

Exploiting Perpendicular Momentum Distributions in Semileptonic Decays

Using a $\bar{B}_s^0 \rightarrow D_s^+ \mu^- \bar{\nu}$ case study

Charles Earnshaw

University of Durham, Institute for Particle Physics Phenomenology

Table of contents

1. Motivation
2. Theory
3. Detector Modelling
4. Phenomenological Analysis

Motivation

Why study semileptonic decays?

- The CKM quark mixing matrix describes the misalignment between flavour eigenstates and mass eigenstates as a unitary 3×3 matrix.

Why study semileptonic decays?

- The CKM quark mixing matrix describes the misalignment between flavour eigenstates and mass eigenstates as a unitary 3×3 matrix.
- The SM does not predict these parameters, so their determination must come from fits to data.

Why study semileptonic decays?

- The CKM quark mixing matrix describes the misalignment between flavour eigenstates and mass eigenstates as a unitary 3×3 matrix.
- The SM does not predict these parameters, so their determination must come from fits to data.
- Semileptonic decays are ideal, both in terms of making measurements and making theoretical predictions.

Why study semileptonic decays?

- The CKM quark mixing matrix describes the misalignment between flavour eigenstates and mass eigenstates as a unitary 3×3 matrix.
- The SM does not predict these parameters, so their determination must come from fits to data.
- Semileptonic decays are ideal, both in terms of making measurements and making theoretical predictions.
- The presence of final state neutrinos make q^2 reconstruction difficult at LHCb.

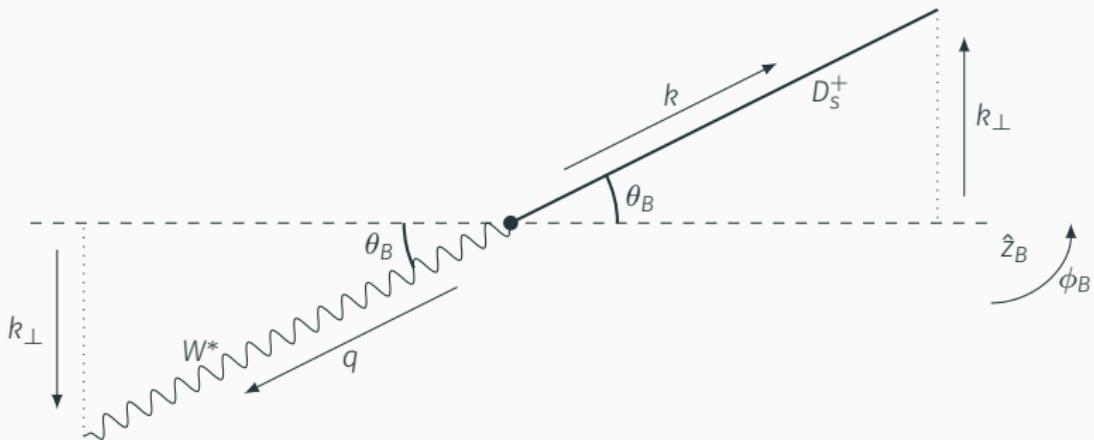
Why study semileptonic decays?

- The CKM quark mixing matrix describes the misalignment between flavour eigenstates and mass eigenstates as a unitary 3×3 matrix.
- The SM does not predict these parameters, so their determination must come from fits to data.
- Semileptonic decays are ideal, both in terms of making measurements and making theoretical predictions.
- The presence of final state neutrinos make q^2 reconstruction difficult at LHCb.
- The traditional method involves solving a quadratic equation, introducing a twofold ambiguity.

Why study semileptonic decays?

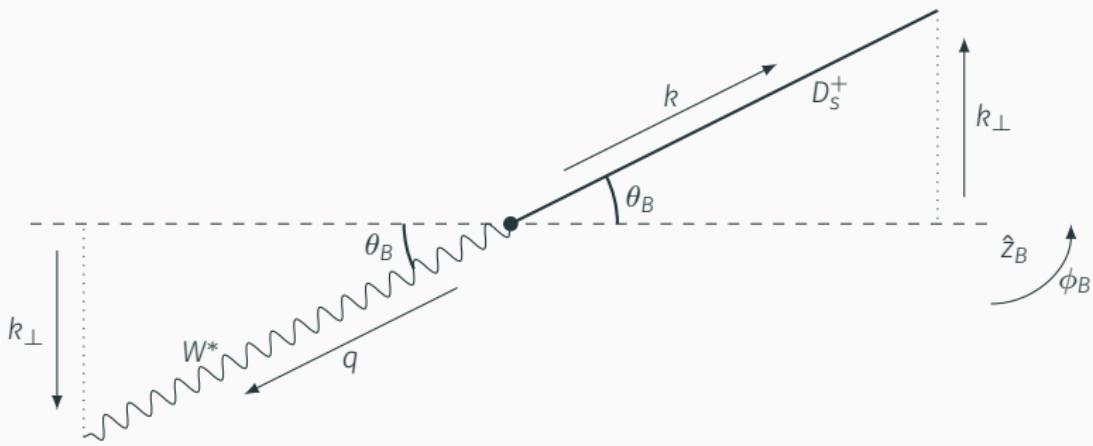
- The CKM quark mixing matrix describes the misalignment between flavour eigenstates and mass eigenstates as a unitary 3×3 matrix.
- The SM does not predict these parameters, so their determination must come from fits to data.
- Semileptonic decays are ideal, both in terms of making measurements and making theoretical predictions.
- The presence of final state neutrinos make q^2 reconstruction difficult at LHCb.
- The traditional method involves solving a quadratic equation, introducing a twofold ambiguity.
- This causes efficiency losses and potential mismodelling issues.

