Spectral Networks

& their role in 2d conformal field theory

Subrabalan Murugesan Heriot-Watt University, Edinburgh

> YTF 2025, Durham December 17, 2025

Background

Let C be a genus g Riemann surface with $n \geq 1$ punctures, and $\iota: \Sigma \hookrightarrow T^*C$ be a branched double cover,

$$\pi: \Sigma \xrightarrow{2:1} C.$$

For a curve $\gamma \subset C$, let γ_i denote the lift of γ to the *i*th sheet of Σ .

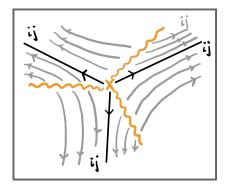
Definition

For a choice of phase θ , an ij-trajectory is a curve $w \subset C$ such that

$$e^{-i\theta} \int_{w_{ij}} \iota^* \lambda \in \mathbb{R}_{\geq 0}$$

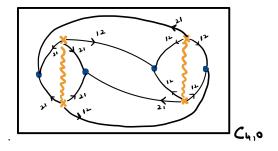
where $w_{ij} := w_i - w_j$ and $\lambda \in \Omega^1(T^*C)$ is the canonical 1-form.

This defines a foliation of C (known as the horizontal foliation or WKB foliation). At the branch points of Σ , the foliation has a three-pronged structure.

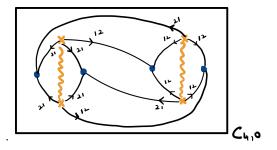


These are known as the **critical** ij-**trajectories**. We orient all the critical ij-trajectories away from the branch point.

The collection of all the oriented critical ij trajectories, the branch points, and the ij labels is known as a (rank 2) **WKB spectral network** $\mathcal{W}_{\theta}(\Sigma)$.



The collection of all the oriented critical ij trajectories, the branch points, and the ij labels is known as a (rank 2) **WKB spectral** network $W_{\theta}(\Sigma)$.



Working definition

A (rank 2) spectral network W is a directed graph on C with a trivalent vertex at each branch point of Σ , and all the edges terminate on either punctures or branch points.

The Physics

The 4d story

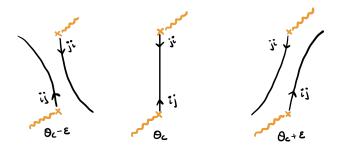
The surface C is the moduli space of (canonical) UV surface defects in a 4d class S theory, or equivalently, the **UV curve** of the class S theory.

The surface Σ is the moduli space of IR surface defects in the 4d theory, or equivalently, the **Seiberg-Witten curve** of the class S theory.

A spectral network W_{θ} at phase θ is the locus of all the surface defects $z \in C$ that admit a BPS soliton at phase θ . The analytical condition from before is the BPS equation. [GMN13], [BHM25]

The 4d story

At certain phases, the topology of the network might degenerate. Such degenerate topologies encode the 4d BPS states.



This follows from the string/M-theory construction of class S theories.

The 2d story

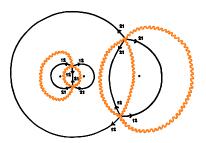
The AGT correspondence states that 4d $\mathcal{N}=2$ SU(2) gauge theories are dual to 2d Liouville conformal field theory on C. [AGT10]

These conformal blocks admit an integral representation for a suitable choice of contours on C. [DF84]

Punchline: spectral networks can supply the required contours for these integral representations. [HN24], [HM*]

The 2d story

In particular, the integral representations $\mathcal{Z}_{W_{FN}}$ defined using Fenchel-Nielsen networks reproduce the *standard* Liouville conformal blocks. [HM*]



For a Fenchel-Nielsen network, the complement $C \setminus W_{FN}$ is a union of punctured discs. Note that none of the critical ij-trajectories of a Fenchel-Neilsen network terminate on a puncture.

Outlook

Related ideas

- We may obtain the algebra of loop operators in the theory using q-nonabelianisation. [NY20]
- We may extend this to higher-rank spectral networks and higher-rank conformal field theories.
- We would like to extend this to 3d Chern-Simons theory.

Thank you!

Luis F. Alday, Davide Gaiotto, and Yuji Tachikawa.

 $\label{linear} \mbox{Liouville Correlation Functions from Four-dimensional Gauge Theories.}$

Lett. Math. Phys., 91:167-197, 2010.

Loïc Bramley, Lotte Hollands, and Subrabalan Murugesan.

Les Houches lectures on non-perturbative Seiberg-Witten geometry. 3 2025.

V. S. Dotsenko and V. A. Fateev.

Conformal Algebra and Multipoint Correlation Functions in Two-Dimensional Statistical Models.

Nucl. Phys. B, 240:312, 1984.

Davide Gaiotto, Gregory W. Moore, and Andrew Neitzke.

Wall-crossing, Hitchin systems, and the WKB approximation.

 $Adv.\ Math.,\ 234{:}239{-}403,\ 2013.$

Qianyu Hao and Andrew Neitzke.

A new construction of c = 1 Virasoro blocks. 7 2024.

Andrew Neitzke and Fei Yan.

q-nonabelianization for line defects.

JHEP, 09:153, 2020.