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Motivation



Why study semileptonic decays?

• The CKM quark mixing matrix describes the misalignment between flavour
eigenstates and mass eigenstates as a unitary 3× 3 matrix.

• The SM does not predict these parameters, so their determination must come
from fits to data.

• Semileptonic decays are ideal, both in terms of making measurements and
making theoretical predictions.

• The presence of final state neutrinos make q2 reconstruction difficult at LHCb.
• The traditional method involves solving a quadratic equation, introducing a
twofold ambiguity.

• This causes efficiency losses and potential mismodelling issues.
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A different observable: k⊥

ẑB

D+sk k⊥

W∗ q
k⊥

θB

θB
ϕB

• k⊥
∣∣
B - transverse projection of D

+
s momentum onto the B̄0s flight direction, ẑB ,

defined in the B̄0s rest frame.
• Invariant under ẑB-boosts - k⊥

∣∣
B = k⊥

∣∣
lab .

• Determined uniquely from visible quantities.
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Aims of this work

ẑB

D+sk k⊥

W∗ q
k⊥

θB

θB
ϕB

• Derive dΓ/dk⊥ from existing theory defined in q2 .

• Build an approximate response matrix for LHCb’s detector effects.
• Use it to extract |Vcb| and form factor information.
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Theory



Kinematic geometry

ẑB

D+sk k⊥

W∗ q
k⊥

θB

θB
ϕB

k2⊥ =
λ(M2Bs , M

2
Ds , q

2)

4M2Bs
sin2 θB

Källén function: λ(a , b , c) = a2 + b2 + c2 − 2ab− 2bc− 2ac
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Theory input

In the SM and for massless leptons, the differential branching ratio with q2 reads:

dB
dq2

=
G2FM2Dsλ(M

2
Bs , M

2
Ds , q

2)

48π3MBs
|Vcb|2|f+(q2)|2

Where the full integrated branching ratio is defined as:

B =

∫∫
dq2d cos θB

d2B
dq2 d cos θB

=

∫∫
dk2⊥d cos θB

d2B
dk2⊥ d cos θB

We are examining the (pseudo)scalar initial state B̄0s meson so:

d2B
dq2 d cos θB

=
1
2
dB
dq2

There is only one physical branch for q2 in terms of k2⊥ and cos θB

q2(k2⊥, cos θB) = M2Bs + M2Ds − 2MBs

√
k2⊥

1− cos θB
+ M2Ds

Allowing us to perform the necessary change of variables

dB
dk2⊥

=
1
2

∫ +1

−1
dcos θB

∣∣∣∣∣ ∂(q2, cos θB)∂(k2⊥, cos θB)

∣∣∣∣∣ dBdq2 Θ(q2 −m2
ℓ)

∣∣∣∣
q2=q2(k2⊥,cos θB)
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How does this compare to measurement?

0.5 1.0 1.5 2.0 2.5
k⊥ [GeV]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

〈d
B/
d
k
⊥〉

EOS v1.0.19dB/dk⊥
LHCb 2020

The rate of B̄0s → D+s µ−ν̄ as measured by the LHCb
experiment [arxiv:2001.03225], overlaid with the

theoretical prediction

Includes theoretical uncertainties
from Lattice QCD predictions of
f+(q2) and f0(q2) by HPQCD
[arxiv:1906.00701]

Very poor visual agreement!
We must account for substantial
detector effects
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Detector Modelling



Forward Modelling

Forward modelling is expressed as the convolution

Pdet(kdet⊥ ) =

∫∫
dkdet⊥ dkth⊥ A(kth⊥, kth⊥ − kdet⊥ ) Pth(kth⊥)

A(kth
⊥ , kth

⊥ − kdet
⊥ ) = ε(kth

⊥ )r(kth
⊥ − kdet

⊥ )

Pth : The theoretical model we have
Pdet : The detector level model we
want
A: The acceptance function
approximating the detector effects

ε(kth
⊥ ): Detector efficiency

r(kth
⊥ − kdet

⊥ ): Detector resolution
Determined by LHCb with Monte
Carlo simulations
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Efficiency & Resolution
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Efficiency fit with Legendre polynomials:
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[
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Efficiency & Resolution
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Resolution fit with Double Sided Crystal Ball distribution:

r(kth
⊥ − kdet

⊥ ) =



aL
(
bL −

∆k⊥−µ

σ

)−nL
for

∆k⊥−µ

σ
≤ −αL,

exp

{
−

(
∆k⊥−µ

)2
2σ2

}
for − αL <

∆k⊥−µ

σ
≤ αR,

aR
(
bR +

∆k⊥−µ

σ

)−nR
for αR <

∆k⊥−µ

σ
,
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Approximate Response Matrix

