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LQCD determinations: 

SM parameter exp/process lattice QCD precision (%)

Vcd  D → lν
D → πlν

 fD
fDπ
+,0(0)

 ∼ 0.3
∼ 0.8

Vcs  Ds → lν
D → Klν

 fDs

fDK
+ (0)

 ∼ 0.2
∼ 0.4

Vcb B → D(*)lν ℱB→D(*) ∼ 1.1

mMS
c , J/ψ ηc D, Ds, ηc ∼ 1.1

mc /ms ∼ 0.3D, Ds, ηc-

[FLAG 2024, arXiv:2411.04268]

https://arxiv.org/abs/2411.04268
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:    GeV ,     GeV ,    Nf = 2 + 1 + 1 mMS
c (mMS

c ) = 1.280(13) [1.1%] mRGI
c = 1.528(15)m(21)Λ [1.7%] mc /ms = 11.766(30) [0.3%]

[FLAG 2024, arXiv:2411.04268]

:      GeV ,       GeV ,    Nf = 2 + 1 mMS
c (mMS

c ) = 1.278(6) [0.5%] mRGI
c = 1.526(7)m(21)Λ [1.4%] mc /ms = 11.820(160) [1.4%]

 MeVΛNf =4 = 297(12)

https://arxiv.org/abs/2411.04268
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⟨𝒪⟩bare(am)𝒪MS(μ)

pheno quantity lattice QCD

=

  amc

MPDG
ηc

mc

‣ Measure meson mass vs 
input bare quark mass

‣ Tune  to match exp. 
value of meson mass

mc

๏ Challenge: simulating  to reach  

 fermion action, lattice spacing

amh MPDG
ηc

→



Charm mass determination

4

⟨𝒪⟩bare(am)𝒪MS(μ)

pheno quantity lattice QCD

= lim
a→0

continuum limit



Charm mass determination

5

⟨𝒪⟩bare(am)𝒪MS(μ)

pheno quantity lattice QCD

= lim
a→0

continuum limit

ZS
𝒪(am, aμ)

renormalisation



Charm mass determination

5

⟨𝒪⟩bare(am)𝒪MS(μ)

pheno quantity lattice QCD

= lim
a→0

continuum limit

ZS
𝒪(am, aμ)

renormalisation

‣ Variations: RI/MOM’, RI/SMOM, RI/IMOM…  

‣ Other NPR schemes: 
Gradient flow (Matthew’s talk!) 

non-perturbative
‣ Rome-Southampton method 

    regularisation-independent (RI) momentum-subtraction (MOM) scheme

[Martinelli et al NPB 445 (1995)]

[Sturm et al PRD 80 (2009), Garron et al PRD 108 (2023)] 

[Lüscher et al NPB 384 (1992), Sint NPB 421 (1994), Tomii et al PRD 94 (2016)] …

perturbative
‣ Lattice perturbation theory [Capitani Phys. Rept. 382 (2003) 113]

https://www.sciencedirect.com/science/article/pii/055032139290466O?via=ihub
https://www.sciencedirect.com/science/article/pii/0550321394902283?via=ihub
https://doi.org/10.1103/PhysRevD.94.054504
https://www.sciencedirect.com/science/article/abs/pii/S0370157303002114?via=ihub
https://www.sciencedirect.com/science/article/pii/055032139500126D?via=ihub
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.014501
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.014509
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 RMS←S
𝒪 (μ)

matching

https://www.sciencedirect.com/science/article/pii/055032139500126D?via=ihub
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.80.014501
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.108.014509
https://www.sciencedirect.com/science/article/pii/055032139290466O?via=ihub
https://www.sciencedirect.com/science/article/pii/0550321394902283?via=ihub
https://doi.org/10.1103/PhysRevD.94.054504
https://www.sciencedirect.com/science/article/abs/pii/S0370157303002114?via=ihub
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๏ Challenge: PT convergence 
 higher-loop matching→
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๏ Typically massless NPR schemes are used:  defined for ZS
𝒪(aμ) am ≪ 1