A different observable: k_{\perp}



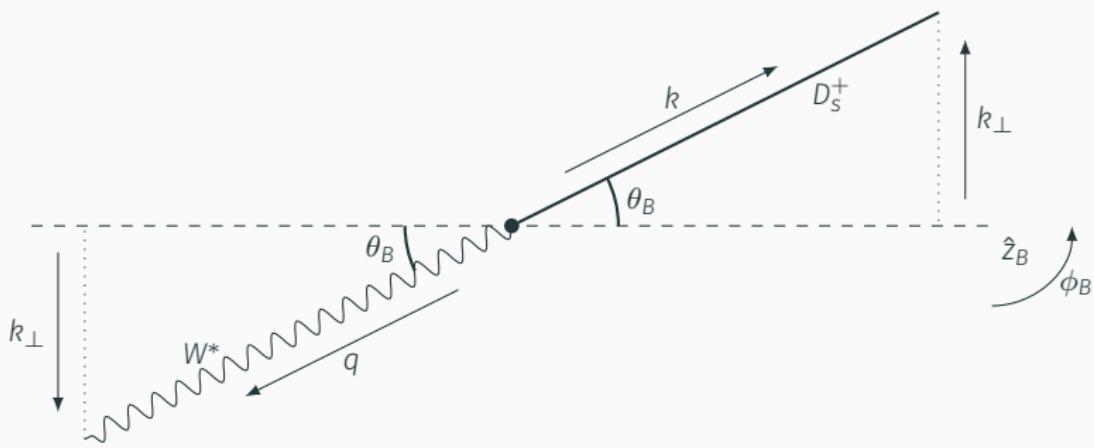
- $k_{\perp}|_B$ - transverse projection of D_s^+ momentum onto the \bar{B}_s^0 flight direction, \hat{z}_B , defined in the \bar{B}_s^0 rest frame.
- Invariant under \hat{z}_B -boosts - $k_{\perp}|_B = k_{\perp}|_{\text{lab}}$.
- Determined uniquely from visible quantities.

Aims of this work



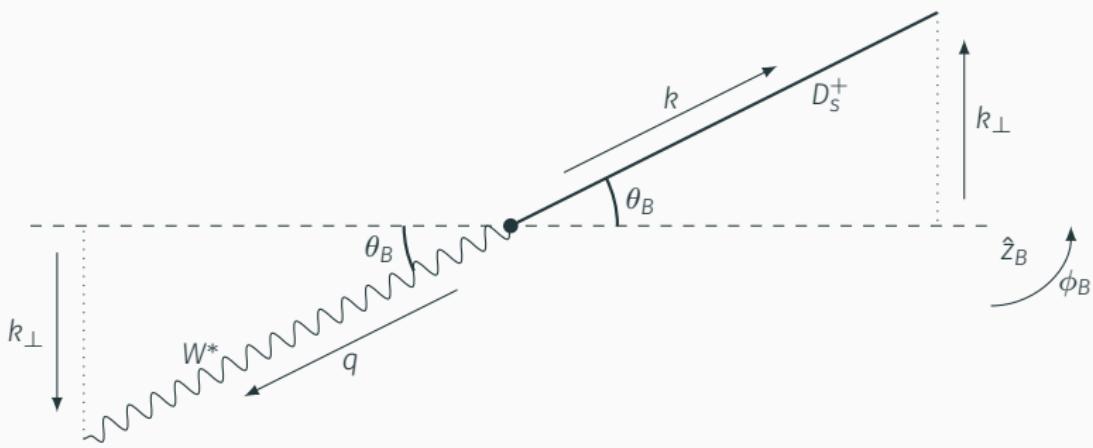
- Derive $d\Gamma/dk_\perp$ from existing theory defined in q^2 .

