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o The Problem Setting + UniVerSity
— Existing Methods

» Highly—General Techniques
> Least Squares Estimation / Maximum Likelihood Estimation — [1].
> Poor Performance under Misspecification.
» Kolmogorov-Smirnov Testing —[2].
> Suffers massively from the Curse of Dimensionality, as do most IPM—adjacent techniques.
» Focused Techniques
> ‘Generalized Hosmer—-Lemeshow Testing’ — [3].
> Procedurally complex.
» Cameron—Trivedi Testing — [4].
> Assesses for data dispersion that isn’'t unique to the Poisson Distribution.

Either heavily reliant on faulty heuristics or are overcomplex.

No generalisable direct comparison between measure allocation by the model and the measure
underlying the observed data.
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For more information — [5], [6], [7]
» Reproducing Kernel Hilbert Space H (RKHS)
» Hilbert Space of functions h : X — R equipped with ®4; : X — H such that:
(h, (X)) =h(x)Vx e X
» Reproducing Kernel of H
> K: X2 - [0,00) with:
K(Xr.y) - <¢"H(X)7 ¢H(y)>’}-[ vay eX

[8] proves that you can pick a K first and that as long as K is ‘Symmetric and Positive Semi—Definite’
then there is a RKHS with Reproducing Kernel .

» Kernel Mean Embedding (KME)
> For P e P(H) = {Q| — oo < [ h(x)dQ(x) < co¥V h € H}, up is given by:

pp = / ®a(y)dP(y) € H

(b, @100} = () = [ (@1006), ®3(1)y dPY) = [ Kx,y)aP(y) ¥ x € ¥
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For more information — [5], [6], [7]
» Double Kernel Mean Embedding (DKME)
> For Py, P € P(H) = {Q| — oo < [ h(x)dQ(x) < ooV he H}:

<MP17MP2>H :/ K(x,y)dPi(x)dPx(y)Vx € X

» Characteristic Kernel
> |f the KME is Injective, then the underlying K is ‘Characteristic’. The following two kernels are always
Characteristic for Positive—Definite R and n € Zxo:

& (i ,I(r:7+ll)| (\/(8n+4 (x—y)TR—T(x ,V))ni)

i=0

1
() 9 (=5 =R (0= ) ()
2 (2n)! exp <\/(2n T —y) R T(x— y))
» Core Kernel of P over H
> For P € P(H), the SPSD Kp : X2 — [0, 00) with Kp(X, ¥) = (®3(X) — pup, ®(¥) — pp)gy YV X, ¥
satisfies [ Kp(x,y)dP(y) = 0V x and:

Kp(x,y) = K(x,y) —/ K(x, b)dP(b /K a, y)dP(a)+// K(a,b)dP(a)dP(b)V x,y
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» For some F with norm || - || and P(F) = {Q] [|f(x)| dQ(X) < ooV f € F}:

MMD~(P, Q) = sup

feF  |If| 7<1

/f(x)dP(x)—/f(x)dO(x)

VP,Q € P(F)

> For a RKHS # with Characteristic Kernel K : X2 — (0, c0), [7] show that:
MMD3 (P, Q) = [[np — pally, =0 < pp = po < P=Q

MMD3 (P, R) = [|np — pally < ke — pally + llne — pally, = MMD4 (P, Q) + MMD#(Q, R)
> [9] show that:

MMDZ, (P, Q) = (MMDs(P, Q))? = / Ke(x, ¥)0Q(x)0Q(y)
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N N
0 < MMDy, (Py, P1) < MMDy, (Pg, 1N Za,,,) + MMD, (/1\/ > 6 PT)
i=1

~ 0 as N—oo from [10]

MMD2, [ Py, s Sy
H G’NZ(SP’ :WZZ Py phpj
i=1 i=1 j=1

We can find Py ~ P by taking N — oo and minimising Z E Kr, (pis p))-
i=1j=1
PR
Thenset Tv = 2 X Ke, (pi, py)

11/

—_
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H : R — {0, 1} is the Heaviside Step Function, and k > 0 bounds K from above.
» Parametric Bootstrap Configuration.
1. Resample (x;, y;) from trained model M times.
2. For the m-th resample, swap out the old sample with the m-th resample in T, and call it Ap.