STRATEGY: define a scheme  where  absorbs  in S ZS
𝒪

̂δ lim a → 0



A massive NPR scheme 
 for heavy quark observables

L Del Debbio, F Erben, J Flynn, RM, J T Tsang

based on P Boyle, L Del Debbio, A Khamseh PRD 95 (2017) 

Phys.Rev.D 110 (2024)

https://doi.org/10.1103/PhysRevD.95.054505
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.110.054512
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✓ Valid beyond the regime 

Z MS
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✓ Massive ward identities satisfied 

✓ -factors in continuum limit similar to  

✓ Valid beyond the regime 

Z MS
am ≪ 1

[Boyle et al PRD 95 (2017)]

‣ Renormalisation conditions imposed at some finite mass 

RI/SMOM:   ,         lim
mR→0

Z𝒪 ⟨p3 |𝒪bare |p2⟩q2=μ2 ≡ ⟨p3 |𝒪tree |p2⟩ Z𝒪 = Z𝒪(aμ)

๏ Can tune  to absorb discretisation effects in mR Z𝒪⟨𝒪⟩

@

?2 ?3

RI/mSMOM:  ,        lim
mR→mR

Z𝒪 ⟨p3 |𝒪bare |p2⟩q2=μ2 ≡ ⟨p3 |𝒪tree |p2⟩ Z𝒪 = Z𝒪(aμ, am)

https://doi.org/10.1103/PhysRevD.95.054505
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‣ In RI/mSMOM scheme 

mc,R(μ, mR) = lim
a→0

Zm(aμ, am) mc

‣ Using 6 RBC/UKQCD domain wall fermion ensembles 
3 lattice spacings   fma = 0.11 − 0.08 [PRD84(2011), PRD93(2016), PRD110(2024)]

https://arxiv.org/abs/1012.4178
https://arxiv.org/abs/1411.7017
https://arxiv.org/abs/2404.02297
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1
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M
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Reference scales
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amc

MPDG
ηc

am

M

mc,R(μ, mR) = lim
a→0

Zm(aμ, am) mc
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Reference scales
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 am

M

am

M

choose Mchoose  M

mR(μ, mR) = lim
a→0

Zm(aμ, am) m



Continuum extrapolation 
renormalised charm quark mass

Step 1.  Choose ( , ,  ) M μ M
mR(μ, mR) = lim

a→0
Zm(aμ, am) m
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Continuum extrapolation 
renormalised charm quark mass

Step 1.  Choose ( , ,  ) M μ M
mR(μ, mR) = lim

a→0
Zm(aμ, am) m

5

Step 2.  Extrapolate to physical charm scale 

mc,R(μ, mR) = lim
M→MPDG

ηc

mR(μ, m)

μ = 2.0 GeV



Absorption of lattice artefacts 
SMOM vs mSMOM
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A flatter approach to the continuum using the massive scheme 
 reduction in discretisation effects⟹

massless

massive



Absorption of lattice artefacts 
tuning mSMOM reference mass using M

7

 can be varied to 
find the flattest 
continuum approach

M

massless
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Matching to  
renormalised charm quark mass

MS

Step 3: Perturbative matching to  using  

 

‣ Conversion factors computed to 1-loop in Landau gauge: ( ) 

MS (μ, mR)

mMS
c,R (μ) = RMS←mSMOM

m ( m2
R

μ2 ) mmSMOM
c,R (μ, mR)

u = m2
R /μ2

RMS←mSMOM
m (u) = 1 +

α
4π

CF [−4 +
3
2

C0 (u) + 3 ln (1 + u) − 3u ln ( u
1 + u )]
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Step 3: Perturbative matching to  using  

 

‣ Conversion factors computed to 1-loop in Landau gauge: ( ) 