Aims of this work



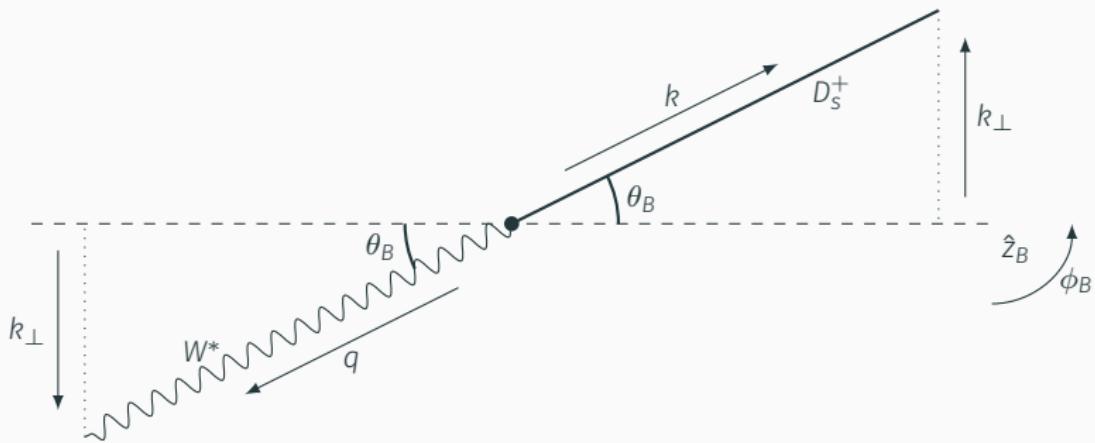
- Derive $d\Gamma/dk_\perp$ from existing theory defined in q^2 .
- Build an approximate response matrix for LHCb's detector effects.

Aims of this work



- Derive $d\Gamma/dk_\perp$ from existing theory defined in q^2 .
- Build an approximate response matrix for LHCb's detector effects.
- Use it to extract $|V_{cb}|$ and form factor information.

Theory



$$k_\perp^2 = \frac{\lambda(M_{B_s}^2, M_{D_s}^2, q^2)}{4M_{B_s}^2} \sin^2 \theta_B$$

Källén function: $\lambda(a, b, c) = a^2 + b^2 + c^2 - 2ab - 2bc - 2ac$

Theory input

In the SM and for massless leptons, the differential branching ratio with q^2 reads:

$$\frac{d\mathcal{B}}{dq^2} = \frac{G_F^2 M_{D_s}^2 \lambda(M_{D_s}^2, M_{D_s}^2, q^2)}{48\pi^3 M_{D_s}} |V_{cb}|^2 |f_+(q^2)|^2$$

Where the full integrated branching ratio is defined as:

$$\mathcal{B} = \iint dq^2 d \cos \theta_B \frac{d^2 \mathcal{B}}{dq^2 d \cos \theta_B} = \iint dk_\perp^2 d \cos \theta_B \frac{d^2 \mathcal{B}}{dk_\perp^2 d \cos \theta_B}$$

Theory input

In the SM and for massless leptons, the differential branching ratio with q^2 reads:

$$\frac{d\mathcal{B}}{dq^2} = \frac{G_F^2 M_{D_s}^2 \lambda(M_{B_s}^2, M_{D_s}^2, q^2)}{48\pi^3 M_{B_s}} |V_{cb}|^2 |f_+(q^2)|^2$$

Where the full integrated branching ratio is defined as:

$$\mathcal{B} = \iint dq^2 d\cos\theta_B \frac{d^2\mathcal{B}}{dq^2 d\cos\theta_B} = \iint dk_\perp^2 d\cos\theta_B \frac{d^2\mathcal{B}}{dk_\perp^2 d\cos\theta_B}$$

We are examining the (pseudo)scalar initial state \bar{B}_s^0 meson so:

$$\frac{d^2\mathcal{B}}{dq^2 d\cos\theta_B} = \frac{1}{2} \frac{d\mathcal{B}}{dq^2}$$

There is only one physical branch for q^2 in terms of k_\perp^2 and $\cos\theta_B$

$$q^2(k_\perp^2, \cos\theta_B) = M_{B_s}^2 + M_{D_s}^2 - 2M_{B_s} \sqrt{\frac{k_\perp^2}{1 - \cos\theta_B} + M_{D_s}^2}$$

Theory input

In the SM and for massless leptons, the differential branching ratio with q^2 reads:

$$\frac{d\mathcal{B}}{dq^2} = \frac{G_F^2 M_{D_s}^2 \lambda(M_{B_s}^2, M_{D_s}^2, q^2)}{48\pi^3 M_{B_s}} |V_{cb}|^2 |f_+(q^2)|^2$$

Where the full integrated branching ratio is defined as:

$$\mathcal{B} = \iint dq^2 d\cos\theta_B \frac{d^2\mathcal{B}}{dq^2 d\cos\theta_B} = \iint dk_\perp^2 d\cos\theta_B \frac{d^2\mathcal{B}}{dk_\perp^2 d\cos\theta_B}$$

We are examining the (pseudo)scalar initial state \bar{B}_s^0 meson so:

$$\frac{d^2\mathcal{B}}{dq^2 d\cos\theta_B} = \frac{1}{2} \frac{d\mathcal{B}}{dq^2}$$

