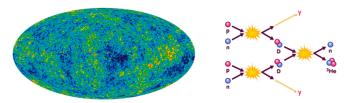
Three-Flavoured Leptogenesis during Reheating

Angus Spalding

University of Southampton

December 18 2025

Table of Contents

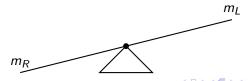

- 1 Vanilla Leptogenesis
- Plavour Effects
- 3 Leptogenesis during Reheating
- 4 Three-Flavoured Leptogenesis during Reheating

Baryon Asymmetry of the Universe (BAU)

- Cosmological Puzzle: Why is there more matter than antimatter?
- Actual measurement of the asymmetry is the BAU [4][1].

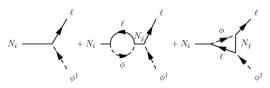
$$Y_B = \frac{n_B - n_{\bar{B}}}{s} \approx \frac{n_B}{s} = (8.72 \pm 0.08) \times 10^{-11}$$
 (1)

Measured from CMB and BBN seperately [5][2].


• Leptogenesis is an elegant solution to this problem that has its roots in neutrino physics.

Type-1 Seesaw Mechanism

- Neutrinos in SM do not have mass. Neutrinos in the real world do....why do they have mass and why is that mass so small?
- Add right-handed neutrinos to the SM Lagrangian [6]. Two terms are allowed.
 - ① Dirac Mass Term: $-Y\bar{L_L}\tilde{H}N_R + h.c.$
 - 2 Majorana Mass Term: $-M_m \bar{N}_R^c N_R + h.c.$
- See-Saw Mechanism is the limit $M_m >> m_D$:


$$m_L \approx \frac{(Yv)^2}{M_m}, \quad m_R \approx M_m$$
 (2)

explains the smallness of standard model neutrino masses.

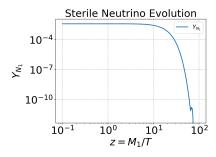
Leptogenesis

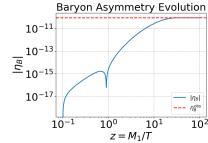
• At one loop, we find that the probability of $N \to HL$ is greater than $N \to H^{\dagger} \bar{L}$. Lepton asymmetry is produced by sterile neutrino decays at one-loop [3]:

• The CP violation parameter is defined as

$$\epsilon = \frac{\Gamma(N \to LH) - \Gamma(N \to \bar{L}H^{\dagger})}{\Gamma(N \to LH) + \Gamma(N \to \bar{L}H^{\dagger})}, \qquad \epsilon_{\text{max}} \propto M_N$$
 (3)

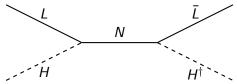
• This creates a lepton asymmetry. Then a lepton asymmetry is transferred to a baryon asymmetry by sphaleron processes


$$Y_B = \frac{28}{79} Y_{B-L} . {4}$$


Bolztmann Equations

• The baryon asymmetry is then calculated by Bolztmann equations,

$$\begin{split} \frac{dY_N}{dz} &= -D(z)(Y_N - Y_N^{eq}) \\ \frac{dY_{B-L}}{dz} &= \epsilon D(z)(Y_N - Y_N^{eq}) - W(z)Y_{B-L} \end{split}$$

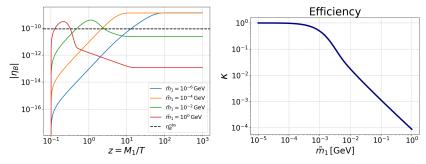

D and W denote the decay and washout terms and $z=M_1/T$ is the time evolution variable. ϵ and the D determine how much asymmetry can be created. W determines the efficiency.

Washout

Inverse decays and scatterings look to reduce the asymmetry.

• Whether they have any effect is determined by the effective neutrino mass of the right-handed neutrino, \tilde{m}_i . This parameter is independent of the mass and is related to the decay rate,

$$\Gamma_i = \frac{M_i^2 \tilde{m}_i}{8\pi v^2}, \quad \tilde{m}_i = \frac{(Y^{\dagger} Y)_{ii}}{M_i}$$
 (5)


The values of the effective neutrino mass are determined by a complex orthogonal matrix.

$$\tilde{m}_i = \sum_k m_k |R_{ki}|^2. \tag{6}$$

where m_i are the active neutrino masses.

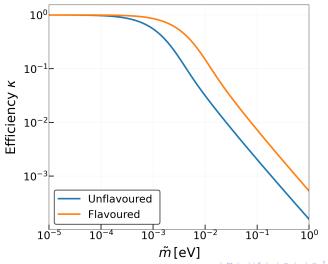
Vanilla Lepto Results

• We performed parameter scans to illustrate how the effective neutrino mass \tilde{m} controls the washout strength:

• If washout becomes significant, flavour effects become essential.

