

Linking Asymmetric Dark Matter and Leptogenesis

A Testable Framework for Neutrino Mass and the Matter-Antimatter Asymmetry

Henry McKenna, Juri Smirnov, Martin Gorbahn

Research Questions

- 1. Is it possible to break the Davidson Ibarra bound (10⁹ GeV) from Asymmetric Dark Matter with Leptogenesis?
- 2. If so, how low can this bound go?
- 3. Can it be tested?

Three major problems in physics

- Dark Matter
- Baryon asymmetry of the Universe

Observations such as Baryon to photon ratio show imbalance between Baryonic matter and anti-matter.

$$\eta_B = \frac{n_B}{n_C} = (6.19 \pm 0.15) \times 10^{-10}$$

but......SM processes generate an equal amount of matter and antimatter.

• Neutrino mass

In SM - neutrinos are massless.

but.......observations of neutrino oscillation - neutrinos must have mass.

Baryogenesis

It is unknown why there is no anti-matter in the observable universe

Needs physics beyond the Standard Model.

Baryogenesis is the process in early dynamic universe producing baryon asymmetry

Sakharov (1967) stated the following conditions:

- Baryon number (B) must be violated
- Charge (C) and Charge-Parity (CP) symmetry must be violated
- There must be departure from thermal equilibrium.

Leptogenesis

- See-Saw type I mechanism generates neutrino mass
- Lepton number is violated extension to SM
- Generation of an asymmetry in the lepton sector
- Transferred to the Baryon sector Sphaleron process.
- Sphalerons violate Baryon number (B) and Lepton number (L) but conserve B-L.

Seesaw mechanism

• Type I See-Saw mechanism

$$\mathcal{L}_{seesaw\ mass} = \left(\nu_L^T N_R^T\right) \begin{pmatrix} 0 & \lambda v_H \\ \lambda v_H & M_{N,R} \end{pmatrix} \begin{pmatrix} \nu_L \\ N_R \end{pmatrix}$$

• From seesaw – constraints on mass is $m_{\nu,L} \simeq \frac{(\lambda v)^2}{m_{\nu,R}}$

- $m_{\nu,L}$ is fixed to small range, v is fixed, $m_{\nu,R} \propto \lambda^{\rm 2}$
- Dirac mass is given by $m_D = \lambda v$

Constraints on mass and coupling

• See-Saw Type I Leptogenesis achievable but constrained

• To generate the correct asymmetry - needs a large value of λ .

• As light left neutrino's mass is fixed – requires $m_{\nu,R} \propto \lambda^{\rm 2}$

• Increasing λ^2 requires $m_{\nu,R}$ to be increased

Constraints on mass and coupling

• From Davidson & Ibarra - lowest bound on heavy neutrino mass required to generate observed asymmetry as 10^9 GeV $^{[2]}$.

• Large RHN mass contributes to the Electroweak Hierarchy problem

• This tension is alleviated is if RHN mass is $M_{N_1} \lesssim 10^7$ GeV also called the Vessani bound $^{[3]}$

^[2] Davidson S, Ibarra A. Physics Letters B. 2002;535:25-32.

^[3] Vissani F. *Physical Review D* 57.11 (1998): 7027.

Asymmetric Dark Matter (ADM)

$$\Omega \equiv \rho/\rho_c$$

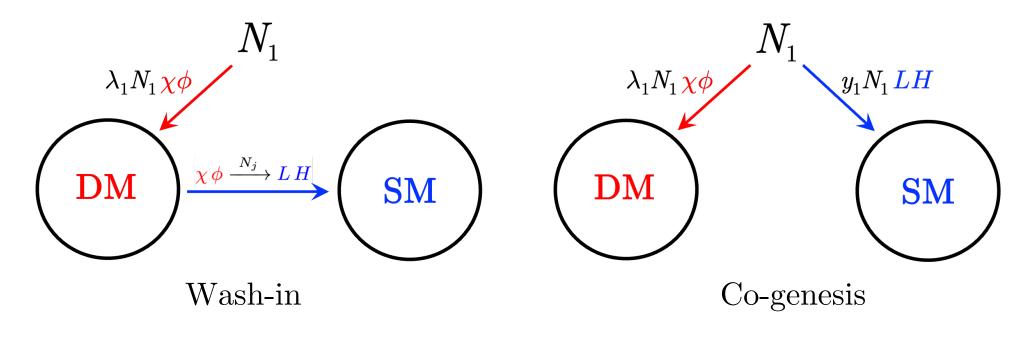
$$\Omega_{DM} \simeq 5\Omega_{VM}$$

- If dark matter couples the Standard model (SM) resulting in ADM, then there are two possible connections.
- It could couple to the Baryonic sector or the Leptonic sector.
- Here, the focus is on DM coupling to the Leptonic Sector via Leptogenesis.

