−2c4]

01–098 761± 052± 012 774± 053± 012± 037

11–25 309± 029± 007 315± 029± 007± 015

25–40 230± 025± 005 234± 026± 005± 011

40–60 305± 024± 006 311± 024± 006± 015

60–80 310± 023± 006 315± 024± 006± 015

110–125 469± 030± 007 478± 030± 008± 023

150–170 515± 028± 010 525± 029± 010± 025

170–190 412± 029± 012 419± 029± 012± 020

11–60 283± 015± 005 288± 015± 005± 014

150–190 455± 020± 011 463± 020± 011± 022
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F 2: D   B(B0
s → φµ+µ−)/q2,   SM 

 L C S R [33, 35, 38]   q2  L  [36, 37]   q2.
T    LHC 3 −1  [1, 30]     .

from Ref. [33] and Ref. [34]. The resulting branching fractions are

B(B0
s → φµ+µ−)

B(B0
s → Jψφ)

= (800± 021± 016± 003)× 10−4 ,

B(B0
s → φµ+µ−) = (814± 021± 016± 003± 039)× 10−7,

where the uncertainties are, in order, statistical, systematic, from the extrapolation to the
full q2 region, and for the absolute branching fraction, from the branching fraction of the
normalization mode.

4
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796 < mKπ < 996MVc2    . T     

            796 < mKπ < 996MVc2

  644 < mKπ < 1200MVc2. T    ,    -

     q2 . T     0.89  

 q2 ,   0.95    q2       .

H   ,        

  q2  11 < q2 < 60GV2c4 

Bq2 =
(
0342+0.017

−0.017()± 0009()± 0023()
)
× 10−7c4GV2

T           

 . [1].

T     B0→ K∗(892)0µ+µ−  

B
(
B0→ K∗(892)0µ+µ−) =

(
0904+0.016

−0.015 ± 0010± 0006± 0061
)
× 10−6,

  ,    ,  , ,   

   q2             

. T         

     7    .

A    . A       

    ,          

  .
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Figure 5. D    B0→ K∗(892)0µ+µ−      q2. T

     SM   . [47,48]. N SM     

     cc̄ . T     q2  150 < q2 < 190GV2c4

  . T           -

 ,       B0→ JψK∗0  Jψ → µ+µ− 

.

– 2 –

B0 → K ∗0µ+µ−

[Erratum to:
JHEP11(2016)047]

https://link.springer.com/article/10.1007/JHEP04(2017)142
https://link.springer.com/article/10.1007/JHEP04(2017)142
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F 4: R      P1–P3, P
′
4, P

′
6  P ′

8    q2. T
    SM    R. [70, 71].

iii

[CERN-EP-2020-027]

https://cds.cern.ch/record/2712641/files/LHCb_PAPER_2020_002.pdf
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2 Theoretical framework

2.1 Set-up: Weak Eective Theory and Conventions

B decay amplitudes are calculated within the Weak Eective Theory (WET) where the SM

particles with EW-scale masses have been integrated out. The WET lagrangian then contains

QCD and QED interactions, and a tower of higher dimensional local operators which is typi-

cally truncated at dimension six [23, 24]. The part of the WET Lagrangian which is relevant

for the contributions discussed in this paper is:

LWET = LQCD + LQED +
4GF√

2
V ∗
tsVtb

[
C1O1 + C2O2 + C7O7 + C9O9 + C10O10

]
(2.1)

where

O1 = (s̄γµPLT
ac)(c̄γµPLT

ab) , O2 = (s̄γµPLc)(c̄γ
µPLb) ,

O9 =
α

4π
(s̄γµPLb)(¯̀γ

µ`) , O7 =
e

(4π)2
mb(s̄σµνPRb)F

µν , (2.2)

O10 =
α

4π
(s̄γµPLb)(¯̀γ

µγ5`) ,

We use the following conventions: PR,L = (1± γ5)2, σµν ≡ (i2)[γµ, γν ], the covariant deriva-

tive is given by Dµq = (∂µ + ieQqAµ + igsT
AGA

µ )q, and mb = mb(µ) denotes the MS b-quark

mass. In our calculation of NLO corrections from O1,2, the scheme dependence of mb is a

higher order eect. We will neglect the strange quark mass throughout the paper.