Flavoured Boltzmann equations

- At temperatures below the flavour thresholds, charged–lepton Yukawa interactions become fast enough to distinguish individual lepton flavours.
- This means each flavour suffers different washout $W_e \neq W_\mu \neq W_\tau$, and the asymmetry cannot be treated as a single quantity.
- For temperatures $T \lesssim 10^9$ GeV the the lepton flavours are decohered, and the evolution must be tracked for each flavour separately.

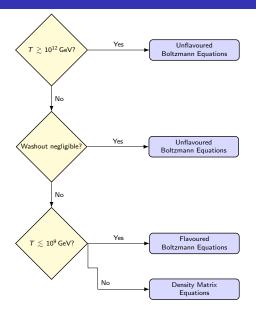

$$\frac{dY_{B-L}^{\alpha}}{dz} = \epsilon_{\alpha} D(z) \left(Y_{N} - Y_{N}^{eq}(z) \right) - W_{1\alpha}(z) Y_{B-L}^{\alpha} \qquad (\alpha = e, \mu, \tau)$$
(7)

where,

$$\epsilon_{\alpha} = \frac{\Gamma(N_1 \to L_{\alpha}H) - \Gamma(N_1 \to \bar{L}_{\alpha}H^{\dagger})}{\Gamma(N_1 \to L_{\alpha}H) + \Gamma(N_1 \to \bar{L}_{\alpha}H^{\dagger})}$$
(8)

Benefits of Flavour effects

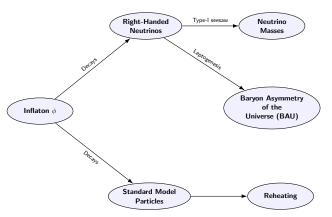
• Flavour effects as well as being essential for a proper treametent can lower the scale of leptogenesis.


Density Matrix Equations

- For $10^{12}\,{\rm GeV}\gtrsim T\gtrsim 10^9\,{\rm GeV}$, partial flavour decoherence occurs and density matrix equations are required.
- The flavour-density evolution is

$$\frac{dY_{B-L}^{\alpha\beta}}{dz} = \epsilon_{\alpha\beta}D(Y_N - Y_N^{\text{eq}}) - \frac{1}{2}W\{P_0, Y_{B-L}\}_{\alpha\beta}
- \Lambda_{\tau} \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y_{B-L} \end{bmatrix} \right]_{\alpha\beta}
- \Lambda_{\mu} \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, Y_{B-L} \end{bmatrix}_{\alpha\beta} . \tag{9}$$

- The final baryon asymmetry is $Y_B = \frac{28}{79} \sum_{\alpha} (Y_{B-L})_{\alpha\alpha}$.
- These equations include all flavour effects and remain valid in every temperature regime.


When to use what

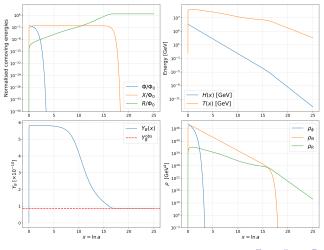
Decision scheme for the theoretical treatment of leptogenesis

Leptogenesis during Reheating

ullet After inflation, ϕ decays into SM particles and RH neutrinos.

• If your universe history begins with inflation and explains neutrino masses by Type I seesaw. This process MUST have taken place unless there is a symmetry forbidding ϕNN or $M_N > M_\phi$

Leptogenesis durng reheating


We would normally solve the Bolztamnn equations...

$$\dot{\rho}_{\phi} = -3H\rho_{\phi} - \Gamma_{\phi}(\rho_{\phi} - \rho_{\phi}^{eq}),
\dot{\rho}_{N} = -3H\rho_{N} + \Gamma_{\phi}(\rho_{\phi} - \rho_{\phi}^{eq}) - \Gamma_{N}(\rho_{N} - \rho_{N}^{eq}),
\dot{\rho}_{R} = -4H\rho_{R} + \Gamma_{N}(\rho_{N} - \rho_{N}^{eq}),
\dot{n}_{B-L} = -3Hn_{B-L} - \epsilon\Gamma_{N}(n_{N} - n_{N}^{eq}) - W n_{B-L},$$
(10)

- There is an abundance of right-handed neutrinos and the mass bound can be lowered to 10⁷ GeV.
- \bullet But as we are evolving during reheating we have to have leptogenesis occurring at temperatures less than 10^{12} GeV.
- So if we have washout that means we need to be more careful and instead use density matrix formalism.

Benchmark

• As a benchmark we have $M_1=5\times 10^7$ GeV, $\tilde{m}=10^{-5}$ eV, $Br_N=1$ and $y_1=10^{-3}$.