Asymmetric dark matter from Leptogenesis

- This Model has been studied by Falkowski, Ruderman, and Volansky (Arxiv 1101.4936)
- Idea is to generate asymmetry in visible sector and Dark sector simultaneously from same mediator or Bridge particle
- Visible sector generated via Standard Leptogenesis with the exception of new dark mediator in loop
- They showed that for $\frac{\Gamma_{N_j}}{\Gamma_{N_1}} \simeq \frac{M_{N_j}}{M_{N_1}}$, then $M_{N_1} \gtrsim 10^9$ GeV, so did not break bound
- Did not explore the case where $\frac{\Gamma_{N_j}}{\Gamma_{N_1}} \gg \frac{M_{N_j}}{M_{N_1}}$
- We explore two scenarios that arise following this assumption

Asymmetric dark matter from Leptogenesis



$$-\mathcal{L} \supset \frac{1}{2} M_{N_i} \overline{N_i^c} N_i + \frac{\lambda_i}{i} N_i \chi \phi + y_{i\alpha} N_i L_{\alpha} H + h.c.$$

Fields		SU(2)	$U(1)_{Y}$
Fermions	N_{i}	1	0
	χ	1	0
	$oldsymbol{L}$	2	-1
Scalars	ϕ	1	0
	H	2	1

Boltzmann equations

• With the addition of the dark fermion χ and dark scalar ϕ , we now have

$$\frac{dY_{N_1}}{dz} = -z \frac{\Gamma_{N_1}}{H_1} \frac{K_1(z)}{K_2(z)} \left(Y_{N_1} - Y_{N_1}^{eq} \right) + (2 \leftrightarrow 2)$$

$$\frac{dY_{\Delta\chi}}{dz} = \frac{\Gamma_{N_1}}{H_1} \left[\epsilon_{\chi} \frac{zK_1(z)}{K_2(z)} (Y_{N_1} - Y_{N_1}^{eq}) \right] - \frac{\Gamma_{N_2}}{H_1} \left[2Br_{\chi}^2 I_W(z) Y_{\Delta\chi} \right]$$

$$\frac{dY_{\Delta l}}{dz} = \frac{\Gamma_{N_1}}{H_1} \left[\epsilon_l \frac{zK_1(z)}{K_2(z)} (Y_{N_1} - Y_{N_1}^{eq}) \right] - \frac{\Gamma_{N_2}}{H_1} \left[\operatorname{Br}_l \operatorname{Br}_{\chi} I_{T_+}(z) (Y_{\Delta l} + Y_{\Delta \chi}) + \operatorname{Br}_l \operatorname{Br}_{\chi} I_{T_-}(z) (Y_{\Delta l} - Y_{\Delta \chi}) \right]$$

where $K_i(z)$ is the Modified Bessel function of the ith kind, Br_{χ} and Br_l are the branching ratios,

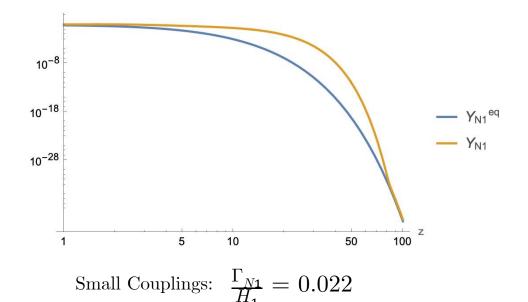
- $I_{T+,T_{-},W}$ are the thermally averaged cross section excluding couplings, Y_i is the Yield
- Negligible terms have been removed
- Can generate asymmetry in two sectors through lepton portal.

Hierarchical scenario

• If hierarchy present such that (with $\lambda_1 \ll \lambda_2$), N_1 departure from thermal equilibrium can be significant

$$\frac{dY_{N_1}}{dz} = -z \frac{\Gamma_{N_1}}{H_1} \frac{K_1(z)}{K_2(z)} \left(Y_{N_1} - Y_{N_1}^{eq} \right)$$

$$rac{dY_{\Delta a}}{dz} = rac{\Gamma_{N_1}}{H_1} \left[\epsilon_a rac{zK_1(z)}{K_2(z)} (Y_{N_1} - Y_{N_1}^{eq})
ight]$$



 10^{-8} 10^{-18} 10^{-28} 10^{-28} 10^{-28} 10^{-28} Large Couplings: $\frac{\Gamma_{N1}}{H_1} = 0.1$

 $\Gamma_{N_1} = \frac{2(y^{\dagger}y)_{11} + |\lambda_1|^2}{16\pi} M_{N_1}$

Hierarchical scenario

• If hierarchy present such that (with $\lambda_1 \ll \lambda_2$), N_1 departure there is from thermal equilibrium can be significant