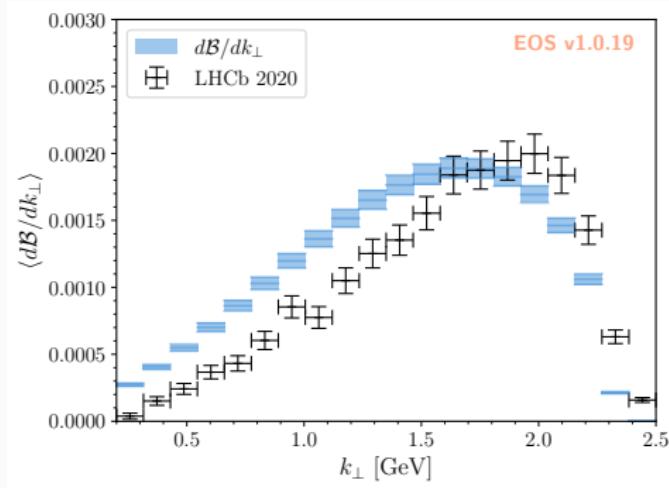
There is only one physical branch for q^2 in terms of k_\perp^2 and $\cos\theta_B$

$$q^2(k_\perp^2, \cos\theta_B) = M_{B_s}^2 + M_{D_s}^2 - 2M_{B_s} \sqrt{\frac{k_\perp^2}{1 - \cos\theta_B} + M_{D_s}^2}$$

Allowing us to perform the necessary change of variables

$$\frac{d\mathcal{B}}{dk_\perp^2} = \frac{1}{2} \int_{-1}^{+1} d\cos\theta_B \left| \frac{\partial(q^2, \cos\theta_B)}{\partial(k_\perp^2, \cos\theta_B)} \right| \frac{d\mathcal{B}}{dq^2} \Theta(q^2 - m_\ell^2) \Big|_{q^2=q^2(k_\perp^2, \cos\theta_B)}$$

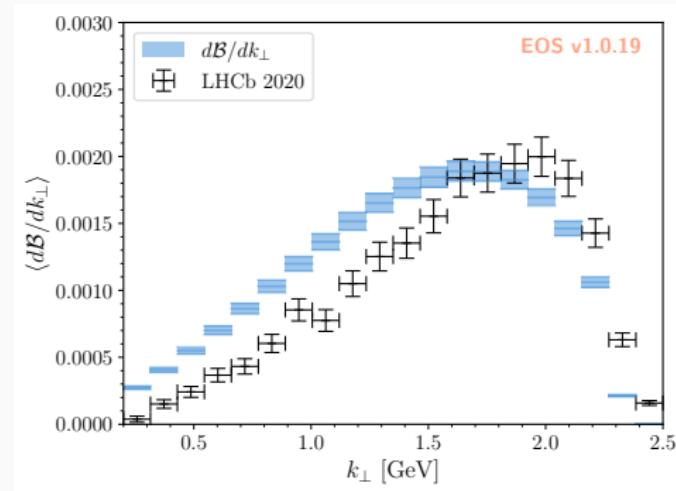
How does this compare to measurement?



The rate of $\bar{B}_s^0 \rightarrow D_s^+ \mu^- \bar{\nu}$ as measured by the LHCb experiment [arxiv:2001.03225], overlaid with the theoretical prediction

Includes theoretical uncertainties from Lattice QCD predictions of $f_+(q^2)$ and $f_0(q^2)$ by HPQCD [arxiv:1906.00701]

How does this compare to measurement?



The rate of $\bar{B}_s^0 \rightarrow D_s^+ \mu^- \bar{\nu}$ as measured by the LHCb experiment [arxiv:2001.03225], overlaid with the theoretical prediction

Includes theoretical uncertainties from Lattice QCD predictions of $f_+(q^2)$ and $f_0(q^2)$ by HPQCD [arxiv:1906.00701]

Very poor visual agreement!

We must account for substantial detector effects

Detector Modelling

Forward modelling is expressed as the convolution

$$P^{\text{det}}(k_{\perp}^{\text{det}}) = \iint dk_{\perp}^{\text{det}} dk_{\perp}^{\text{th}} A(k_{\perp}^{\text{th}}, k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}}) P^{\text{th}}(k_{\perp}^{\text{th}})$$

$$A(k_{\perp}^{\text{th}}, k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}}) = \varepsilon(k_{\perp}^{\text{th}}) r(k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}})$$

P^{th} : The theoretical model we have

P^{det} : The detector level model we want

A: The acceptance function approximating the detector effects

Forward Modelling

Forward modelling is expressed as the convolution

$$P^{\text{det}}(k_{\perp}^{\text{det}}) = \iint dk_{\perp}^{\text{det}} dk_{\perp}^{\text{th}} A(k_{\perp}^{\text{th}}, k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}}) P^{\text{th}}(k_{\perp}^{\text{th}})$$

$$A(k_{\perp}^{\text{th}}, k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}}) = \varepsilon(k_{\perp}^{\text{th}}) r(k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}})$$