MS (μ, mR)

mMS
c,R (μ) = RMS←mSMOM

m ( m2
R

μ2 ) mmSMOM
c,R (μ, mR)

u = m2
R /μ2

RMS←mSMOM
m (u) = 1 +

α
4π
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3
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C0 (u) + 3 ln (1 + u) − 3u ln ( u
1 + u )]

https://www.sciencedirect.com/science/article/pii/S0370269325007592?via=ihub
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Final results 
renormalised charm quark mass
✓Full error budget with statistical + systematic + PT matching error 

 

  

 

mMS
c,R (2 GeV) = 1.115(7)(12)(4) GeV

mMS
c,R (3 GeV) = 1.008(6)(11)(4) GeV

mMS
c,R (mMS

c,R ) = 1.292(5)(10)(4) GeV

Comparison with FLAG21:

1.00 1.05 1.10

mMS
c,R(3 GeV) [GeV]

ETM21A
HPQCD20A

FNAL/MILC/TUM18
HPQCD14

ETM14A
ETM14

ALPHA21
Petreczky19

JLQCD16
¬QCD14

HPQCD10
RBC/UKQCD24

mMS
c,R(3 GeV)

This work (RBC/UKQCD’24)
FLAG2023 (Nf = 2 + 1)
FLAG2023 (Nf = 2 + 1 + 1)



Main takeaways
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Can tune scheme mass for optimal 
reduction in discretisation error 

(observable-dependent)

Reduced discretisation effects 
using the massive scheme

‣ Massive renormalisation accounts for -sized discretisation effects 

‣ RI/mSMOM scheme: renormalised charm quark mass

amc
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[arXiv:2506.16327]
[in review, PRD]

Renormalised quark masses using gradient flow
Matthew Black
In collaboration with:
R. Harlander, A. Hasenfratz, A. Rago, O. Witzel

Higgs-Maxwell Workshop, 11th February 2026

https://arxiv.org/abs/2506.16327


Matthew BlackRenormalized quark masses using GF

Introduction 2

ä Charm physics is in a precision era on the lattice

ä Heavy quarks come with discretisation effects O(amq)

å Modern lattices have fine enough a to keep these mostly under control for charm, amc ≲ 0.6

ä Approximation of massless renormalisation is poor for charm physics...

⟨Olat⟩S(am, aµ) = ⟨O⟩S
cont(m, µ)

[
1 + δ̂(am, aµ)

]
å Need to define a massive renormalisation scheme S to absorb δ̂

ä Matching of lattice renormalisation to MS suffers from ‘window problem’

m ≪ µ ≪ a−1

å Can we find a renormalisation procedure with an easier matching window?
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Matthew BlackRenormalized quark masses using GF

Gradient Flow (GF) 3

ä Introduced by [Narayanan, Neuberger ’06] [Lüscher ’10] [Lüscher ’13]

å Scale setting (
√
8t0), RG β-function, Λ parameter

ä Introduce auxiliary dimension, flow time τ as a way to regularise the UV

ä Well-defined damping of UV fluctuations

ä Extend gauge and fermion fields in flow time and express dependence with first-order differential
equations:

∂tBµ(τ, x) = Dν(τ)Gνµ(τ, x), Bµ(0, x) = Aµ(x),
∂tχ(τ, x) = D2(τ)χ(τ, x), χ(0, x) = q(x).

ä For use in renormalisation:

å Flowed gauge fields automatically renormalised

å Flowed fermionic fields require additional multiplicative wavefunction renormalisation factor Zχ

á Automatically a massive renormalisation procedure

å Flowed matrix elements of composite operators automatically renormalised (up to Zχ)
á appropriately chosen ratios will cancel Zχ

áτ/a2 = 0.00 τ/a2 = 16.00

https://arxiv.org/abs/hep-th/0601210
https://arxiv.org/abs/1006.4518
https://arxiv.org/abs/1302.5246
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〈Õ〉(τ)

ä Calculate perturbative matching coefficients ζ−1
nO(µ, τ)

0.0 0.1 0.2 0.3 0.4 0.5

τ [GeV−2]

ζ−1
nO(µ, τ)
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〈Õ〉(τ)