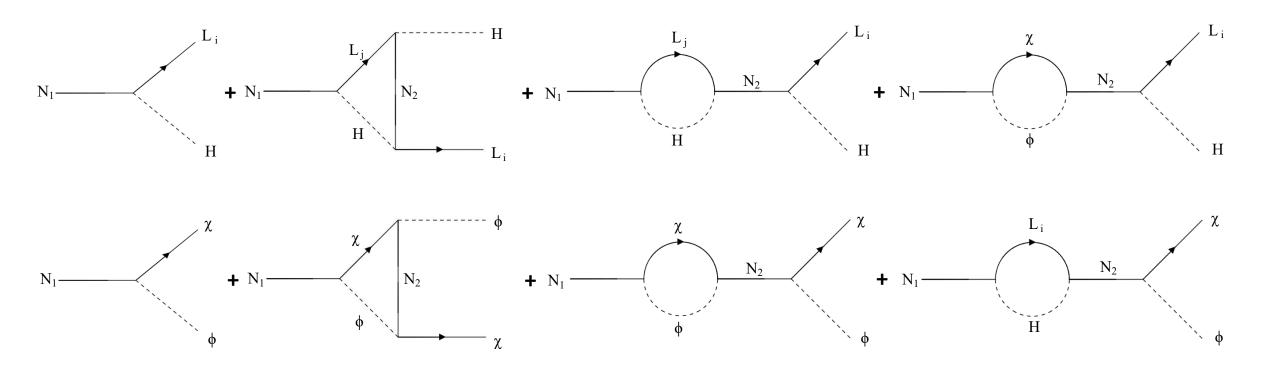
$$\frac{dY_{N_1}}{dz} = -z \frac{\Gamma_{N_1}}{H_1} \frac{K_1(z)}{K_2(z)} \left(Y_{N_1} - Y_{N_1}^{eq} \right) \qquad \frac{dY_{\Delta a}}{dz} = \frac{\Gamma_{N_1}}{H_1} \left[\epsilon_a \frac{zK_1(z)}{K_2(z)} (Y_{N_1} - Y_{N_1}^{eq}) \right]$$

$$\Gamma_{N_1} = \frac{2 \left(y^{\dagger} y \right)_{11} + |\lambda_1|^2}{16\pi} M_{N_1}$$

• With $M_{N1} \lesssim M_{N2}$, large λ_2 allows

$$\epsilon_L \simeq \frac{M_1}{M_2} \frac{\text{Im} \left[3(y^{\dagger}y)_{12}^2 + (y^{\dagger}y)_{12} \,\lambda_1^* \lambda_2 \right]}{8\pi (2(y^{\dagger}y)_{11} + |\lambda_1|^2)} \qquad \epsilon_\chi \simeq \frac{M_1}{M_2} \frac{\text{Im} \left[(\lambda_1^* \lambda_2)^2 + (y^{\dagger}y)_{12} \,\lambda_1^* \lambda_2 \right]}{8\pi (2(y^{\dagger}y)_{11} + |\lambda_1|^2)}$$

Hierarchical scenario

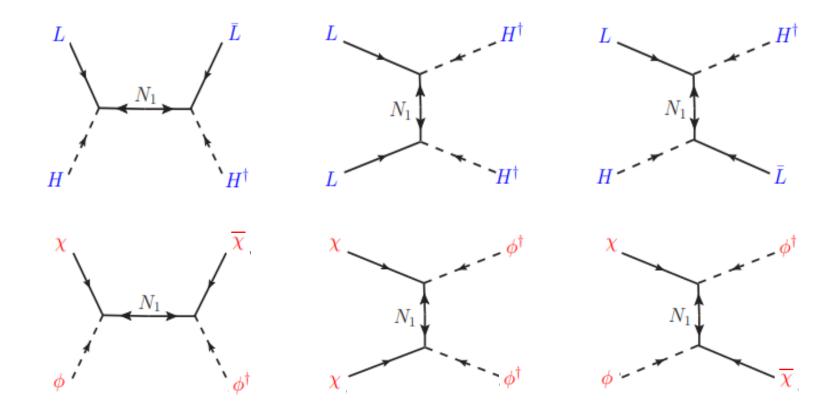


$$\epsilon_L \simeq \frac{M_1}{M_2} \frac{\text{Im} \left[3(y^{\dagger}y)_{12}^2 + (y^{\dagger}y)_{12} \, \lambda_1^* \lambda_2 \right]}{8\pi (2 \, (y^{\dagger}y)_{11} + |\lambda_1|^2)}$$

$$\epsilon_{\chi} \simeq \frac{M_1}{M_2} \frac{\text{Im} \left[(\lambda_1^* \lambda_2)^2 + (y^{\dagger} y)_{12} \lambda_1^* \lambda_2 \right]}{8\pi (2(y^{\dagger} y)_{11} + |\lambda_1|^2)}$$

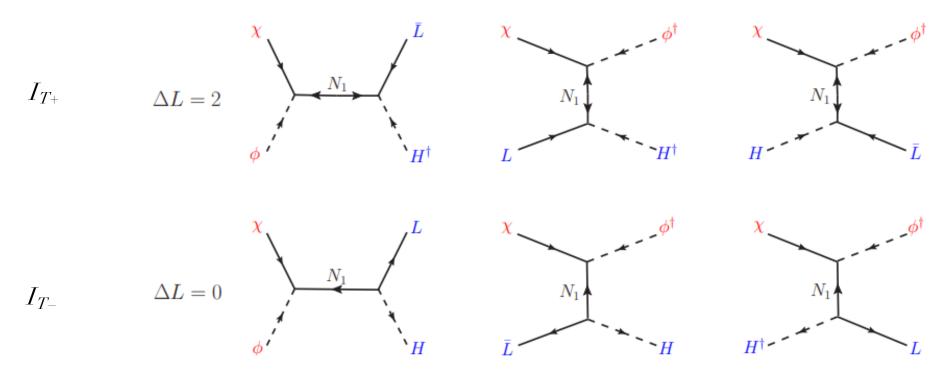
Washout Processes

- Washout processes reduce asymmetries
- The I_W washout terms in Boltzmann come from these diagrams.
- If the couplings are too large, then these processes become more dominant and actively reduce asymmetry generated.