P^{th} : The theoretical model we have

P^{det} : The detector level model we want

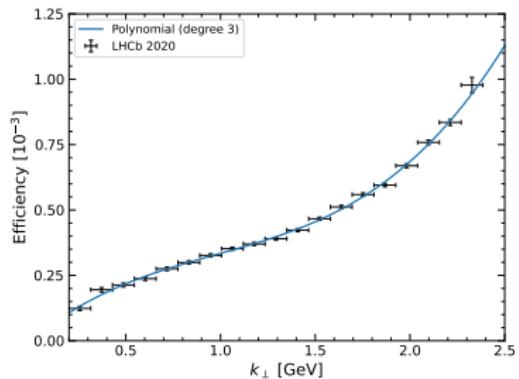
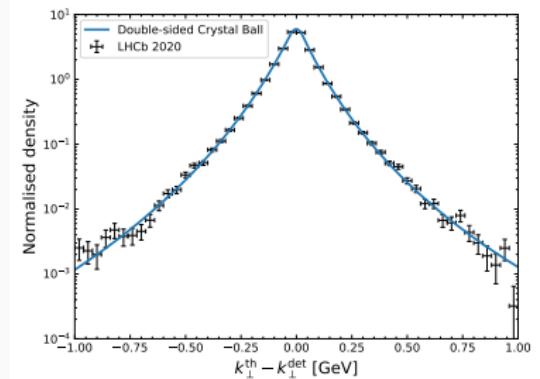
A: The acceptance function approximating the detector effects

$\varepsilon(k_{\perp}^{\text{th}})$: Detector efficiency

$r(k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}})$: Detector resolution

Determined by LHCb with Monte Carlo simulations

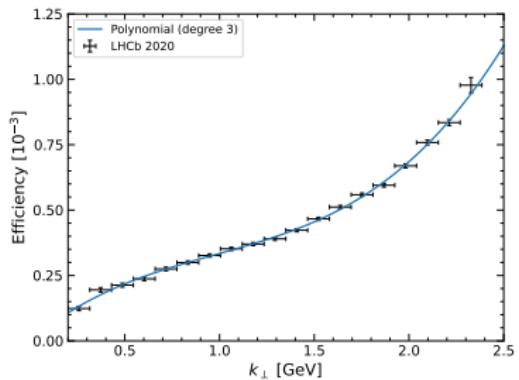
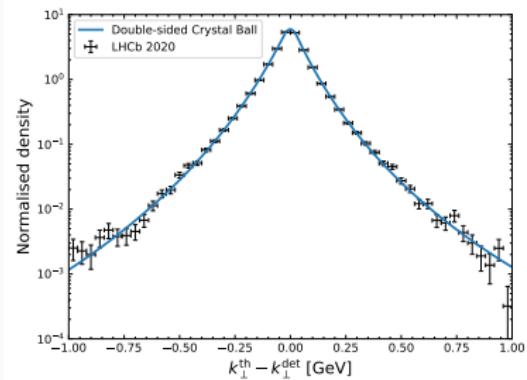
Efficiency & Resolution



Efficiency fit with Legendre polynomials:

$$\hat{\varepsilon}(k_{\perp}) = \frac{1}{2} \left[1 + \sum_{n=1}^{n=3} \frac{\varepsilon_n}{\varepsilon_0} P_n(\zeta) \right]$$

Efficiency & Resolution



Resolution fit with Double Sided Crystal Ball distribution:

$$r(k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}}) = \begin{cases} a_L \left(b_L - \frac{\Delta_{k_{\perp}} - \mu}{\sigma} \right)^{-n_L} & \text{for } \frac{\Delta_{k_{\perp}} - \mu}{\sigma} \leq -\alpha_L, \\ \exp \left\{ -\frac{(\Delta_{k_{\perp}} - \mu)^2}{2\sigma^2} \right\} & \text{for } -\alpha_L < \frac{\Delta_{k_{\perp}} - \mu}{\sigma} \leq \alpha_R, \\ a_R \left(b_R + \frac{\Delta_{k_{\perp}} - \mu}{\sigma} \right)^{-n_R} & \text{for } \alpha_R < \frac{\Delta_{k_{\perp}} - \mu}{\sigma}, \end{cases}$$

Approximate Response Matrix

Since the measurement data provided in [arxiv:2001.03225] is provided in bins of k_{\perp}^{det} , we bin the detector and theory level quantities as;

$$P_m^{\text{det}} = \int_{\text{bin } m} dk_{\perp}^{\text{det}} P^{\text{det}}(k_{\perp}^{\text{det}}) \quad P_n^{\text{th}} = \int_{\text{bin } n} dk_{\perp}^{\text{th}} P^{\text{th}}(k_{\perp}^{\text{th}})$$

Approximate Response Matrix

Since the measurement data provided in [arxiv:2001.03225] is provided in bins of k_{\perp}^{det} , we bin the detector and theory level quantities as;

$$P_m^{\text{det}} = \int_{\text{bin } m} dk_{\perp}^{\text{det}} P^{\text{det}}(k_{\perp}^{\text{det}}) \quad P_n^{\text{th}} = \int_{\text{bin } n} dk_{\perp}^{\text{th}} P^{\text{th}}(k_{\perp}^{\text{th}})$$

Calculate the approximate relationship via

$$R_{mn} = \frac{P_m^{\text{det}}|_n}{P_n^{\text{th}}}, \quad P_m^{\text{det}}|_n = \int_{\text{bin } m} dk_{\perp}^{\text{det}} \int_{\text{bin } n} dk_{\perp}^{\text{th}} A(k_{\perp}^{\text{th}}, k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}}) P^{\text{th}}(k_{\perp}^{\text{th}})$$