2.2 Local and Non-local form factors in exclusive b → s`+`−

To the leading non-trivial order in QED, the eective theory amplitude for the exclusive decay

B̄ → M`+`−, with M an undetermined meson (or hadronic state in general [13]), is given in

terms of local and non-local form factors [7, 13, 25]:

A(B̄ → M`+`−) =
GF α V ∗

tsVtb√
2π


(C9 L

µ
V + C10 L

µ
A) Fµ −

Lµ
V

q2

{
2imbC7 FT

µ +Hµ

}
, (2.3)

up to terms of O(α2). Here q2 is the invariant squared mass of the lepton pair and Lµ
i are

leptonic currents, Lµ
V (A) ≡ ū`(q1)γ

µ(γ5)v`(q2). In this amplitude we have neglected contribu-

tions from other local semileptonic and dipole operators that are not relevant in the SM, as

well as higher order QED corrections, but it is exact in QCD. All non-perturbative eects are

contained in the local and non-local form factors F (T )µ
i and Hµ, with

Fµ = 〈M(k)s̄γµPL bB̄(q + k)〉 , FT
µ = 〈M(k)s̄σµνq

νPR bB̄(q + k)〉  (2.4)

4

b s

γµ

cc
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Our conventions for the eld-strength tensors have been specied in the previous section.

I Four-quark (q 6= s):

Osbqq
1 = (s PR µb) (q

µq) , Osbqq
2 = (s PR µ T

Ab) (qµ TAq) ,

Osbqq
3 = (s PR µνρ b) (q

µνρq) , Osbqq
4 = (s PR µνρT

Ab) (qµνρ TAq) ,

Osbqq
5 = (s PR b)(q q) , Osbqq

6 = (s PR TAb)(q TAq) ,

Osbqq
7 = (s PR σµν b)(q σµν q) , Osbqq

8 = (s PR σµν TAb)(qσµν T
Aq) , (2.10)

Osbqq
9 = (s PR µνρσ b) (q

µνρσq) , Osbqq
10 = (s PR µνρσ T

Ab) (qµνρσ TAq) ,

where q = u, d, c. In the case of q = b, the color-octet operators Osbbb
2,4,6,8,10 are Fierz-equivalent

to the color-singlet ones (see App. B for details) and are not included in the basis. In addition,

(for q = u, d, c, b) the analogous set with opposite chirality is needed:

Osbqq
i′ = Osbqq

i

∣∣∣
PL,R→PR,L

(2.11)

The case q = s needs a separate discussion because it is convenient to group primed and unprimed

operators in a dierent manner, which simplies the mixing pattern:

I Four-quark (q = s):

Osbss
1 = (s µ PL b) (sµ s) , Osbss

1′ = (s µ PR b) (sµ s) ,

Osbss
3 = (s µνρ PL b) (sµνρs) , Osbss

3′ = (s µνρ PR b) (sµνρ s) ,

Osbss
5 = (s PL b)(s s) , Osbss

5′ = (s PR b)(s s) ,

Osbss
7 = (sσµν PL b)(sσµν s) , Osbss

7′ = (sσµν PR b)(sσµν s) , (2.12)

Osbss
9 = (s µνρσ PL b) (sµνρσs) , Osbss

9′ = (s µνρσ PR b) (sµνρσs) 

Again, the color-octet operators are Fierz-redundant and have been omitted (see App. B).

