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Scalar-Tensor Theory

Roughly speaking, couple a scalar field ¢ to the metric tensor. More precisely...
4, /== 4, /= = 4, —(_1 u
S= d"x _gR + d*x _ggmatter (guv) + d*x —8 _Eauqsa ¢ - V(¢) (D

Physically equivalent conformal frames g,,, and g, = A(qb)zgm.

Observational effects: Contribution to vacuum energy (dark energy or inflation), fifth forces
(dark matter).
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Screened Modified Gravity

Question: If there is a fifth force, why haven’t we seen it yet?

Answer: Screening — some mechanism which hides fifth forces from local tests.

Tends to require nonlinearities in the field’s equation of motion.

Example: The chamelon model. The mass m of the scalar is proportional to ambient density
of matter. The range of the fifth force goes like m™".
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The Symmetron Model

2
7P/M2 < Hz
1
V(g) = __U2¢2 + ZA¢4 \ Vest(P)
P 1 \ /
Ver(9) = 5 (L2 —12) 92+ 229" /

p — background matter density
M — matter coupling

@ — mass term

A — dimensionless self-coupling

¢

Figure 1: The symmetron effective potential.
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The Symmetron Screening Mechanism

¢

A unit test mass experience a force given by F = —V InA(¢) ~ _A_/[vl\_/_/

Low density = spontaneous symmetry breaking, nonzero vacuum expectation value v,
unscreened force with coupling strength v/M.

High density = symmetry is restored, ¢ — 0, fifth force is screened.
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Figure 2: Constraints from H. Fischer, C. Kadding and M. Pitschmann, 2024
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Figure 3: Constraints from H. Fischer, C. Kadding and M. Pitschmann, 2024
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Why Consider Quantum Corrections?

Many predictions in the literature assume classical solutions.

Field gradients become large in the vicinity of point-like sources (C. Burrage et al., 2021).

One expects quantum corrections to be large when field gradients are (E. Weinberg, 2012).

Field gradients are also large when the source is large compared to the field’s Compton
wavelength.

Have we been missing significant quantum corrections to symmetron field profiles?
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Method of External Sources

(B. Garbrecht and P Millington, 2015)
Idea: Constrain the effective action by picking a nonvanishing external source.
The effective action is defined by a Legendre transform,

I[¢]= max (W[J] —J d4xJ(x)qb(x)) = mJaXFJ[qb] ) (2)

where J is a local source,
W[J]=—ilnZ[J] 3

is the generating functional of connected correlation functions,

Z[J] = f [d®] exp [i (s[cp] + J d4xJ(x)<I>(x))] 4)

is the generating functional of all correlation functions, and S is the classical action.



Method of External Sources

Source _¢ which extremises I satisfies

oI'l¢]

6J(x)

J=g
and defines

Il¢l= W[f]—f d*x £ ()¢ (x) .

The equation

5T(9] _
5ot = ~F 0I9]

yields the quantum field, provided a consistent choice for ¢,

FX)[¢]=3iAG()[@a]lea(x) = () [palpalx).
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Leading-Order Quantum Correction

Let ¢qu(x) = pa(x) + 5@ (x). Then

6 (x) = f d*y Gee I ()P () ,

where G(x,y) is the propagator, defined by

5%5[¢]

m o Gx,y) =—6(x—y)

and TR (x) = 3iAG(x, x) + 5m? + 5 A¢(x)? is the renormalised tadpole contribution.

9
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Classical Solution

Static configuration,

vigp = U _ (60 _

dp M2
Spherical source p(x) — p(r) = po®(R —1),
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Classical Solution

Static configuration,

2, dVegr _ (P(X) . 2) 3
V¢——d¢— — U ¢+ Ag”. (11)
Spherical source p(x) — p(r) = po®(R —1),
d’¢ 2d¢p _(p() 3
drz-i_;dr_(M2 _M)¢+A¢ ' -

Thin-wall approximation: Assume R > u~!. Then 2r 1d¢/dr — 0. Lets =R —r,

£o_ (06

= =\ M2)¢+x¢3. (13)



Classical Solution
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Figure 4: The classical symmetron field profile in the thin-wall approximation.



