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Motivation
2d CFTs and GGEs

• Statistical Physics

• Second-order phase transitions.

• AdS/CFT correspondence.

• E.g. Black Hole Thermodynamics

• Pure Maths 

• (e.g. monstrous moonshine, 

Langlands program, spectral 

geometry, automorphic forms etc…)

• Generalised Eigenstate 

Thermalisation Hypothesis

• Higher Spin Black Holes

• KdV Black Holes, W(3) Black Holes…

• Generalised Power Partitions



Conformal Field Theory

• A (chiral) 2d CFT is a QFT whose spacetime symmetry is the Virasoro 

algebra, given by:

• Which is equivalent to a formulation in terms of an Operator Product 

Expansion.

• Mode expansion of a field with scaling dimension h  is



State-Operator Correspondence

• There is a one-to-one correspondence between fields and states.

• Doing normal ordering and derivatives can also be understood in 

terms of states too.

• In general, the vacuum state satisfies



Representations (1/3)
• Representations are given by primary states, which correspond to 

primary fields, and their descendants.

• A field      is called primary if its corresponding state satisfies:

• Acting with negative modes will give descendants. 

• In general, L0 grades a representation.

• We call the sum of indices the level of the state, which determines 

the conformal weight of the field/state.

• We call a field quasi-primary if its state satisfies: 



Representations (2/3)

An example of a quasi-primary field of weight 4 is

Which corresponds to a level 4 quasi-primary state

One can check that:



Representations (3/3)
• We demand that every representation is irreducible. 

• That means we quotient out states which are both descendants and 

primaries (set them to zero). These are null states.

• At special rational values of central charge, this constrains the 

number of representations to be finite.

• e.g. Lee-Yang Minimal model. Allowed representations are:

• An example of a null state, which constrains the representations is:



Characters of Representations

• Denote by      a representation with highest weight state        .

• Suppose in our theory there are finitely many such representations 

i=1,…,N

• The characters (“Gibbs Ensembles”) of the representations are:

• They transform in a vector representation of the modular group. 

• For us, this just means:

• Can build Partition Function with characters. (Modular Invariant)



Local Integral of 
Motion
• An integral motion of spin 𝑠 is the 

integral, on a fixed spatial slice of a 

cylinder, of a level 𝑠 + 1 quasi-

primary descendant of the identity 

field.

• This integral can be expressed as 

one on the plane by transforming the 

field in an algorithmic way. In that 

way we extract modes.

• For integrability, we demand that 

infinitely many integrals of motion 

commute with one another.



Example: The KdV Charges

• These charges can be defined at any central charge. They are 

expressed only in terms of Virasoro modes.

• They have odd-spin.  Here are the first 3.



Thermal Correlation Functions (1/2)
• Thermal correlators of IoMs have known modular properties.

• Multi-point functions transform as quasi-modular forms. Here we have 

one of weight          and depth .

• We can write them as Modular Linear Differential Operators (MLDO). E.g. 

• Here, D is the covariant serre derivative, which acts on a weight r 

modular form, and gives back a weight r+2 modular form, and the E ’s 

are Eisenstein series.



Thermal Correlation Functions (2/2)

• Generically   :

• One-point functions transform simply:

• When we do modular transformations, we pick up additional IoMs 

from outside of a particular hierarchy. E.g. KdV:



GGEs

• Suppose we have and infinite set of commuting IoMs.

• By extending the characters, we obtain the GGE, with chemical 

potentials    .

• Convergent if Re(α2n-1)≤0, and if Re(α2n)=0.

• We know that characters and thermal correlators transform nicely 

under modular transformations. What about the GGE?



What are our options?

 We could expand in the chemical potentials and transform each 

thermal correlation function in the expansion.

General, but this is asymptotic at best

 We could take advantage of integrability techniques like the 

Thermodynamic Bethe Ansatz 

Works only in cases where the integrable hierarchy can be understood as 

coming from a relevant perturbation of the theory.

 We could look for cases where the transformation can be done 

exactly.

100% correct and unambiguous, but not general.



General Asymptotic Formula (1/3)

• Consider a GGE with a single charge of spin s inserted.

• We can transform each term separately. This is straightforward but 
can only go up to a few orders in chemical potential. 