I Semileptonic :

Osb``′
1 = (s PR µ b) (`

µ`′) , Osb``′
1′ = (s PLµ b) (`

µ `′) ,

Osb``′
3 = (s PR µνρ b) (`

µνρ`′) , Osb``′
3′ = (s PL µνρ b) (`

µνρ `′) ,

Osb``′
5 = (s PR b)(` `′) , Osb``′

5′ = (s PL b)(` `′) ,

Osb``′
7 = (s PR σµν b)(`σµν `

′) , Osb``′
7′ = (s PL σµν b)(`σµν `

′) , (2.13)

Osb``′
9 = (s PR µνρσ b) (`

µνρσ`′) , Osb``′
9′ = (s PL µνρσ b) (`

µνρσ`′) ,

Osb``′
ν 1 = (s PR µ b) (ν`

µν`′) , Osb``′
ν 1′ = (s PL µ b) (ν`

µν`′)  (2.14)

In semileptonic operators we also allow for lepton-avour non-universality, and lepton-avour

violation. The later case (` 6= `′) is referred to as Class Vb, while the case with two neutrinos is

referred to as Class Vν.

The corresponding ∆S = 0 (∆I = 12) operators are obtained from Eqs. (2.9)-(2.14) with

the replacement s ↔ d.

– 8 –

https://arxiv.org/pdf/1704.06639
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2,4,6,8,10 are Fierz-equivalent

to the color-singlet ones (see App. B for details) and are not included in the basis. In addition,

(for q = u, d, c, b) the analogous set with opposite chirality is needed:
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The case q = s needs a separate discussion because it is convenient to group primed and unprimed

operators in a dierent manner, which simplies the mixing pattern:
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I Semileptonic :

Osb``′
1 = (s PR µ b) (`

µ`′) , Osb``′
1′ = (s PLµ b) (`

µ `′) ,

Osb``′
3 = (s PR µνρ b) (`

µνρ`′) , Osb``′
3′ = (s PL µνρ b) (`

µνρ `′) ,

Osb``′
5 = (s PR b)(` `′) , Osb``′

5′ = (s PL b)(` `′) ,

Osb``′
7 = (s PR σµν b)(`σµν `

′) , Osb``′
7′ = (s PL σµν b)(`σµν `

′) , (2.13)

Osb``′
9 = (s PR µνρσ b) (`

µνρσ`′) , Osb``′
9′ = (s PL µνρσ b) (`

µνρσ`′) ,

Osb``′
ν 1 = (s PR µ b) (ν`

µν`′) , Osb``′
ν 1′ = (s PL µ b) (ν`

µν`′)  (2.14)

In semileptonic operators we also allow for lepton-avour non-universality, and lepton-avour

violation. The later case (` 6= `′) is referred to as Class Vb, while the case with two neutrinos is

referred to as Class Vν.

The corresponding ∆S = 0 (∆I = 12) operators are obtained from Eqs. (2.9)-(2.14) with

the replacement s ↔ d.
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Our conventions for the eld-strength tensors have been specied in the previous section.

I Four-quark (q 6= s):

Osbqq
1 = (s PR µb) (q

µq) , Osbqq
2 = (s PR µ T

Ab) (qµ TAq) ,

Osbqq
3 = (s PR µνρ b) (q

µνρq) , Osbqq
4 = (s PR µνρT

Ab) (qµνρ TAq) ,

Osbqq
5 = (s PR b)(q q) , Osbqq

6 = (s PR TAb)(q TAq) ,

Osbqq
7 = (s PR σµν b)(q σµν q) , Osbqq

8 = (s PR σµν TAb)(qσµν T
Aq) , (2.10)

Osbqq
9 = (s PR µνρσ b) (q

µνρσq) , Osbqq
10 = (s PR µνρσ T

Ab) (qµνρσ TAq) ,

where q = u, d, c. In the case of q = b, the color-octet operators Osbbb
2,4,6,8,10 are Fierz-equivalent

to the color-singlet ones (see App. B for details) and are not included in the basis. In addition,

(for q = u, d, c, b) the analogous set with opposite chirality is needed:

Osbqq
i′ = Osbqq

i

∣∣∣
PL,R→PR,L

(2.11)

The case q = s needs a separate discussion because it is convenient to group primed and unprimed

operators in a dierent manner, which simplies the mixing pattern:

