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Motivation
2d CFTs and GGEs

Tr(e=PH)

Statistical Physics

Second-order phase transitions.
AdS/CFT correspondence.

E.g. Black Hole Thermodynamics
Pure Maths

(e.g. monstrous moonshine,
Langlands program, spectral
geometry, automorphic forms etc...)

Tr(e™ 2 Bitli)

Generalised Eigenstate
Thermalisation Hypothesis

Higher Spin Black Holes
KdV Black Holes, W(3) Black Holes...

Generalised Power Partitions



Conformal Field Theory

A (chiral) 2d CFT is a QF T whose spacetime symmetry is the Virasoro
algebra, given by:

(L Lyl = (m —n)Lppan + 1—(”2(m3 — M) 0m+n.0

Which is equivalent to a formulation in terms of an Operator Product

Expansion. 7T'(z) := Znez L,z "2
¢ T'(w OT (w
T(2)T(w) ~ iy + G + 5

Mode expansion of a field with scaling dimension & is

¢(Z) — ZZO:_OO Gbnz_n_h



State-Operator Correspondence

There is a one-to-one correspondence between fields and states.

¢) = ¢(0)]0) = ¢_1|0)

Doing normal ordering and derivatives can also be understood in
terms of states too.

(6M (6@ 3))(2) e ¢) @) 6 |0)
O"P(z) <> L™ 1_p|0) = nlp_p_,,|0)

In general, the vacuum state satisfies

¢]€’O>:0 k> —h



Representations (1/3)

Representations are given by primary states, which correspond to
primary fields, and their descendants.

A field ¢ Is called primary if its corresponding state satisfies:
Ln>ol¢) =0 Lo|®) = h|o)

Acting with negative modes will give descendants.

In general, Ly grades a representation.

Lo (Leny oo Lopy ) 19) = (h 22 mi) (Lo o Loy ) [ @)

We call the sum of indices the level of the state, which determines
the conformal weight of the field/state.

We call a field quasi-primary if its state satisfies:
Lilg) =0



Representations (2/3)

An example of a quasi-primary field of weight 4 is
Az)=(TT)(z) — %827’(2:)
Which corresponds to a level 4 quasi-primary state
A) = (L24 — £L_4)|0)
One can check that:

Li|A) = 0



Representations (3/3)

We demand that every representation is irreducible.

That means we quotient out states which are both descendants and
primaries (set them to zero). These are null states.

At special rational values of central charge, this constrains the
number of representations to be finite.

e.g. Lee-Yang Minimal model. Allowed representations are:
c=—22/5 10)  &(descendants) | —1/5) &(descendants)

An example of a null state, which constrains the representations is:

(L2, —2L_4)]0) =0



Characters of Representations

Denote by Vh@- a representation with highest weight state “%,)

Suppose in our theory there are finitely many such representations
=\

The characters (“Gibbs Ensembles”) of the representations are:
_ e 27T
Xi(T) = Try, (qlo—c/24) q:=e€
They transform in a vector representation of the modular group. SL(2, Z)

For us, this just means:

Xi(—3) = Sijx;(7)

Can build Partition Function with characters. (Modular Invariant)



Local Integral of
Motion

An integral motion of spin s is the
integral, on a fixed spatial slice of a dz j’ (Z)
cylinder, of a level s + 1 quasi- z2mi ¥ stl
primary descendant of the identity

field.

This integral can be expressed as
one on the plane by transforming the
field in an algorithmic way. In that
way we extract modes.

For integrability, we demand that
infinitely many integrals of motion
commute with one another.




Example: The KdV Charges

- These charges can be defined at any central charge. They are
expressed only in terms of Virasoro modes.

» They have odd-spin. Here are the first 3.
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271 dw 00 c c(oc
;= [y seA(w) = (2 >y Low Ly + L§ — 552 Lo + (28g§2))
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Thermal Correlation Functions (1/2)

Thermal correlators of loMs have known modular properties.

Multi-point functions transform as quasi-modular forms. Here we have
one of weight S1 + S2 + ... + SNy anddepth N — 1 .

Tri(Qsl—l'“QSN—quO—C/24)
We can write them as Modular Linear Differential Operators (MLDO). E.g.