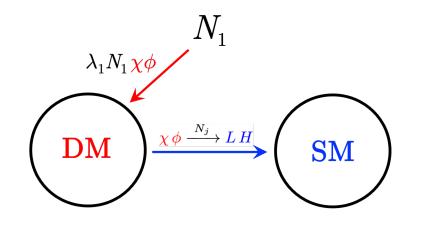
Transfer

- The I_{T+} , I_{T-} washout terms in Boltzmann come from these diagrams.
- If the couplings are too large, then these processes become more dominant and actively reduce asymmetry generated.



Falkowski, A., Ruderman, J.T., Volansky, T., JHEP; 2011(5):1-32

Wash In



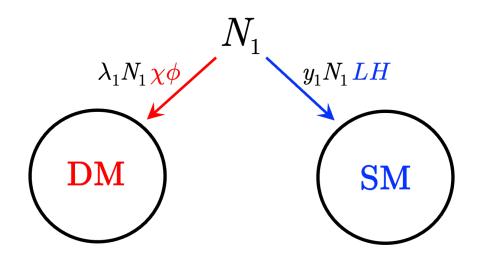
$$\frac{dY_{N_1}}{dz} = -z \frac{\Gamma_{N_1}}{H_1} \frac{K_1(z)}{K_2(z)} \left(Y_{N_1} - Y_{N_1}^{eq} \right) + (2 \leftrightarrow 2)$$

$$\frac{dY_{\Delta\chi}}{dz} = \frac{\Gamma_{N_1}}{H_1} \left[\epsilon_{\chi} \frac{zK_1(z)}{K_2(z)} (Y_{N_1} - Y_{N_1}^{eq}) \right] - \frac{\Gamma_{N_2}}{H_1} \left[2Br_{\chi}^2 I_W(z) Y_{\Delta\chi} \right]$$

$$rac{dY_{\Delta l}}{dz} = -rac{\Gamma_{N_2}}{H_1}igg[\mathrm{Br}_l\mathrm{Br}_\chi I_{T_+}(z)(Y_{\Delta l}+Y_{\Delta\chi}) + \mathrm{Br}_l\mathrm{Br}_\chi I_{T_-}(z)(Y_{\Delta l}-Y_{\Delta\chi})igg]$$

- If $\Gamma(N_1 \to L H) \simeq 0$, $\epsilon_L \simeq 0$, then can have asymmetry generation via wash-in from the dark sector.
- Successful Baryogenesis possible if $M_{N_1} \ge 10^9 \text{ GeV}$

Co-genesis

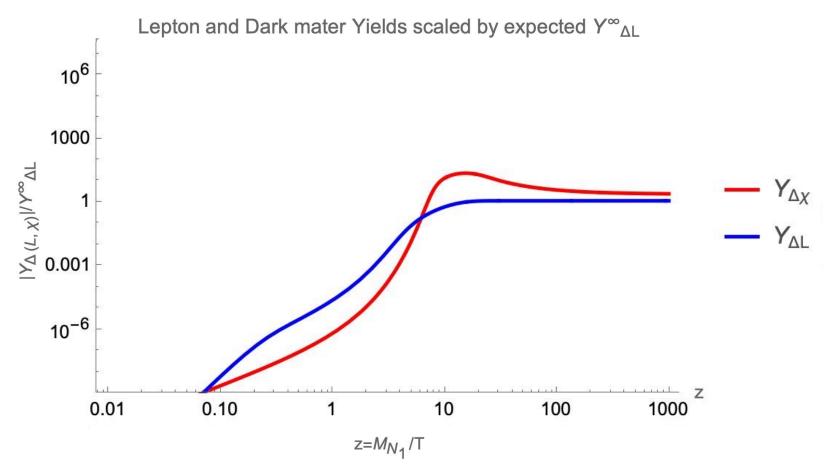


• With $\epsilon_L \neq 0$ and $\lambda_1 \ll \lambda_2$ can have significant boost to lepton asymmetry generation

$$\epsilon_L \simeq \frac{M_1}{M_2} \frac{\text{Im} \left[3(y^{\dagger}y)_{12}^2 + (y^{\dagger}y)_{12} \, \lambda_1^* \lambda_2 \right]}{8\pi (2(y^{\dagger}y)_{11} + |\lambda_1|^2)}$$

• Successful Baryogenesis possible for $M_{N_1} < 10^9 \; {\rm GeV}$

How low can you go with $\lambda_1 \ll \lambda_2$?