M
3. Calculate ; > H(Am — Ty)
m=1
» Wild Bootstrap Configuration, based off [11].
» Calculate the Gram Matrix of the Core at minimising parameters, then multiply it by N. Call this final
matrix Gy.

» Sample M-many N-dimensional random variables { W }¥_, from either U({—1, 1}V) or A/(0, 1y).
Must all be from the same distribution though!

M
> Calculate ; > H(W GWm — Ty)
m=1
» Concentration Inequality Configuration, based off [12].

> Calculate exp (—1 — % + 4/2max ({2“,2}))

Different performances due to different amounts of collected info. All of them reject eventually.

of 35
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Model class : M (u, 1) for p € R

Experiment 1 : Simulate N data i.i.d. according to A/(1,1). Plot ECDF of calculated significances.

Experiment 2 : Simulate N data i.i.d. according to A'(1, (1 + ¢)?) for many ¢ > 0. Plot Rejection
Probability against ¢ for p = 0.1.

Experiment 3 : Simulate N data i.i.d. according to Skew Normal with mean 1, variance 1 and skew
¢ > 0. Plot Rejection Probability against ¢ for p = 0.1.

Likelihood Ratio Test will fail Experiment 3. The framework...?
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— Alquier and Gerber’s Contribution

N N N
1 1 1
0 < MMDy,,, (P9|PX, PT\PX) < MMD;,,, <P9|N > Gy 2 ja(x,,y,)> + MMD;,,, (N > Soos PTPX>
i=1 i=1 i=1

~ 0 as N— oo from [10]

N
1
XXY=Z|Kx > Hx| Kx Ky > Hx @Hy =Hz + CoMMDy, *Z&NPX
—_— e —— N =
Joint Sample Space Covariate RKHS Joint RKHS —

~ 0 as N— oo from [10]

N N N
1 1 1
MMD%Z (PGN Z(SXHNZ(S(XH,V[)) = TZZK AL ((Xi’yi)’(xj’yj))
i=1 i
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N N
> Consistently calculating MMD5, <P9|1N P DY 6(Xl.7y,.))
i=1 i=1
> [K(x,y)dP(y), [ K(x,y)dP(x)dQ(y) range from difficult to calculate perfectly to impossible to

calculate perfectly.
» Novel contributions to the canon in tracking some of these down.

» Developing a conditional testing framework

N N
; _ . 2 1 1
» Work with Ty = N(Snelg MMD3, . <P9|N i:§ 1 Oxis N i:§ 1 5()(:%))'

Po = N (01 + 02x1 + 03x2, 1)
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H : R — {0, 1} is the Heaviside Step Function, and k > 0 bounds Kx ® Ky from above.
» Parametric Bootstrap Configuration.
1. Resample (x;, y;) from trained model M times.
2. For the m-th resample, swap out the old sample with the m-th resample in T, and call it Ap.

M
3. Calculate ; > H(Am — Ty)
m=1

» Wild Bootstrap Configuration, based off [11].

» Calculate the Gram Matrix of the Core at minimising parameters, then multiply it by N. Call this final
matrix Gy.

> Sample M-many N-dimensional random variables { W }"_, from either U({—1, 1}V) or A/(0, 1y).
Must all be from the same distribution though!

M
> Calculate 7; 21 H(W,, GWm — Ty)
m=

» Concentration Inequality Configuration, based off [12].

> catiste o (1 - = 4 o ({7.2)) )
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following holds:
1. [ K(x,y)dPx(y) is equal to:

_Z expg/;étz) (exp ()\ exp (ﬁ) cos (%)) cos (/\ exp (ﬁ) sin (%))) at
exp (/\ -+ %)
2. [[ K(x,y)dPx(x)dP.(y) is equal to:

F G o (0 s () o (0 (3)

Y x.

—o0

exp(A + p)
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