Tri(ngLOfc/zél) _ (D4 n 3(c/92§)—|—5 E,D?% — 72(c/24)+11E6D 4 (e/24)(1221(c/24)+500) Ei) e

1080 75600
VB, (%Dg © 72(c/24)+11E4D B (c/24)(12(c/24)+5)E6) v

1080 756

Here, D is the covariant serre derivative, which acts on a weight r

modular form, and gives back a weight »+2 modular form, and the £ ’s
are Eisenstein series.
2k—1 n

D = q0, — 5 Fo Eop(r) =1+ ﬁ ZZO:O 1—q”’?




Thermal Correlation Functions (2/2)

Generically 77— —2

-

EfngDCXi — (T4a+6b+26)57;jEfng'DCXj Fo — T2E2 — Gir

T

One-point functions transform simply:
TI'T;(QSQLU_C/24) N TS+1SijTrj(quLD_C/24)

When we do modular transformations, we pick up additional loMs
from outside of a particular hierarchy. E.g. KdV:

Tr(I3gho—¢/24) — 78 Tr(I3gho /) — i (4Tr(T5q 0~ /24) + 5 (c 4 2) Tr(I5qo—</?4)

T

Is,J5] #0



GGEs

Suppose we have and infinite set of commuting loMs.

{Qstsz1 [Qi, Qs =0
By extending the characters, we obtain the GGE, with chemical
potentials (g .

Tri(qLo—c/24€ZS ast)
Convergent if Re(a,,;)<0, and if Re(a,,)=0.

We know that characters and thermal correlators transform nicely
under modular transformations. What about the GGE?

r— -1 Tr(ghom /e @ Qe ) 277



What are our options?

We could expand in the chemical potentials and transform each
thermal correlation function in the expansion.

General, but this is asymptotic at best

We could take advantage of integrability techniques like the
Thermodynamic Bethe Ansatz

Works only in cases where the integrable hierarchy can be understood as
coming from a relevant perturbation of the theory.

We could look for cases where the transformation can be done
exactly.

100% correct and unambiguous, but not general.



General Asymptotic Formula (1/3)

Consider a GGE with a single charge of spin s inserted.
Tr(qLo—c/QéLeaQs) - 220:0 Tr(qLO_C/MQE)‘z—T

We can transform each term separately. This is straightforward but
can only go up to a few orders in chemical potential.

We get charges from outside any given hierarchy too. E.g. KdV
Tr(I3gho—¢/24) — 78 Tr(I3gho~¢/24) — i (4Tr (L5 0~ /24) + 5 (c 4 2) Tr(I5qo—¢/24))

Can we re-sum this expression into a new exponential, even though
these new charges do not commute?

We showed that at lowest non-trivial order, yes you can! E.g. Lee-
Yang GGE with spin-5 KdV charge:

Tr(q\Lo—c/24€aI5) ~ Tr(qLo—6/24€a515+69.]9—|—a13113+[313J13_|_,_,_)



General Asymptotic Formula (2/3)

Can we determine exactly which charges appear in the modular transformation?

W, algebra (Extension of Virasoro by weight-3 Field W/(z)).

Spin-2 IM: = [T dw

271

Conjecture: Tr(qLo—c/QéleonO) - Tr(qLO_C/MeO”SWO)

The new charge is the IM of an infinite sum of local fields.

W) =Sk (55) WG Wo= 0™ 22 W (w)



Generic Asymptotic Formula (3/3)

The fields in the sum are determined recursively.

Wrl =0 (P (W W)y, (W =W

m=1 \m—1
Here,(AB)2(z), denotes the 2" order pole in the OPE between A(w)
and B(z).

Using the MLDO approach, we tested this conjecture up to O(a") at
generic central charge.

We showed also that is true to all orders in o at ¢ = -2.

It is easy to generalise this conjecture to an arbitrary number of
charges inserted.



Integrability Approach (1/4)

We can formally define the KdV hierarchy in any 2d CFT.

We can understand this hierarchy as integrable when it preserved by
a relevant perturbation.

Always possible in a minimal model M(p,q), perturb action as follows:
M(p,q) + A [ d*z¢13(2) , hiz=2(p/q) -1

Then the modular transformation can be understood as the mirror
transformation of the Thermodynamic Bethe Ansatz (TBA).