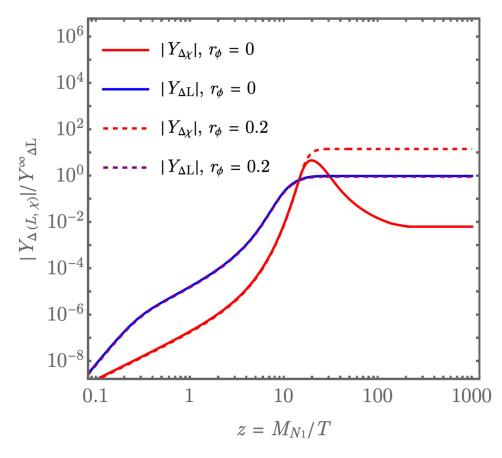


• With $M_{\rm N1} \sim 10^7$ GeV, $M_{\rm N2} \sim 10^8$ GeV, $|\lambda_1| \sim 10^{-6}$, $|\lambda_2| \sim 10^{-2}$, $|y_1| \approx 10^{-6}$, $|y_2| \approx 10^{-4}$; the observed asymmetry can be produced, with DM mass of $m_\chi \approx 0.33$ GeV

Is a lower bound achievable with $\lambda_1 \ll \lambda_2$?

- DM stability requires $M_{N_1} > m_\phi > m_\chi$
- If $M_{N_1}\gg m_\phi$, then increasing λ_2 results in unstable DM due to strong washout
- If $M_{N_1} \gtrsim m_\phi$, then the washout effects can be Boltzmann supressed

Effect of washout suppression from $m_{\phi} = 0.2 \times M_{N1}$



• With $M_{N1} \simeq 4 \times 10^6$ GeV, $M_{N2} \simeq 5.5 \times 10^6$ GeV, $|\lambda_1| = 1.4 \times 10^{-6}$, $|\lambda_2| = 2 \times 10^{-2}$, $|y_1| \approx 1.4 \times 10^{-6}$, $|y_2| \approx 1.5 \times 10^{-4}$; the observed asymmetry can be produced, with ϕ and DM mass for $r_{\phi} = 0$ of $m_{\phi} > m_{\chi} \simeq 383$ GeV and for $r_{\phi} = 0.2$ of $m_{\phi} \simeq 8.1 \times 10^{5}$ GeV and $m_{\chi} \simeq 0.17$ GeV

Finding new bound from $\lambda_1 \ll \lambda_2$ and Washout suppression

• The washout suppression from the mass of ϕ results in more asymmetry in χ

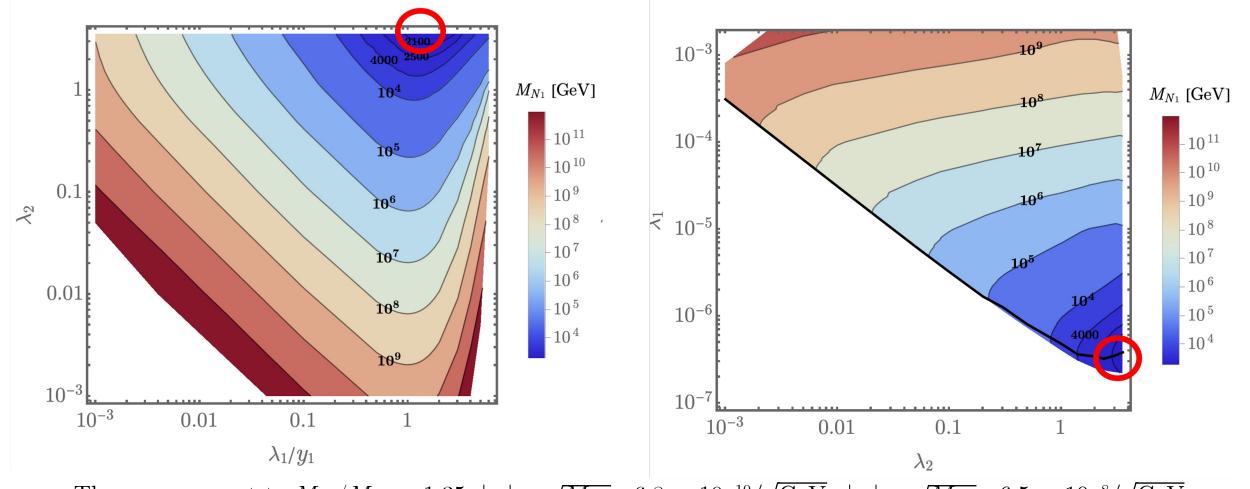
• This allows the coupling λ_2 to be increased, thus allowing more asymmetry in L

• The constraint on λ_2 is no longer washout, but instead perturbation theory

• Lower bound of M_{N1} determined at the point when $m_{\phi} > m_{\chi}$ is no longer true