Green’s Function
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Green’s Function

G(x,x") determined by weighted sum over [ and integral over E of G(r,r’; E), satisfying

2 I(1+1)  , d*Ve , 5(r—r")
Thin-wall approximation
dz l(l + ].) 2 dZVeff / 5(3 —S/)
L +E2— Gi(s,5';E) = 15

Planar limit
(1+1)

R2

Np2=>Z(21+1)—>Jdpp (16)
l



Potential

Figure 5: The potential for the Green’s function and eigenfunction problem.
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Figure 6: A graphical depiction of the decomposition of the Green’s function in the s, s'-plane.
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Coincident Green’s Function
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Figure 7: The coincident Green’s function in position space.
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Tangent: What if we don’t take the thin wall approximation?

The 1D equation of motion also describes very long rods or very large planes. In this way,
the system of equations

d%¢ porect(%)
2 M2

M2)¢+M>3; ¢'(0)=0,$(+00) =v (17)

captures cylindrical-planar symmetry, as opposed to the spherical-planar symmetry of the
thin-wall approximation.



1D is Harder Than 3D (plus approximations)
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Figure 8: A graphical depiction of the decomposition of the Green’s function in the x, x’-plane.
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Renormalisation
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Renormalisation
Renormalisation conditions

2
d Vl—loop

d¢?

4
d Vl—loop

Py =61 (18)

¢o=v

=2u? and
¢o=v

determine counterterms 6m? and 6 A.Counterterms determine pseudocounterterms,

A A
1
73 dpp?>Am?(p) = 6m? and ﬁf dpp?AAr(p) =6A. (19)
0 0

Pseudocounterterms facilitate numerical computation of the tadpole contribution,

A
R’ (x) = zinz f dpp? (—3AG(s,s) + Am* + AXP?) . (20)
0

21



Quantum-Corrected Field
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Figure 9: The classical (blue, dashed) and quantum (orange, solid) symmetron field profiles.
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Some Analytical Understanding

Shift in the vev Av,
Z Vl -loop
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changes the asymptotic value.
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Some Analytical Understanding

Shift in the vev Av,

0 Vl—loop
¢

271
1672

=0=>Av=— v+0(A?),

v+Ay

changes the asymptotic value.

Shift in the mass,

changes the slope.

(21

(22)
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Slope Shift
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Figure 10: The classical (blue, dashed) and quantum (orange, solid) symmetron field profiles,

normalised to their asymptotic values.
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Quantum-Corrected Force
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Figure 11: The classical (blue, dashed) and quantum (orange, solid) symmetron fifth force profiles.

u=1GeV, M = 10MeV, A = 0.5, p, = 2.45 x 10~3GeV* (hydrogen spectroscopy)
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Quantum-Corrected Force
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Figure 12: The classical (blue, dashed) and quantum (orange, solid) symmetron fifth force profiles.
u=10"'meV, M = 1072GeV, A = 107%°, p, = 8.178 x 10°MeV* (atom interferometry)



Some More Analytical Understanding

In the vicinity of a source which produces a symmetron field profile ¢, a test particle
experiences an acceleration

a= —A%d)qu .

(23)
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Some More Analytical Understanding

In the vicinity of a source which produces a symmetron field profile ¢, a test particle
experiences an acceleration

1

Very roughly, one might expect the vev shift to contribute twice and the mass shift once to
the quantum correction in a,

ag—a 270 81A  6A
AF— AT %u 274 ~

N —. 24
aq 16m2  32m2 w2 24

In other words, we should expect virtually no u-dependence and approximately linear
A-dependence in AF.
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u-dependence
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Figure 13: The dependence of the relative shift in the force on the mass u, at one Compton
wavelength from the surface of the source.
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A-dependence
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Figure 14: The dependence of the relative shift in the force on the self-coupling A, at one Compton
wavelength from the surface of the source.
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Conclusions

Our results provide a first estimate of the theoretical uncertainty on existing fifth force
predictions that neglect radiative effects.

For large spherical and planar geometries, the quantum corrections to the symmetron field
profile can weaken the fifth force by as much as 50% locally.

The quantum correction to the field varies spatially. It cannot be fine-tuned away.
Higher-order corrections are likely also relevant.
The magnitude of the correction to the force scales almost linearly with the self-coupling.

Current constraints may be weaker than we thought, especially for nonperturbative
self-couplings.
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