Approximate Response Matrix

Since the measurement data provided in [arxiv:2001.03225] is provided in bins of k_{\perp}^{det} , we bin the detector and theory level quantities as;

$$P_m^{\text{det}} = \int_{\text{bin } m} dk_{\perp}^{\text{det}} P^{\text{det}}(k_{\perp}^{\text{det}}) \quad P_n^{\text{th}} = \int_{\text{bin } n} dk_{\perp}^{\text{th}} P^{\text{th}}(k_{\perp}^{\text{th}})$$

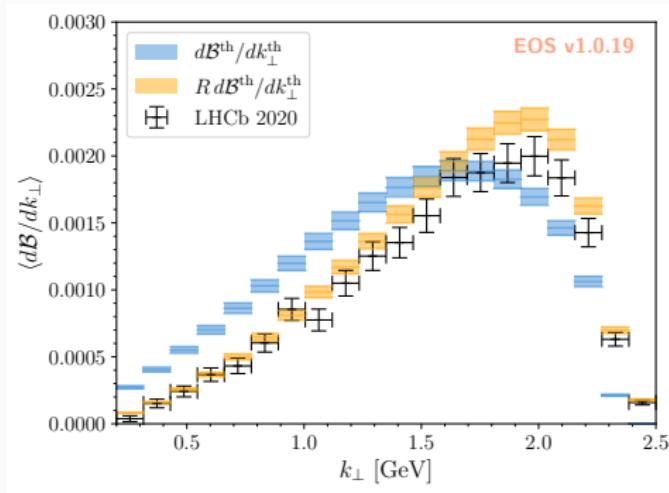
Calculate the approximate relationship via

$$R_{mn} = \frac{P_m^{\text{det}}|_n}{P_n^{\text{th}}}, \quad P_m^{\text{det}}|_n = \int_{\text{bin } m} dk_{\perp}^{\text{det}} \int_{\text{bin } n} dk_{\perp}^{\text{th}} A(k_{\perp}^{\text{th}}, k_{\perp}^{\text{th}} - k_{\perp}^{\text{det}}) P^{\text{th}}(k_{\perp}^{\text{th}})$$

Gives our theory to detector-level measurements bin-by-bin

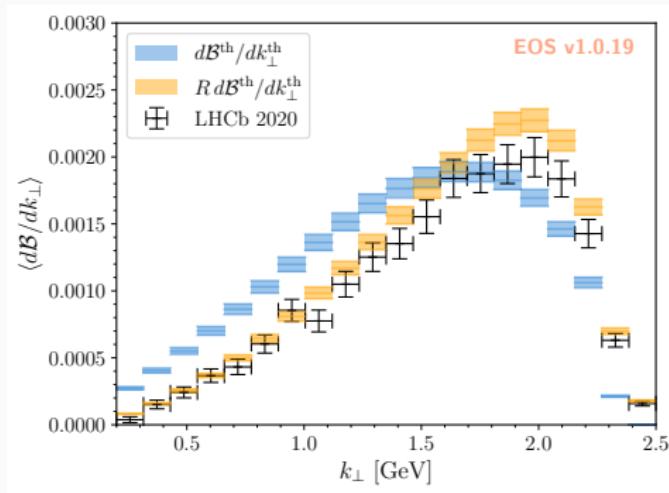
$$P_m^{\text{det}} = \sum_n R_{mn} P_n^{\text{th}}$$

Comparing theory and measurement



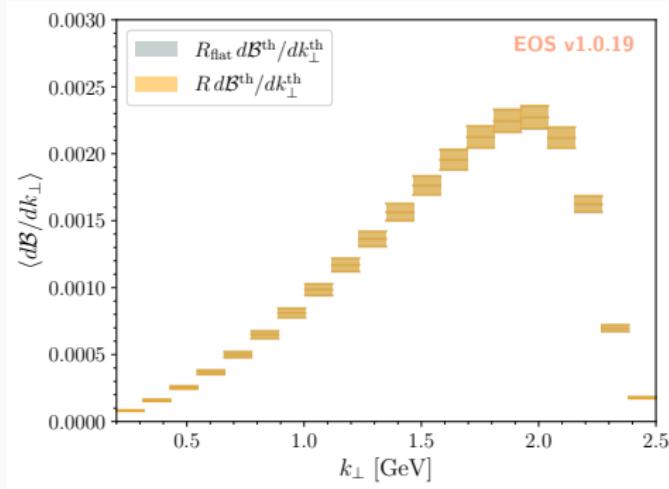
Much better visual agreement!

Comparing theory and measurement



Much better visual agreement!
How dependent on the underlying
signal shape is this response
matrix?