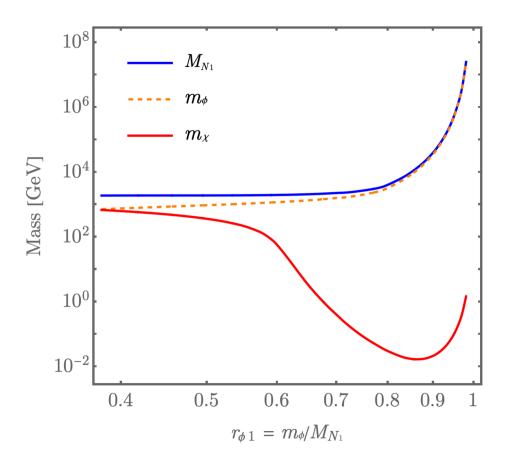
• New bound is about $M_{N1} \ge 2 \text{ TeV}$

Effect on parameters on bound



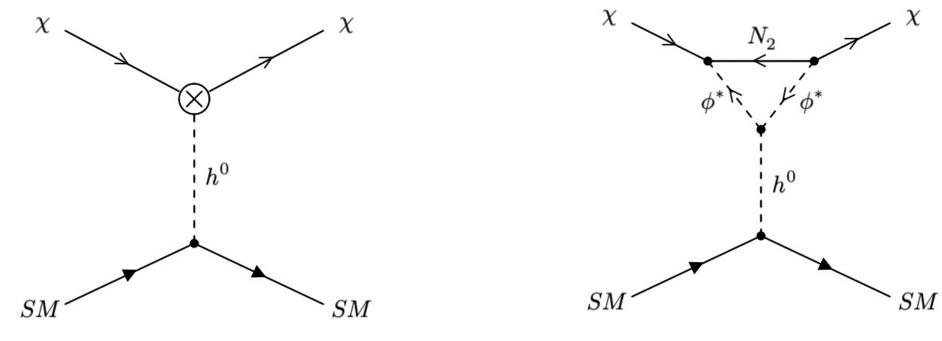
• The mass gap set to $M_{\rm N2}/M_{\rm N1} \simeq 1.35, \ |y_1| \approx \sqrt{M_{N1}} \cdot 6.8 \times 10^{-10}/\sqrt{\rm GeV} \,, \ |y_2| \approx \sqrt{M_{N2}} \cdot 6.5 \times 10^{-8}/\sqrt{\rm GeV}$

DM mass range



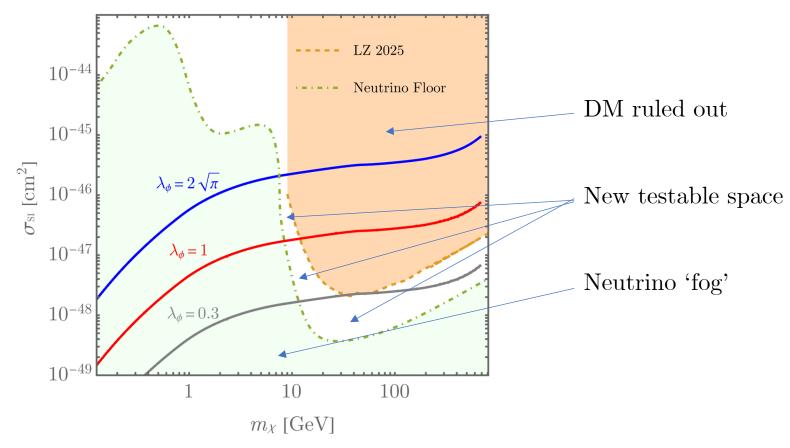
• With $M_{N2}/M_{N1} = 1.41$, $|\lambda_1| \simeq \sqrt{M_{N1}} \cdot 6.8 \times 10^{-10}/\sqrt{\text{GeV}}$, $|\lambda_2| = 1$, $|y_1| \approx \sqrt{M_{N1}} \cdot 6.8 \times 10^{-10}/\sqrt{\text{GeV}}$, $|y_2| \approx \sqrt{M_{N2}} \cdot 6.5 \times 10^{-8}/\sqrt{\text{GeV}}$

Direct Detection Scattering



- $\mathcal{L} \supset \lambda_{\phi} \phi^* \phi H^{\dagger} H$ will generate after EWSB: $\mathcal{L} \supset \lambda_{\phi} v h^{\mathbf{0}} \phi^* \phi$
- Leads to spin independent direct detection (for $M_{N_1} \simeq 2 \text{ TeV}$)
- After Electroweak Symmetry Breaking, the Higgs gains a vev and leading to this scattering process. This can be tested via direct detection

Spin Independent cross section parameter space



• Blue line with perturbative maximum

Conclusions

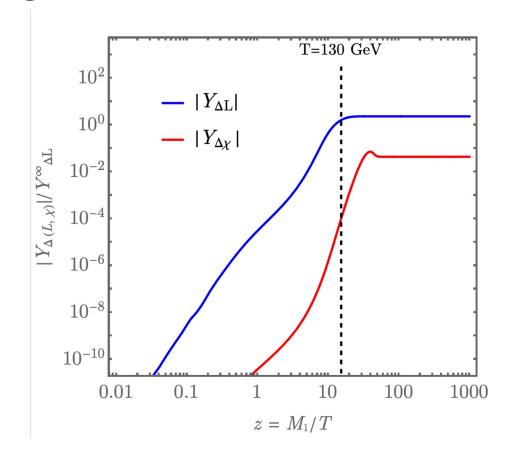
1. Bound can be lower than Davidson Ibarra and Falkowski with large hierarchy

2. Bound is about 2 TeV, any lower and Dark matter becomes unstable

3. Testable via direct detection

^{*} Akhmedov, Evgeny, et al. JHEP 2013.5 :1-33.