Since the measurement data provided in [arxiv:2001.03225] is provided in bins of kdet
⊥ ,

we bin the detector and theory level quantities as;
Pdet
m =

∫
binm

dkdet
⊥ Pdet(kdet

⊥ ) Pth
n =

∫
bin n

dkth
⊥ Pth(kth

⊥ )

Calculate the approximate relationship via

Rmn =
Pdet
m

∣∣
n

Pth
n

, Pdet
m

∣∣
n =

∫
binm

dkdet
⊥

∫
bin n

dkth
⊥ A(kth

⊥ , kth
⊥ − kdet

⊥ )Pth(kth
⊥ )

Gives our theory to detector-level measurements bin-by-bin

Pdet
m =

∑
n
RmnPth

n
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Comparing theory and measurement

0.5 1.0 1.5 2.0 2.5
k⊥ [GeV]

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

〈d
B/
d
k
⊥〉
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⊥

LHCb 2020

Much better visual agreement!

How dependent on the underlying
signal shape is this response
matrix?
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Comparing theory and measurement
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Almost no visual difference -
eigenvalues agree within 0.4%

Assuming neither ε nor r depend
implicitly on the signal shape,
measurements are stable against
mismodelling

Measurements of distributions in k⊥ serve as useful cross-checks for discrepancies
found between LQCD and experimental measurements of hadronic form factors.
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Phenomenological Analysis



Statistical Model and Priors

Parametrise the hadronic matrix elements for B̄0s → D+s transitions using
[arxiv:1503.05534]:

f+(q2) =
1

1− q2/M2B∗s

K∑
k=0

α
(+)
k

[
z(q2)− z(0)

]k
f0(q2) =

1
1− q2/M2Bs,0

K∑
k=0

α
(0)
k

[
z(q2)− z(0)

]k
Where we are using the conformal map from q2 plane to unit disk in z

z(q2) ≡
√
t+ − q2 −

√
t+ − t0√

t+ − q2 +
√
t+ − t0

where t± = (MBs±MDs )
2, t0 ≡ t+

(
q−

√
1− t−/t+

)

• Use f+(0) = f0(0) to replace α
(0)
0 with a linear combination of the remaining

expansion coefficients, and truncate the series to K = 2, giving five hadronic
parameters

• One free parameter - |Vcb|
• Use uniform priors, chosen wide enough to not cut off any peaks from the
likelihood
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Likelihood

LQCD results for f+ and f0 implemented as a five-dimensional multivariate Gaussian
likelihood

• f+ in three q2 points,
• f0 in two q2 points

Use the 20 bins of k⊥ from LHCb 2020

• Average efficiency ⟨ε⟩ already accounted for
• No published correlation information across the bins
• Supplement with a 20-dimensional diagonal covariance matrix
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Results

• Theoretically predicted binned branching ratio agrees with measurement p ∼ 97%

• Obtain a value for the CKM matrix element |Vcb| that agrees within two standard
deviations

|Vcb| = 38.60+0.81−0.80 × 10−3

• Precision is limited by the normalisation to the absolute branching fraction of
B̄ → Dµ−ν̄

• The posterior distribution for α(+)
1 /α

(+)
0 is narrower than its prior

Sensitivity to α
(+)
2 /α

(+)
0 is poor

• Using this parameter allows for independent analysis without relying on internal
LHCb knowledge

• This type of measurement can now be included in global analyses

charlie.earnshaw@gmail.com, arxiv:2512.09848 16
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(+)
2 /α

(+)
0 is poor

• Using this parameter allows for independent analysis without relying on internal
LHCb knowledge

• This type of measurement can now be included in global analyses
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Projected Results
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After the completion of LHCb Run 3
data-taking, it is expected that
there will be ten times as many
samples and the covariance matrix
is rescaled by a factor of 1/10
Only at this points begins to
become competitive with LQCD
results
2D marginal posterior: LQCD and
projected dataset provide
complementary constraints
Sensitivity to α
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poor
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Summary

• Derived dΓ/dq2 to dΓ/dk⊥ using the scalar nature of the B̄0s meson
• Constructed an approximate detector response matrix
• Found that the detector response matrix is largely independent of the underlying
theory signal model

• Showed that k⊥ distributions provide sensitivity to form-factor shape parameters,
complementary to lattice QCD
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Questions?
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