I Four-quark (q = s):

Osbss
1 = (s µ PL b) (sµ s) , Osbss

1′ = (s µ PR b) (sµ s) ,

Osbss
3 = (s µνρ PL b) (sµνρs) , Osbss

3′ = (s µνρ PR b) (sµνρ s) ,

Osbss
5 = (s PL b)(s s) , Osbss

5′ = (s PR b)(s s) ,

Osbss
7 = (sσµν PL b)(sσµν s) , Osbss

7′ = (sσµν PR b)(sσµν s) , (2.12)

Osbss
9 = (s µνρσ PL b) (sµνρσs) , Osbss

9′ = (s µνρσ PR b) (sµνρσs) 

Again, the color-octet operators are Fierz-redundant and have been omitted (see App. B).
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5 = (s PR b)(` `′) , Osb``′

5′ = (s PL b)(` `′) ,

Osb``′
7 = (s PR σµν b)(`σµν `

′) , Osb``′
7′ = (s PL σµν b)(`σµν `

′) , (2.13)

Osb``′
9 = (s PR µνρσ b) (`

µνρσ`′) , Osb``′
9′ = (s PL µνρσ b) (`

µνρσ`′) ,

Osb``′
ν 1 = (s PR µ b) (ν`

µν`′) , Osb``′
ν 1′ = (s PL µ b) (ν`

µν`′)  (2.14)

In semileptonic operators we also allow for lepton-avour non-universality, and lepton-avour

violation. The later case (` 6= `′) is referred to as Class Vb, while the case with two neutrinos is

referred to as Class Vν.

The corresponding ∆S = 0 (∆I = 12) operators are obtained from Eqs. (2.9)-(2.14) with

the replacement s ↔ d.
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Our conventions for the eld-strength tensors have been specied in the previous section.

I Four-quark (q 6= s):

Osbqq
1 = (s PR µb) (q

µq) , Osbqq
2 = (s PR µ T

Ab) (qµ TAq) ,

Osbqq
3 = (s PR µνρ b) (q

µνρq) , Osbqq
4 = (s PR µνρT

Ab) (qµνρ TAq) ,

Osbqq
5 = (s PR b)(q q) , Osbqq

6 = (s PR TAb)(q TAq) ,

Osbqq
7 = (s PR σµν b)(q σµν q) , Osbqq

8 = (s PR σµν TAb)(qσµν T
Aq) , (2.10)

Osbqq
9 = (s PR µνρσ b) (q

µνρσq) , Osbqq
10 = (s PR µνρσ T

Ab) (qµνρσ TAq) ,

where q = u, d, c. In the case of q = b, the color-octet operators Osbbb
2,4,6,8,10 are Fierz-equivalent

to the color-singlet ones (see App. B for details) and are not included in the basis. In addition,

(for q = u, d, c, b) the analogous set with opposite chirality is needed:

Osbqq
i′ = Osbqq

i

∣∣∣
PL,R→PR,L

(2.11)

The case q = s needs a separate discussion because it is convenient to group primed and unprimed

operators in a dierent manner, which simplies the mixing pattern:

I Four-quark (q = s):

Osbss
1 = (s µ PL b) (sµ s) , Osbss

1′ = (s µ PR b) (sµ s) ,

Osbss
3 = (s µνρ PL b) (sµνρs) , Osbss

3′ = (s µνρ PR b) (sµνρ s) ,

Osbss
5 = (s PL b)(s s) , Osbss

5′ = (s PR b)(s s) ,

Osbss
7 = (sσµν PL b)(sσµν s) , Osbss

7′ = (sσµν PR b)(sσµν s) , (2.12)

Osbss
9 = (s µνρσ PL b) (sµνρσs) , Osbss

9′ = (s µνρσ PR b) (sµνρσs) 

Again, the color-octet operators are Fierz-redundant and have been omitted (see App. B).