Asymmetry generation close to bound

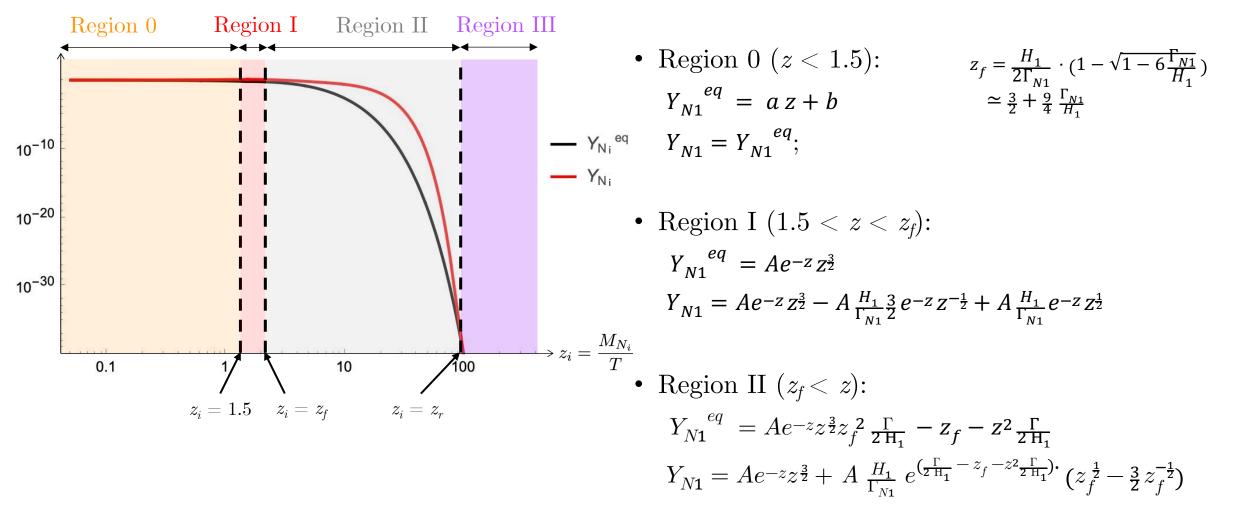


- Here the evolution of the asymmetries for DM mass close to the low point in the neutrino fog.
- With $M_{N1} \simeq 2.0$ TeV, $M_{N2} \simeq 2.7$ TeV, $m_{\phi} \simeq 1.2$ TeV, $|\lambda_1| \approx 10^{-8}$, $|\lambda_2| = \sqrt{4 \pi}$, $|y_1| \approx 10^{-8}$, $|y_2| \approx 10^{-6}$, with DM mass of $m_{\chi} \simeq 56$ GeV

Any Questions?

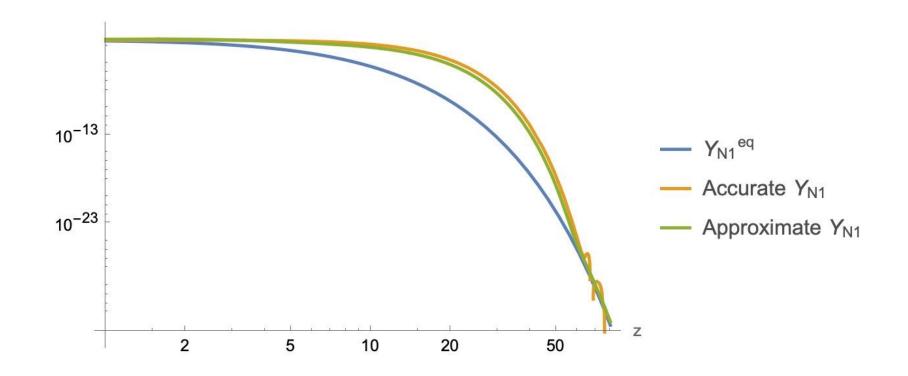
Backup Slides

Analytical Approximation to Y_{N1}^{eq} and Y_{N1}



Analytical Approximation

• To observe how Boltzmann solution behaves, used analytical approximations and compared to accurate numerical solutions.