• We get charges from outside any given hierarchy too. E.g. KdV

• Can we re-sum this expression into a new exponential, even though 
these new charges do not commute?

• We showed that at lowest non-trivial order, yes you can! E.g. Lee-
Yang GGE with spin-5 KdV charge:



General Asymptotic Formula (2/3)

• Can we determine exactly which charges appear in the modular transformation?

• W3 algebra (Extension of Virasoro by weight-3 Field W(z)). 

• Spin-2 IM:

• Conjecture:

• The new charge is the IM of an infinite sum of local fields.



Generic Asymptotic Formula (3/3)
• The fields in the sum are determined recursively.

• Here,    , denotes the 2nd order pole in the OPE between A(w) 

and B(z).

• Using the MLDO approach, we tested this conjecture up to O(α7) at 

generic central charge.

• We showed also that is true to all orders in α at c = -2.

• It is easy to generalise this conjecture to an arbitrary number of 

charges inserted.



Integrability Approach (1/4)

• We can formally define the KdV hierarchy in any 2d CFT.

• We can understand this hierarchy as integrable when it preserved by 

a relevant perturbation. 

• Always possible in a minimal model M(p,q), perturb action as follows:

• Then the modular transformation can be understood as the mirror 

transformation of the Thermodynamic Bethe Ansatz (TBA).

• This is can replicate the asymptotic analysis, but also one can find 

non-asymptotic solutions to it, which one must include in the 

transformation.

 



Integrability Approach (2/4)
• We looked at the Lee-Yang GGE with a spin-5 KdV charge inserted.

• The TBA equation is:

• Each state in the theory has an associated TBA equation. Choose 

different integration contours to pick them out.

• The spectrum is given by:

• Can recover asymptotic results by expanding:



Integrability Approach (3/4)

• We solved the TBA equations perturbatively and numerically, then 

showed they matched the charges that appear in the transformation. 

• Excited state eigenvalues are difficult to directly calculation, but TBA 

gives them to high accuracy.

• E.g. Ground sate Eigenvalues:

Eigenvalue Numerical Value (TBA) Analytic Value (Direct Calculation)

−0.01666666666666666 −
1

60
= −0.016666666666666666

0.00011772486772486771 89 89

756000
 = 0.00011772486772486772

-0.00008004629629629623 −
1729

21600000
= −0.0000800462962962963

-0.00041588850308641904 −
1077983

2592000000
 = -0.00041588850308641975



Integrability 
Approach (4/4)

• We showed that the TBA has additional, non 
asymptotic solutions. 

• Requires a fractional power expansion:

• Excited state energies of this form vanish as α→0.

• These energies cannot be attributed to any state 
in the CFT, yet we must include them to 
reconstruct the GGE.

• → Interpret GGE as a Defect (Not yet fully 
worked out except for free fermion at c=1/2).



Exact approach (1/4)
• At c = 1/2 and c = -2, we can construct hierarchies explicitly.

• At c = -2 we have the symplectic fermion theory. 

• We can build a hierarchy of charges which contain KdV.

• We can obtain explicit expressions in a λ -twisted Fock module

• cn-1 is a regularisation constant.

• The currents Bn associated to each Qn -1 satisfies:

(BnBm)2=(m+n -2)Bn+m-2



Exact approach (2/4)

• The GGE can be determined exactly, since the theory is free and the 

modules are simple fock spaces.

• We can apply techniques from analytic number theory [D. Zagier, 

2021], to our situation, and find the modular transformation of this 

exactly.



Exact approach (3/4)
• The Exact transformation of this GGE is a big mess, but its exact and 

correct. It clearly not a GGE of the same CFT.



Exact approach (4/4)
• Looking at the case with just a spin-2 charge inserted, we can check 

our conjecture from earlier in the talk to all orders.

• Expanding around α →0, one finds that

• This is exactly what one expects to get from the recursive definition 

from earlier in the talk.



Outlook
• Can we apply other integrability techniques to this transformed GGE?

• DDV equation? ODE/IM correspondence? Quantum Spectral Curve approach?

• What actually is the GGE defect?

• Worked out at c=1/2, could be worked out at c=-2.

• Can we prove that the asymptotic formula works at any central 

charge?

• Cardy formula for GGE? Higher Spin Black Hole entropy?



Fin
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