I Semileptonic :

Osb``′
1 = (s PR µ b) (`

µ`′) , Osb``′
1′ = (s PLµ b) (`

µ `′) ,

Osb``′
3 = (s PR µνρ b) (`

µνρ`′) , Osb``′
3′ = (s PL µνρ b) (`

µνρ `′) ,

Osb``′
5 = (s PR b)(` `′) , Osb``′

5′ = (s PL b)(` `′) ,

Osb``′
7 = (s PR σµν b)(`σµν `

′) , Osb``′
7′ = (s PL σµν b)(`σµν `

′) , (2.13)

Osb``′
9 = (s PR µνρσ b) (`

µνρσ`′) , Osb``′
9′ = (s PL µνρσ b) (`

µνρσ`′) ,

Osb``′
ν 1 = (s PR µ b) (ν`

µν`′) , Osb``′
ν 1′ = (s PL µ b) (ν`

µν`′)  (2.14)

In semileptonic operators we also allow for lepton-avour non-universality, and lepton-avour

violation. The later case (` 6= `′) is referred to as Class Vb, while the case with two neutrinos is

referred to as Class Vν.

The corresponding ∆S = 0 (∆I = 12) operators are obtained from Eqs. (2.9)-(2.14) with

the replacement s ↔ d.
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▶ Write all integrals as a linear combination of master integrals

▶ Write complex integrals in terms of simpler ones

▶ For example, integrals with higher propagator powers are more
complex

https://arxiv.org/pdf/1705.05610
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ℓ → −ℓ− p



Symmetry Relations 16/25

For example

T (d,a1,a2) =

∫
ddℓ

1
(ℓ2 −m2

1)
a1((ℓ+ p)2 −m2

1)
a2

obeys

T (d,a1,a2) = T (d,a2,a1)

under

ℓ → −ℓ− p



Lorentz Invariant Identities 17/25

Our integrals are invariant under Lorentz transformations, so under

pµ → pµ + δpµ = pµ + δϵµνpν with δϵµν = −δϵνµ

we get
E∑
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i
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I(p1, . . . ,pn) = 0

which we contract with all antisymmetric combinations of

pr ,µps,ν − ps,µpr ,ν
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∫
ddℓ

∂

∂ℓµ

[(
ℓµ

(ℓ2 −m2
1)

n

)]
= 0

∂

∂ℓµ
[ℓµ]

∫
ddℓ
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n
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− 2n

∫
ddℓ
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1)

n+1
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= 0
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∫ L∏
j=1

ddℓj
∂

∂ℓµf

[( qµ
I

Pa1
1 . . .PaN

N

)]
= 0

With f = 1, . . . , L and I = 1, . . . , L+ E

giving L(L+ E) identities for fixed a
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Canonical Form [hep-ph 1611.01087]21/25

For a vector of master integrals M⃗(ϵ, {x}), the aim is to get it in a form

∂M⃗(ϵ, {x}) = ϵa(x)M⃗(ϵ, {x})

which allows us to solve for M⃗ order by order in ϵ.

Even better, is to
get it in dlog form

∂M⃗(ϵ, {x}) = ϵAldlog(Ll({x}))M⃗(ϵ, {x})

https://arxiv.org/abs/1611.01087
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Example 22/25

Assume the only master integral M has no poles (or multiply by ϵn)

M =
N∑

n=0
ϵnM(n) and M = ϵA(x)M

Then we have

dM(0) = 0, so M(0) = C

dM(1) = CA(x), so M(1) = C
∫

dxA(x) ( etc.)
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▶ For the 40+40 operators, all integrals reduced to master integrals

▶ For one family in the first 10+ 10 operators, we have integrals in
dlog form

▶ For remaining families, we have compared to known integrals
using Laporta algorithm
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▶ Get all remaining (i.e. non-sbcc) operators into canonical form

▶ Express the full amplitude in terms of polylogs of invariants
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What are we doing next? 24/25

▶ Compare one loop reducible integrals of sbcc operators to
literature

▶ Get all remaining (i.e. non-sbcc) operators into canonical form

▶ Express the full amplitude in terms of polylogs of invariants



Conclusions 25/25

▶ B decays are an important and interesting area of work

▶ The multi-loop toolkit is invaluable (Laporta algorithm and
canonical form)

▶ I’m looking at 2 loop calculations (where SM is not assumed)
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Laporta Complexity

Let our integral be

1
Dα1

1 Dα2
2 . . .Dαn

n

with

αi =

{
ai , αi ≥ 0,
bi , αi < 0.