ζ−1
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〈Õ〉(τ)

ζ−1
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〈Õ〉(τ)

ä Measure flowed matrix element ⟨O⟩(τ) on the lattice

0.0 0.1 0.2 0.3 0.4 0.5

τ [GeV−2]

ζ−1
nO(µ, τ)
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nO 〈Õ〉(µ, τ)

〈O〉MS(µ)
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https://arxiv.org/abs/1403.4772
https://arxiv.org/abs/1808.09837
https://arxiv.org/abs/2007.01057
https://arxiv.org/abs/2510.26738
https://arxiv.org/abs/2409.18891
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Analysis and Results

L T a−1/GeV amphys
s amphys

c Mπ/MeV srcs × Nconf

C1 24 64 1.7848 0.03224 0.64 340 32× 101

C2 24 64 1.7848 0.03224 0.64 433 32× 101

M1 32 64 2.3833 0.02477 0.45 302 32× 79

M2 32 64 2.3833 0.02477 0.45 362 32× 89

M3 32 64 2.3833 0.02477 0.45 411 32× 68

F1S 48 96 2.785 0.02167 0.37 267 24× 98

[Allton et al. ’08]
[Aoki et al. ’10]
[Blum et al. ’14]
[Boyle et al. ’17]

https://arxiv.org/abs/0804.0473
https://arxiv.org/abs/1011.0892
https://arxiv.org/abs/1411.7017
https://arxiv.org/abs/1701.02644
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Idea: Extracting Flowed Quark Masses 6

ä Functional form of GF lattice two-point correlation function:

⟨OJ(t; τ)O†
I(t = 0; τ = 0)⟩

t→∞
≈ ⟨OJ⟩(τ)⟨O†

I⟩(τ = 0)

2M (rs)
PS

for pseudoscalar meson PS containing quarks r and s

ä Recall matrix elements of pseudoscalar (P = q1γ5q̄2) and axial-pseudoscalar (A0 = q1γ0γ5q̄2) currents:

ä Form ratios to extract quark mass:(
m(r)

GF(τ) + m(s)
GF(τ)

)
= M (rs)

PS RO
rs(τ) with RO

rs(τ) = lim
t→∞

−⟨A0(t; τ)O(t = 0; τ = 0)⟩rs

⟨P(t; τ)O(t = 0; τ = 0)⟩rs

á ratio can be chosen for either O = A0,P
á require GF smearing radius

√
8τ ≪ t to not destroy signal
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Extract ratios R(τ/a2) 7

ä In practice, finite lattices cause time-dependence in ratio, so form double ratio to cancel it:

RAP
rs (τ) = lim

t→∞

√
⟨A0(t; τ)A0(t = 0; τ = 0)⟩rs

⟨P(t; τ)A0(t = 0; τ = 0)⟩rs

⟨A0(t; τ)P(t = 0; τ = 0)⟩rs

⟨P(t; τ)P(t = 0; τ = 0)⟩rs

ä Ens: F1S, a−1 = 2.785GeV

ä Stat errors smaller than symbols

ä Correlated fits for t ∈ (36, 46)

ä Repeat for each ensemble
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time slice t/a
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R(=/a 2=2.50)=0.76467(33)

R(=/a 2=2.00)=0.74251(33)

R(=/a 2=1.50)=0.71536(33)

R(=/a 2=1.00)=0.68053(32)

R(=/a 2=0.50)=0.63174(32)
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Continuum limit 8
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ä Most discretisation effects quickly
absorbed at t > 0

ä GF defines renormalised trajectory
å take a → 0 for τ > 0 with no

additional renormalisation
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ä This is a fully renormalised quark mass, using the scale τ instead of µ
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Short-Flow-Time Expansion (SFTX) 9

ä GF renormalised quark masses can be related to
MS scheme using SFTX

mMS(µUV) = lim
τ→0

ζ−1
AP(µUV, τ)mGF(τ)

ä ζ−1
AP calculated in perturbation theory to NNLO

[Borgulat et al. ’23]

