
Quantum Corrections to Symmetron Fifth Forces
2508.16726

Michael Udemba

University of Manchester

December 18, 2025

1



Why Study Scalar Fields?

Scalar fields turn up frequently in the proposed solutions to problems in the Standard
Model of Particle Physics and ΛCDM.

� Hierarchy
problem

� Quantum
gravity

� Strong CP
problem

� Inflation

� Dark energy

� Dark matter
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Scalar-Tensor Theory

Roughly speaking, couple a scalar field φ to the metric tensor. More precisely...

S=

∫

d4x
p

−gR+

∫

d4x
Æ

−egLmatter

�

egµν
�

+

∫

d4x
p

−g
�

−
1
2
∂µφ∂

µφ − V(φ)
�

(1)

Physically equivalent conformal frames gµν and egµν = A(φ)2gµν.

Observational effects: Contribution to vacuum energy (dark energy or inflation), fifth forces
(dark matter).
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Screened Modified Gravity

Question: If there is a fifth force, why haven’t we seen it yet?

Answer: Screening – some mechanism which hides fifth forces from local tests.

Tends to require nonlinearities in the field’s equation of motion.

Example: The chamelon model. The mass m of the scalar is proportional to ambient density
of matter. The range of the fifth force goes like m−1.
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The Symmetron Model

A(φ) = 1+
φ2

2M2

V(φ) = −
1
2
µ2φ2 +

1
4
λφ4

Veff (φ) =
1
2

� ρ

M2
−µ2
�

φ2 +
1
4
λφ4

ρ→ background matter density
M→ matter coupling
µ→ mass term
λ→ dimensionless self-coupling

0

φ

Veff(φ)

ρ/M2 < µ2

ρ/M2 ≥ µ2

Figure 1: The symmetron effective potential.
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The Symmetron Screening Mechanism

A unit test mass experience a force given by F = −∇ ln A(φ)≈ −
φ

M
∇
φ

M

Low density =⇒ spontaneous symmetry breaking, nonzero vacuum expectation value v,
unscreened force with coupling strength v/M.

High density =⇒ symmetry is restored, φ→ 0, fifth force is screened.
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Constraints

Figure 2: Constraints from H. Fischer, C. Käding and M. Pitschmann, 2024
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Constraints

Figure 3: Constraints from H. Fischer, C. Käding and M. Pitschmann, 2024
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Why Consider Quantum Corrections?

Many predictions in the literature assume classical solutions.

Field gradients become large in the vicinity of point-like sources (C. Burrage et al., 2021).

One expects quantum corrections to be large when field gradients are (E. Weinberg, 2012).

Field gradients are also large when the source is large compared to the field’s Compton
wavelength.

Have we been missing significant quantum corrections to symmetron field profiles?
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Method of External Sources

(B. Garbrecht and P. Millington, 2015)
Idea: Constrain the effective action by picking a nonvanishing external source.

The effective action is defined by a Legendre transform,

Γ [φ] =max
J

�

W[J]−
∫

d4x J(x)φ(x)

�

≡max
J
ΓJ[φ] , (2)

where J is a local source,
W[J] = −i ln Z[J] (3)

is the generating functional of connected correlation functions,

Z[J] =

∫

[dΦ] exp

�

i

�

S[Φ] +

∫

d4x J(x)Φ(x)

��

(4)

is the generating functional of all correlation functions, and S is the classical action.
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Method of External Sources

Source J which extremises ΓJ satisfies

δΓ [φ]
δJ(x)

�

�

�

�

J=J
= 0 (5)

and defines

Γ [φ] =W[J ]−
∫

d4xJ (x)φ(x) . (6)

The equation
δΓ [φ]
δφ(x)

= −J (x)[φ] (7)

yields the quantum field, provided a consistent choice for J ,

J (x)[φ] = 3iλG(x)[ϕcl]ϕcl(x)≡ Π(x)[ϕcl]ϕcl(x) . (8)
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Leading-Order Quantum Correction

Let φqu(x) = φcl(x) +δφ(x). Then

δφ(x) =

∫

d4y G(x, y)ΠR(y)φcl(y) , (9)

where G(x, y) is the propagator, defined by

δ2S[φ]
δφ(x)δφ(y)

�

�

�

�

φ=φcl

G(x, y) = −δ(x− y) (10)

and ΠR(x) = 3iλG(x, x) +δm2 +δλφcl(x)2 is the renormalised tadpole contribution.
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Classical Solution

Static configuration,

∇2φ =
dVeff

dφ
=
�

ρ(x)
M2
−µ2
�

φ +λφ3 . (11)

Spherical source ρ(x)→ ρ(r) = ρ0Θ(R− r),

d2φ

dr2
+

2
r

dφ
dr
=
�

ρ(r)
M2
−µ2
�

φ +λφ3 . (12)

Thin-wall approximation: Assume R� µ−1. Then 2r−1dφ/dr→ 0. Let s= R− r,

d2φ

ds2
=
�

ρ(s)
M2
−µ2
�

φ +λφ3 . (13)
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Classical Solution