The most complicated integrals have
1. Largest n
2. Largest

∑
i ai

3. Largest
∑

i bi

4. Largest i1, largest i2, . . ., largest in
5. Largest a1, largest a2, . . ., largest an

6. Largest −b1, largest −b2, . . ., largest −bn



Explain P ′
5

K+

π−
K∗0 θK

µ+

µ−

B0

θ`

(a) θK and θ` definitions for the B0 decay

µ−

µ+

K+

π−
B0

K∗0
φ

K+ π−

n̂Kπ

�p̂Kπ

µ−

µ+

n̂µ+µ−

(b) φ definition for the B0 decay

π+

K−
K∗0

µ−

µ+

B0

φ

K− π+

n̂Kπ

� p̂Kπ

µ−

µ+

n̂µ−µ+

(c) φ definition for the B0 decay

B0 → K ∗0µ+µ−



P ′
5 and P2

The angular distribution of B0 → K ∗0µ+µ− decay is given by

FL is a fraction of longitudinal polarization of K ∗0;

P ′
5

S5√
FL(1− FL)

and P2 =
2
3

AFB
(1− FL)



sb{γ, ℓℓ} basis

J7 = 2imbqν [sσµνPRb]
J9 = (qµqν − q2gµν)[sγνPLb]



sbcc operators

Osbcc
1 = [sγµtaPLc][cγµtaPLb]

Osbcc
2 = [sγµPLc][cγµPLb]

Osbcc
3 = [sγµPLb][cγµc]

Osbcc
4 = [sγµtaPLb][cγµtac]

Osbcc
5 = [sγµνρPLb][cγµνρc]

Osbcc
6 = [sγµνρtaPLb][cγµνρtac]

Osbcc
7 = [sγµPLb]Qc[cγµc]

Osbcc
8 = [sγµtaPLb]Qc[cγµtac]

Osbcc
9 = [sγµνρPLb]Qc[cγµνρc]

Osbcc
10 = [sγµνρtaPLb]Qc[qγµνρtaq].
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Form Factors

▶ Non-local iPµ

∫
d4xeiq.x⟨M(k)|T{Jµem(x), Csbcc

i Osbcc
i }|B(k + q) ⟩
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Sector: Complete set of operators so that at leading order in GF
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Mixing

sbqq mixes into sbℓℓ through non-local operator.∫
d4xeiq.xT{Jµem(x − y), Csbcc

i Osbcc
i (y)}

for example:
▶ Jµ = Qccγµc

▶ Osbcc
2 = [sγνPLc][cγνPLb]

b sy

x
γµq

cc
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Operator Product Expansion

Technical point: Pertubation constraints: |q2 − 4m2
c| > Λ2

hadronic

∫
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=
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Operator Product Expansion

Technical point: Pertubation constraints: |q2 − 4m2
c| > Λ2

hadronic

∫
d4xeiq.xT{Jµem(x),Csbcc

i Osbcc
i }

=
∑

Fi j Csbcc
i [sΓµj b]



Example

F29 Csbcc
2 [sΓµ9b]

=
2
9(4πe

−γ)ϵ

[
12m2

c
q2 +

(
2+

3
ϵ
+ 3 log µ2

m2
c

)
+ 3DiscB(q2,mc,mc)

(2m2
c + q2)

q2

]
× Csbcc

2 (q2gµν − qµqν)[sγνPLb]



DiscB

DiscB(q2,mc,mc) =

√
q2(q2 − 4m2

c)

q2 +log

(
2m2

c − q2 +
√
q2(q2 − 4m2

c)

2m2
c

)
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