Flavoured Leptogenesis during reheating

Now we solve the flavoured Bolztmann equations...

$$\begin{split} \dot{\rho}_{\phi} &= -3H\rho_{\phi} - \Gamma_{\phi}(\rho_{\phi} - \rho_{\phi}^{\text{eq}}), \\ \dot{\rho}_{N} &= -3H\rho_{N} + \Gamma_{\phi}(\rho_{\phi} - \rho_{\phi}^{\text{eq}}) - \Gamma_{N}(\rho_{N} - \rho_{N}^{\text{eq}}), \\ \dot{\rho}_{R} &= -4H\rho_{R} + \Gamma_{N}(\rho_{N} - \rho_{N}^{\text{eq}}), \\ \dot{n}_{B-L}^{\alpha} &= -3Hn_{B-L}^{\alpha} - \epsilon^{\alpha}\Gamma_{N}(n_{N} - n_{N}^{\text{eq}}) - W^{\alpha} n_{B-L}, \end{split}$$

$$(11)$$

- There is an abundance of right-handed neutrinos and the mass bound can be lowered to 10⁷ GeV.
- \bullet But as we are reheating we have to have leptogenesis occurring at temperatures less than 10^{12} GeV.
- So if we have washout that means we need to be more careful and instead use density matrix formalism.

Three-Flavoured Leptogenesis during Reheating

 We therefore need to solve the density matrix equations during reheating which are.....

$$\dot{\rho}_{\phi} = -3H\rho_{\phi} - \Gamma_{\phi}(\rho_{\phi} - \rho_{\phi}^{\text{eq}}),$$

$$\dot{\rho}_{N} = -3H\rho_{N} + \Gamma_{\phi}(\rho_{\phi} - \rho_{\phi}^{\text{eq}}) - \Gamma_{N}(\rho_{N} - \rho_{N}^{\text{eq}}),$$

$$\dot{\rho}_{R} = -4H\rho_{R} + \Gamma_{N}(\rho_{N} - \rho_{N}^{\text{eq}}),$$

$$\dot{n}_{B-L}^{\alpha\beta} = -3H \, n_{B-L}^{\alpha\beta} + \epsilon_{\alpha\beta} \, \Gamma_{N}(n_{N} - n_{N}^{\text{eq}})$$

$$- \frac{\Gamma_{W}}{2} \left\{ P_{0}, \, n_{B-L} \right\}_{\alpha\beta} - \Gamma_{\tau} [P_{\tau}, [P_{\tau}, n_{B-L}]]_{\alpha\beta}$$

$$- \Gamma_{\mu} [P_{\mu}, [P_{\mu}, n_{B-L}]]_{\alpha\beta}.$$
(12)

Results coming soon in early 2026!

Conclusions

- Introduced the Type I seesaw mechanism
- Introduced Vanilla leptogenesis.
- Clarified when flavour effects become important and why a density—matrix treatment is required.
- Reviewed leptogenesis in the reheating era.
- Argued that reheating-era leptogenesis is a natural and plausible outcome in a Universe with inflation and the type I seesaw.
- Outlined the ingredients needed for a fully consistent treatment of leptogenesis during reheating.
- Showed we can guarantee that for non-negligible washout this will lower the mass bounds for successful leptogenesis.

References I

- [1] N. Aghanim et al. "Planck2018 results: VI. Cosmological parameters". In: Astronomy amp; Astrophysics 641 (Sept. 2020), A6. ISSN: 1432-0746. DOI: 10.1051/0004-6361/201833910. URL: http://dx.doi.org/10.1051/0004-6361/201833910.
- [2] Wikipedia Contributors. Cosmic Microwave Background. Photo retrieved from the Wikipedia article on the Cosmic Microwave Background. Accessed: 2024-12-04. 2024. URL: https://en.wikipedia.org/wiki/Cosmic_microwave_background.
- [3] Pasquale Di Bari. "An introduction to leptogenesis and neutrino properties". In: *Contemp. Phys.* 53.4 (2012), pp. 315–338. DOI: 10.1080/00107514.2012.701096. arXiv: 1206.3168 [hep-ph].

References II

- [4] Ivan Esteban et al. "The fate of hints: updated global analysis of three-flavor neutrino oscillations". In: Journal of High Energy Physics 2020.9 (Sept. 2020). ISSN: 1029-8479. DOI: 10.1007/jhep09(2020)178. URL: http://dx.doi.org/10.1007/JHEP09(2020)178.
- [5] Max Planck Institute for Gravitational Physics (Albert Einstein Institute). Big Bang Nucleosynthesis. Photo retrieved from the Einstein Online webpage. Accessed: 2024-12-04. 2024. URL: https://www.einstein-online.info/en/spotlight/bbn/.
- [6] Peter Minkowski. " $\mu \to e \gamma$ at a Rate of One Out of 1-Billion Muon Decays?" In: *Phys. Lett. B* 67 (1977), pp. 421–428. DOI: 10.1016/0370-2693(77)90435-X.