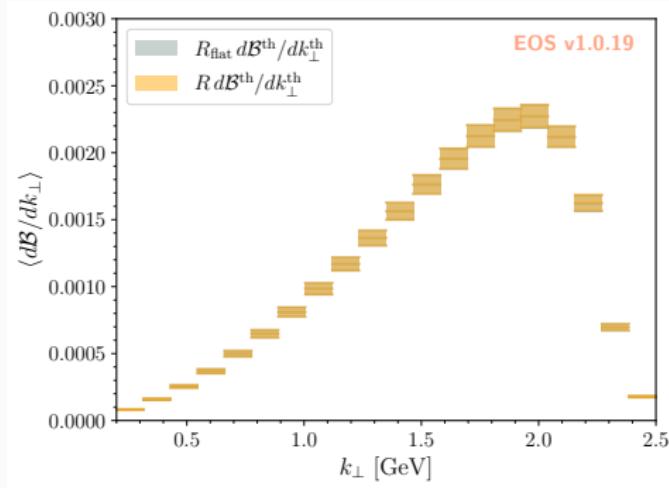
Comparing theory and measurement



$$P_{\text{th}}^{\text{flat}}(q^2) = \frac{1}{q_{\text{max}}^2 - q_{\text{min}}^2}$$

Almost no visual difference -
eigenvalues agree within 0.4%

Comparing theory and measurement

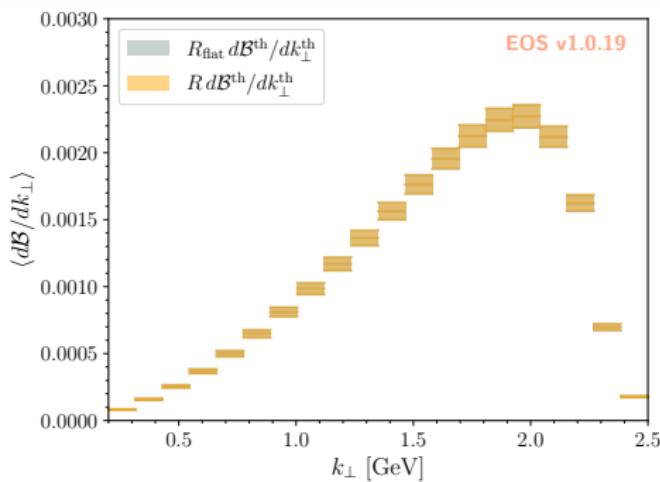


$$P_{\text{th}}^{\text{flat}}(q^2) = \frac{1}{q_{\max}^2 - q_{\min}^2}$$

Almost no visual difference - eigenvalues agree within 0.4%

Assuming neither ϵ nor r depend implicitly on the signal shape, measurements are stable against mismodelling

Comparing theory and measurement



$$P_{\text{th}}^{\text{flat}}(q^2) = \frac{1}{q_{\text{max}}^2 - q_{\text{min}}^2}$$

Almost no visual difference - eigenvalues agree within 0.4%

Assuming neither ϵ nor r depend implicitly on the signal shape, measurements are stable against mismodelling

Measurements of distributions in k_{\perp} serve as useful cross-checks for discrepancies found between LQCD and experimental measurements of hadronic form factors.

Phenomenological Analysis

Statistical Model and Priors

Parametrise the hadronic matrix elements for $\bar{B}_s^0 \rightarrow D_s^+$ transitions using [arxiv:1503.05534]:

$$f_+(q^2) = \frac{1}{1 - q^2/M_{B_s^*}^2} \sum_{k=0}^K \alpha_k^{(+)} [z(q^2) - z(0)]^k$$
$$f_0(q^2) = \frac{1}{1 - q^2/M_{B_s,0}^2} \sum_{k=0}^K \alpha_k^{(0)} [z(q^2) - z(0)]^k$$

Where we are using the conformal map from q^2 plane to unit disk in z

$$z(q^2) \equiv \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \quad \text{where} \quad t_{\pm} = (M_{B_s} \pm M_{D_s})^2, \quad t_0 \equiv t_+ \left(q - \sqrt{1 - t_-/t_+} \right)$$

Statistical Model and Priors

Parametrise the hadronic matrix elements for $\bar{B}_s^0 \rightarrow D_s^+$ transitions using [arxiv:1503.05534]:

$$f_+(q^2) = \frac{1}{1 - q^2/M_{B_s^*}^2} \sum_{k=0}^K \alpha_k^{(+)} [z(q^2) - z(0)]^k$$

$$f_0(q^2) = \frac{1}{1 - q^2/M_{B_s,0}^2} \sum_{k=0}^K \alpha_k^{(0)} [z(q^2) - z(0)]^k$$

Where we are using the conformal map from q^2 plane to unit disk in z

$$z(q^2) \equiv \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \quad \text{where} \quad t_{\pm} = (M_{B_s} \pm M_{D_s})^2, \quad t_0 \equiv t_+ \left(q - \sqrt{1 - t_-/t_+} \right)$$

- Use $f_+(0) = f_0(0)$ to replace $\alpha_0^{(0)}$ with a linear combination of the remaining expansion coefficients, and truncate the series to $K = 2$, giving **five** hadronic parameters
- One free parameter - $|V_{cb}|$