This is can replicate the asymptotic analysis, but also one can find
non-asymptotic solutions to it, which one must include in the
transformation.



Integrability Approach (2/4)

We looked at the Lee-Yang GGE with a spin-5 KdV charge inserted.

Tr(q’\Lo—c/24€aI5) A~ Tr(qLO_6/246a515+59']9+0513113+513J13+----)

The TBA equation is:
€(0) =e? + ‘2—?659 — [ (0 —0")log(1 + 6_6(9’))65?;
Each state in the theory has an associated TBA equation. Choose
different integration contours to pick them out.
The spectrum is given by: E (L) = _% f e’ log(1 + 6_6(9))%
Can recover asymptotic results by expanding:
E~E& +a& +a’l + a3Es + ...




Integrability Approach (3/4)

- We solved the TBA equations perturbatively and numerically, then
showed they matched the charges that appear in the transformation.

- Excited state eigenvalues are difficult to directly calculation, but TBA
gives them to high accuracy.

- E.g. Ground sate Eigenvalues:

—-0.01666666666666666 —1--0.016666666666666666
60

0.00011772486772486771 89 8  — 0.00011772486772486772

756000

-0.00008004629629629623 __172% _ _0.0000800462962962963

21600000

13113 + ,51:le38 -0.00041588850308641904 — 7% - 0.00041588850308641975

— 3 2592000000




Integrability
Approach (4/4)

We showed that the TBA has additional, non
asymptotic solutions.

Requires a fractional power expansion:

€(0) = 2%y ensal6) ()"

Excited state energies of this form vanish as «—>0.

These energies cannot be attributed to any state
in the CFT, yet we must include them to
reconstruct the GGE.

- Interpret GGE as a Defect (Not yet fully
worked out except for free fermion at c=1/2).




Exact approach (1/4)

At ¢ = 1/2 and ¢ = -2, we can construct hierarchies explicitly.

At ¢ = -2 we have the symplectic fermion theory.

+ _ +1
()X T (w) = 2Lz +0(1)
We can build a hierarchy of charges which contain KdV.

271 _ _
Quo1= [ ("2 xT)(w) Q21 = I2p—1
We can obtain explicit expressions in a 4 -twisted Fock module
n—2 ., . — : _n 1

c, , IS a regularisation constant.
The currents B associated to each Q,, , satisfies:

(Ban)QI(ern _2)Bn+m—2



Exact approach (2/4)

The GGE can be determined exactly, since the theory is free and the
modules are simple fock spaces.

TrA,S(qLo—c/24€ij_2 aka) — e 2, @ncn(N) T

nEN—)\(l L 627Ti862k o:knk)

> (1 _ €2wisezk(—1)kaknk)

We can apply techniques from analytic number theory [D. Zagier,
2021], to our situation, and find the modular transformation of this
exactly.



Exact approach (3/4)

The Exact transformation of this GGE is a big mess, but its exact and
correct. It clearly not a GGE of the same CFT.

1

) 255,05)\?1{2 T 5}\105550 o0 _» . N n+1 270 T
lII)\,S(Tﬂ (_1’) (_) HeXp (log(l . 6271'336211'1(2”21(:&1) anT"T
0

- ds.1/20x.0
90s,1/20x, "

X H H (1 . GQ'JT-Z'AGQ'JT-iz;t(n))

neZ—s zft (n)eH+

with roots satisfying




Exact approach (4/4)

Looking at the case with just a spin-2 charge inserted, we can check
our conjecture from earlier in the talk to all orders.

Expanding around o =20, one finds that

Tr(qLO_C/246aQ2) N Tr(qLo—c/ZéLean)

&) at? & il :
Q2 =) p—o ((W) o : (kfg;?l)le+2)
This is exactly what one expects to get from the recursive definition

from earlier in the talk.

2

W) = ok (55) V] ()




Outlook

Can we apply other integrability techniques to this transformed GGE?
DDV equation? ODE/IM correspondence? Quantum Spectral Curve approach?

What actually is the GGE defect?
Worked out at c=1/2, could be worked out at c=-2.

Can we prove that the asymptotic formula works at any central
charge?

Cardy formula for GGE? Higher Spin Black Hole entropy?
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