ä Combine and take τ → 0 limit!
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extrapolate to τ = 0

τn effects

lattice
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limits
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τ → 0 extrapolation
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https://arxiv.org/abs/2311.16799
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Zero-flow-time extrapolation 10

ä Consider NLO and NNLO matching

ä Choose two fit ansätze:

f1(τ) =
(
c2 log(µ2τ) + c1

)
τ + c0

f2(τ) = c2τ 2 + c1τ + c0

ä Pick SFTX ‘valid’ region
á some freedom + plenty data

τmin ∈ (0.08, 0.2)GeV−2; τmax = 0.3GeV−2

τmax ∈ (0.25, 0.35)GeV−2; τmax = 0.14GeV−2

ä Quark mass scales O(m2
cτ) may

contaminate for some flow times
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Can we improve this extrapolation?
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Flowed RG Running 11

ä Define a flow-time RGE:

τ∂τÕ(τ) = γ̃(as(µ),Lµτ )Õ(τ)

ä We can resum GF logs in ζAP:

mMS(µUV) = lim
τ→0

(
ζ imp

AP (µUV, τµ)
)−1 mGF(τ)

(
ζ imp

AP (µUV, τµ)
)−1

=

ζAP(µUV, τµ)× exp
(
−
∫ τ

τµ

dτ ′γ
GF
m (τ ′)

τ ′

)
ä Pick τµ = e−γE/2µ2

UV, GF logs → 0

ä perturbative GF anomalous dimension γGF
m

á can be calculated on the lattice
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[Borgulat et al. ’23]

[Hasenfratz et. al. ‘22]

á

https://arxiv.org/abs/2311.16799
https://arxiv.org/abs/2201.09740
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RG-improved zero-flow-time extrapolation 12

ä Less flow-time curvature
á contaminating logs are now 0

ä O(m2
cτ) effects more suppressed at τµ

á compatible final results show O(m2
cτ)

under control 4

ä Vary µUV = 2, 3, 4, 5, 6GeV
á run back to µ = 3GeV in MS @ 4-loop

ä Take correlated average from results at
µUV = 3, 4, 5GeV
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RG-improved zero-flow-time extrapolation 12

ä Less flow-time curvature
á contaminating logs are now 0

ä O(m2
cτ) effects more suppressed at τµ

á compatible final results show O(m2
cτ)

under control 4

ä Vary µUV = 2, 3, 4, 5, 6GeV
á run back to µ = 3GeV in MS @ 4-loop

ä Take correlated average from results at
µUV = 3, 4, 5GeV
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Analysing ηc and ηs correlators 13
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ä mηs
s (µ = 2GeV) = 89(3)MeV

ä (mc + ms)/2(µ = 3GeV) = 527(4)MeV
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ä mηc
c (µ = 3GeV) = 999(14)MeV

ä mc(µ = 3GeV) = 974(8)MeV

ä
mc

ms
= 12.1(4)

á
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Strange and charm quark masses 14

ä mηs
s (µ = 2GeV) = 89(3)MeV

ä mηc
c (µ = 3GeV) = 999(14)MeV

ä mDs
c (µ = 3GeV) = 974(8)MeV

ä
mc

ms
= 12.1(4)
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Summary 15

ä GF+SFTX is a powerful concept and we are just starting to leverage its potential

ä Simple prescription to obtain renormalised quark masses
å Automatically a massive renormalisation scheme
å Improves discretisation effects; no gauge fixing; easily attainable matching window

Gradient Flow Workshop
ä 12th – 15th May, 2026 @ Higgs Centre

ä Bringing together experts from both lattice and perturbation theory

ä Higgs Colloquium on αs determinations from Martin Lüscher

ä Talks by Robert Harlander, Anna Hasenfratz, Alberto Ramos, more...

ä This is a growing topic – come along, learn more, join in!

https://indico.ph.ed.ac.uk/e/gradientflow26

https://indico.ph.ed.ac.uk/e/gradientflow26