CI Parameterisation

$$(y^{\dagger}y) = \frac{1}{v_{ew}^2} M_N R^{\dagger} R M_N \qquad R = -i \mathcal{U} m_{\nu}^{\frac{1}{2}} \mathcal{O} M_N^{-\frac{1}{2}}$$

- $\mathcal U$ is the PNMS matrix, $\mathcal O$ is an arbitrary complex orthogonal matrix, M_N is 3x3 or 2x2 diagonal heavy neutrino mass matrix, m_ν is the light neutrino mass matrix
- CI parameterisation, when done carefully, allows flexibility in yukawa couplings
- Can also have hierarchy in yukawa couplings

Boltzmann equations

For number density (n_{χ}) of a particle χ

$$\frac{dn_{\chi}}{dt} + 3Hn_{\chi} = C(\chi)$$

Collision term is

$$C(\alpha_{1}) \equiv \int d\Pi_{\alpha_{1}} \cdots d\Pi_{\alpha_{n}} d\Pi_{\beta_{1}} \cdots d\Pi_{\beta_{m}} (2\pi)^{4} \delta^{4}(p_{\beta_{1}} + \cdots + p_{\beta_{m}} - p_{\alpha_{1}} - \cdots - p_{\alpha_{n}})$$

$$\times \left[(f_{\alpha_{1}} \cdots f_{\alpha_{n}}) |\mathcal{M}(\alpha \to \beta)|^{2} - f_{\beta_{1}} \cdots f_{\beta_{m}} |\mathcal{M}(\beta \to \alpha)|^{2} \right],$$

$$\equiv (r_{\beta_{1}} \cdots r_{\beta_{m}} - r_{\alpha_{1}} \cdots r_{\alpha_{n}}) \Gamma(\alpha \to \beta)$$

The CP violation is given by

$$\epsilon_{\alpha \to \beta} = \frac{\Gamma(\alpha \to \beta) - \Gamma(\beta \to \alpha)}{\Gamma(\alpha \to \beta) + \Gamma(\beta \to \alpha)}$$

Neutrino mass

- In SM neutrinos are massless
- Neutrino oscillation

 neutrinos must have mass
- ? Dirac or Majorana.
- Dirac mass neutrinos couple to scalar boson ? SM Higgs (conserves L number)
- Majorana mass -neutrinos become their own anti-particle (violates L number)

Lepton violation

• Lowest Dimension operator is Dim 5 Weinberg operator

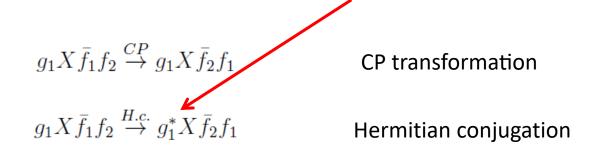
•
$$-\mathcal{L}_{M} = \frac{\lambda}{M} L^{T} \cdot H C^{\dagger}L \cdot H = \frac{\lambda v_{H}^{2}}{M} v_{L}^{T} C^{\dagger} v_{L}$$

• Violates lepton number

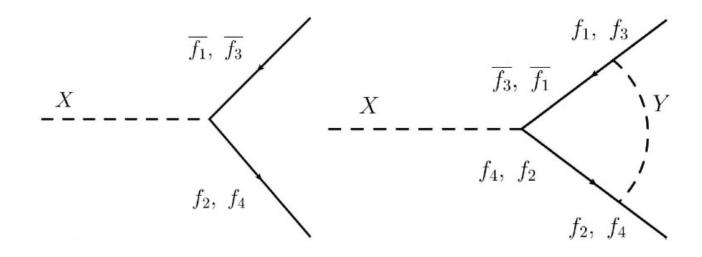
CP violation

In order to generate CP violation it is necessary for mixing between tree level and one loop Interactions.

$$\mathcal{L} = g_1 X \bar{f}_1 f_2 + g_2 X \bar{f}_3 f_4 + g_3 Y \bar{f}_1 f_3 + g_4 Y \bar{f}_2 f_4 + H.c.$$



CP violation



$$\Gamma(X \to \bar{f}_1 f_2) = |g_1|^2 I_{tree} + g_1 g_2^* g_3 g_4^* I_{int} + (g_1 g_2^* g_3 g_4^* I_{int})^* + |g_2|^2 |g_3|^2 |g_4|^2 I_{loop} + \cdots$$

$$\Gamma(\bar{X} \to \bar{f}_2 f_1) = |g_1|^2 I_{tree} + g_1^* g_2 g_3^* g_4 I_{int} + (g_1^* g_2 g_3^* g_4 I_{int})^* + |g_2|^2 |g_3|^2 |g_4|^2 I_{loop} + \cdots$$

$$\Delta\Gamma = 4Im(g_1g_2^*g_3g_4^*)Im(I_{int})$$

Freeze Out

- Majority of asymmetry generated at higher temperatures washout process reduces asymmetry as temperature decreases.
- Washout process would completely remove the asymmetry but the asymmetry instead freezes out after departure from thermal equilibrium before it disappears.
- Freeze out occurs when the interaction or decay rate is less than the Hubble expansion rate and it departs from equilibrium.
- So, the weaker the interaction rate the earlier freeze out occurs.

Asymmetric Dark Matter from Leptogenesis

- Introduction
- Leptogenesis & Asymmetric Dark Matter
- Boltzmann equations
- Numerical solution
- Mapping to model
- Some results
- Conclusions