Statistical Model and Priors

Parametrise the hadronic matrix elements for $\bar{B}_s^0 \rightarrow D_s^+$ transitions using [arxiv:1503.05534]:

$$f_+(q^2) = \frac{1}{1 - q^2/M_{B_s^*}^2} \sum_{k=0}^K \alpha_k^{(+)} [z(q^2) - z(0)]^k$$
$$f_0(q^2) = \frac{1}{1 - q^2/M_{B_s,0}^2} \sum_{k=0}^K \alpha_k^{(0)} [z(q^2) - z(0)]^k$$

Where we are using the conformal map from q^2 plane to unit disk in z

$$z(q^2) \equiv \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}} \quad \text{where} \quad t_{\pm} = (M_{B_s} \pm M_{D_s})^2, \quad t_0 \equiv t_+ \left(q - \sqrt{1 - t_-/t_+} \right)$$

- Use $f_+(0) = f_0(0)$ to replace $\alpha_0^{(0)}$ with a linear combination of the remaining expansion coefficients, and truncate the series to $K = 2$, giving **five** hadronic parameters
- One free parameter - $|V_{cb}|$
- Use uniform priors, chosen wide enough to not cut off any peaks from the likelihood

LQCD results for f_+ and f_0 implemented as a five-dimensional multivariate Gaussian likelihood

- f_+ in three q^2 points,
- f_0 in two q^2 points

Use the 20 bins of k_\perp from LHCb 2020

- Average efficiency $\langle \epsilon \rangle$ already accounted for
- No published correlation information across the bins
- Supplement with a 20-dimensional diagonal covariance matrix

Results

- Theoretically predicted binned branching ratio agrees with measurement $p \sim 97\%$

- Theoretically predicted binned branching ratio agrees with measurement $p \sim 97\%$
- Obtain a value for the CKM matrix element $|V_{cb}|$ that agrees within two standard deviations

$$|V_{cb}| = 38.60_{-0.80}^{+0.81} \times 10^{-3}$$

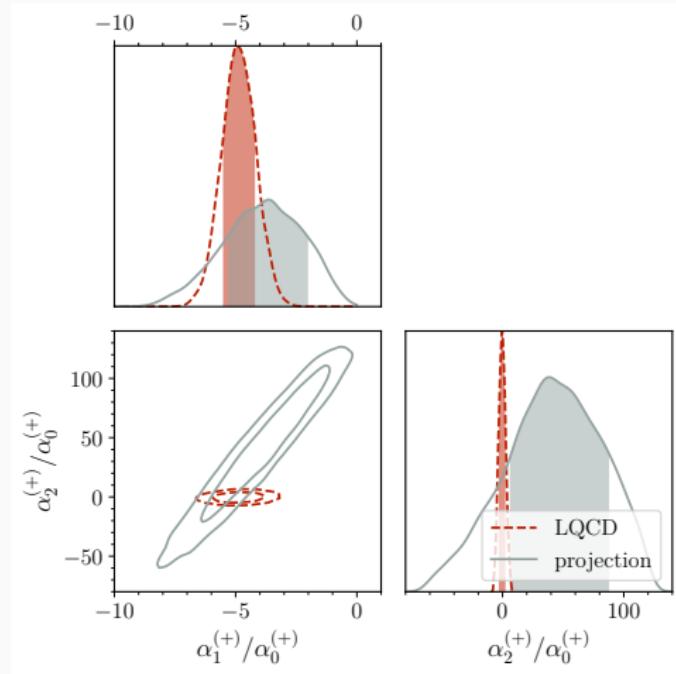
- Precision is limited by the normalisation to the absolute branching fraction of $\bar{B} \rightarrow D \mu^- \bar{\nu}$

- Theoretically predicted binned branching ratio agrees with measurement $p \sim 97\%$
- Obtain a value for the CKM matrix element $|V_{cb}|$ that agrees within two standard deviations

$$|V_{cb}| = 38.60_{-0.80}^{+0.81} \times 10^{-3}$$

- Precision is limited by the normalisation to the absolute branching fraction of $\bar{B} \rightarrow D \mu^- \bar{\nu}$
- The posterior distribution for $\alpha_1^{(+)} / \alpha_0^{(+)}$ is narrower than its prior
Sensitivity to $\alpha_2^{(+)} / \alpha_0^{(+)}$ is poor
- Using this parameter allows for independent analysis without relying on internal LHCb knowledge
- This type of measurement can now be included in global analyses

Projected Results



After the completion of LHCb Run 3 data-taking, it is expected that there will be ten times as many samples and the covariance matrix is rescaled by a factor of 1/10

Only at this point begins to become competitive with LQCD results

2D marginal posterior: LQCD and projected dataset provide complementary constraints

Sensitivity to $\alpha_2^{(+)} / \alpha_0^{(+)}$ remains poor

- Derived $d\Gamma/dq^2$ to $d\Gamma/dk_\perp$ using the scalar nature of the \bar{B}_s^0 meson
- Constructed an approximate detector response matrix
- Found that the detector response matrix is largely independent of the underlying theory signal model
- Showed that k_\perp distributions provide sensitivity to form-factor shape parameters, complementary to lattice QCD

Questions?