Figure 4: The classical symmetron field profile in the thin-wall approximation.
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Green’s Function

G(x, x′) determined by weighted sum over l and integral over E of Gl(r, r′; E), satisfying
�

d2

dr2
−

l(l+ 1)
r2

+ E2 −
d2Veff

dφ2

�

�

�

�

φ=φcl

�

Gl(r, r′; E) =
δ(r− r′)

r2
(14)

Thin-wall approximation
�

d2

ds2
−

l(l+ 1)
R2

+ E2 −
d2Veff

dφ2

�

�

�

�

φ=φcl

�

Gl(s, s′; E) =
δ(s− s′)

R2
(15)

Planar limit
l(l+ 1)

R2
≈ p2 =⇒
∑

l

(2l+ 1)→
∫

dpp (16)
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Potential

Figure 5: The potential for the Green’s function and eigenfunction problem.
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Decomposition

Figure 6: A graphical depiction of the decomposition of the Green’s function in the s, s′-plane.
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Coincident Green’s Function

Figure 7: The coincident Green’s function in position space.
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Tangent: What if we don’t take the thin wall approximation?

The 1D equation of motion also describes very long rods or very large planes.

In this way,
the system of equations

d2φ

dx2
=

�

ρ0 rect
� x

2R

�

M2
−µ2

�

φ +λφ3 ; φ′(0) = 0,φ(±∞) = v (17)

captures cylindrical-planar symmetry, as opposed to the spherical-planar symmetry of the
thin-wall approximation.
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1D is Harder Than 3D (plus approximations)

Figure 8: A graphical depiction of the decomposition of the Green’s function in the x, x′-plane.
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Renormalisation

Renormalisation conditions

d2V1-loop

dφ2

�

�

�

�

�

φ=v

= 2µ2 and
d4V1-loop

dφ4

�

�

�

�

�

φ=v

= 6λ (18)

determine counterterms δm2 and δλ.

Counterterms determine pseudocounterterms,

1
2π2

∫ Λ

0

dpp2∆m2(p) = δm2 and
1

2π2

∫ Λ

0

dpp2∆λ(p) = δλ . (19)

Pseudocounterterms facilitate numerical computation of the tadpole contribution,

ΠR(x) =
1

2π2

∫ Λ

0

dpp2
�

−3λG(s, s) +∆m2 +∆λφ2
�

. (20)
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Quantum-Corrected Field

Figure 9: The classical (blue, dashed) and quantum (orange, solid) symmetron field profiles.
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Some Analytical Understanding

Shift in the vev ∆v,

∂ V1-loop

∂ φ

�

�

�

�

v+∆v
= 0⇒∆v= −

27λ
16π2

v+O(λ2) , (21)

changes the asymptotic value.

Shift in the mass,

m1-loop =
∂ 2V1-loop

∂ φ2

�

�

�

�

�

v+∆v

= 2µ2
�

1−
81λ
16π2

�

+O(λ2) , (22)

changes the slope.
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Slope Shift

Figure 10: The classical (blue, dashed) and quantum (orange, solid) symmetron field profiles,
normalised to their asymptotic values.
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Quantum-Corrected Force

Figure 11: The classical (blue, dashed) and quantum (orange, solid) symmetron fifth force profiles.
µ= 1GeV, M = 10MeV, λ= 0.5, ρ0 = 2.45× 10−3GeV4 (hydrogen spectroscopy)
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Quantum-Corrected Force

Figure 12: The classical (blue, dashed) and quantum (orange, solid) symmetron fifth force profiles.
µ= 10−1meV, M = 10−2GeV, λ= 10−0.5, ρ0 = 8.178× 10−5MeV4 (atom interferometry)
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Some More Analytical Understanding

In the vicinity of a source which produces a symmetron field profile φ, a test particle
experiences an acceleration

a= −
1

M2
φ∇φ . (23)

Very roughly, one might expect the vev shift to contribute twice and the mass shift once to
the quantum correction in a,

∆F =
acl − aqu

acl
∼ 2×

27λ
16π2

+
81λ
32π2

≈
6λ
π2

. (24)

In other words, we should expect virtually no µ-dependence and approximately linear
λ-dependence in ∆F.
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µ-dependence

Figure 13: The dependence of the relative shift in the force on the mass µ, at one Compton
wavelength from the surface of the source.
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λ-dependence

Figure 14: The dependence of the relative shift in the force on the self-coupling λ, at one Compton
wavelength from the surface of the source.
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Conclusions

Our results provide a first estimate of the theoretical uncertainty on existing fifth force
predictions that neglect radiative effects.

For large spherical and planar geometries, the quantum corrections to the symmetron field
profile can weaken the fifth force by as much as 50% locally.

The quantum correction to the field varies spatially. It cannot be fine-tuned away.

Higher-order corrections are likely also relevant.

The magnitude of the correction to the force scales almost linearly with the self-coupling.

Current constraints may be weaker than we thought, especially for nonperturbative
self-couplings.
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