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Introduction

Background Knowledge
Jets

Jets are everywhere in QCD
Our window on partons

But not the same as partons:
Partons ill-defined; jets well-definable
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Introduction

Background Knowledge
Why do we see jets? Partons framgent

Perturbatively

◮ Quarks fragment: soft & collinear divergences for gluon emission

◮ Gluons fragment: soft & collinear divergences for gluon emission

Gluons fragment: soft & collinear divergences for quark emission

◮ Even perturbative coupling is not so small

Non-perturbatively

◮ precise process long way from being understood, even by lattice

◮ good models contain many parameters — complex process

High-energy partons unavoidably lead to collimated bunches
of hadrons.

See lectures by Dave Soper, Mike Seymour
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Introduction

Background Knowledge
Jets from scattering of partons

Jets are unavoidable at hadron
colliders, e.g. from parton scat-
tering
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Jet cross section: data and theory agree over many orders of magnitude ⇔
probe of underlying interaction
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Introduction

Background Knowledge
Jets from heavy decays

picture: Juste LP05

Heavy objects: multi-jet final-states

◮ 107 tt̄ pairs for 10 fb−1

◮ Vast # of QCD multijet events

# jets # events for 10 fb−1

3 9 · 108

4 7 · 107

5 6 · 106

6 3 · 105

7 2 · 104

8 2 · 103

Tree level

pt(jet) > 60 GeV, θij > 30 deg, |yij | < 3

Draggiotis, Kleiss & Papadopoulos ’02
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Introduction

Background Knowledge
Seeing v. defining jets

Jets are what we see.
Clearly(?) 2 jets here

How many jets do you see?
Do you really want to ask yourself
this question for 108 events?
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Introduction

Background Knowledge
Jet definitions

◮ A jet definition is a fully specified set of rules for projecting information
from 100’s of hadrons, onto a handful of parton-like objects:
◮ or project 1000’s of calorimeter towers
◮ or project dozens of (showered) partons
◮ or project a handful of (unshowered) partons

◮ Resulting objects (jets) used for many things, e.g. :
◮ reconstructing decaying massive particles e.g. top → 3 jets
◮ constraining proton structure
◮ as a theoretical tool to attribute structure to an event

◮ You lose much information in projecting event onto jet-like structure:
◮ Sometimes information you had no idea how to use
◮ Sometimes information you may not trust, or of no relevance
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Introduction

Background Knowledge
Jets as projections

jet 1 jet 2

LO partons

Jet Def n

jet 1 jet 2

Jet Def n

NLO partons

jet 1 jet 2

Jet Def n

parton shower

jet 1 jet 2

Jet Def n

hadron level

π π

K

p φ

Projection to jets should be resilient to QCD effects
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Introduction

Background Knowledge
QCD jets flowchart

Jet (definitions) provide central link between expt., “theory” and theory

And jets are an input to almost all analyses
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Introduction

Background Knowledge
These lectures

Aims: to provide you with

◮ the “basics” needed to understand what goes into current jet-based
measurements;

◮ some insight into the issues that are relevant when thinking about a jet
measurement

Structure:

◮ General considerations

◮ Common jet definitions — we’ll look at 2 broad classes
◮ Sequential recombination today
◮ Cone today & tomorrow

◮ The physics of jets [briefly] tomorrow
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Introduction

General considerations
There is no unique jet definition

The construction of a jet is unavoidably ambiguous. On at least two fronts:

1. which particles get put together into a common jet? Jet algorithm

+ parameters

2. how do you combine their momenta? Recombination scheme

Most commonly used: direct 4-vector sums (E -scheme)

Taken together, these different elements specify a choice of jet
definition
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Introduction

General considerations
The power of ambiguity

◮ Physical results (particle discovery, masses, PDFs, coupling) should be
independent of your choice of jet definition

a bit like renormalisation scale/scheme invariance

Tests independence on modelling of radiation, hadronisation, etc.

◮ Except when there is a good reason for this not to be the case
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Introduction

General considerations
Jetography, like photography

◮ Fine detail on bus ticket to
train station — shoot from
close up, focus = 40cm

[get to train station]

◮ Keep focus at 40cm

◮ Reset focus to 6m
Catch correct train
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Introduction

General considerations
Not all ambiguity is allowed

Jets should be invariant with respect to certain modifications of the event:

◮ collinear splitting

◮ infrared emission

Why?

◮ Because otherwise lose real-virtual cancellation in NLO/NNLO QCD
calculations → divergent results

◮ Hadron-level ‘jets’ fundamentally non-perturbative

◮ Detectors resolve neither full collinear nor full infrared event structure

Known as infrared and collinear safety
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Introduction

General considerations
Two main classes of jet alg.

Sequential recombination (kt , etc.)

◮ bottom-up

◮ successively undoes QCD branching

Cone

◮ top-down

◮ centred around idea of an ‘invariant’, directed energy flow
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Sequential recombination

Sequential recombination

jet algorithms
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Sequential recombination kt/Durham algorithm

Majority of QCD branching is soft & collinear, with following divergences:

[dkj ]|M
2
g→gigj

(kj )| ≃
2αsCA

π

dEj

min(Ei ,Ej )

dθij

θij

, (Ej ≪ Ei , θij ≪ 1) .

To invert branching process, take pair with strongest divergence between
them — they’re the most likely to belong together.

This is basis of kt/Durham algorithm (e+e−):

1. Calculate (or update) distances between all particles i and j :

yij =
2min(E 2

i ,E 2
j )(1 − cos θij)

Q2

NB: relative kt between particles2. Find smallest of yij

◮ If > ycut , stop clustering
◮ Otherwise recombine i and j , and repeat from step 1

Catani, Dokshitzer, Olsson, Turnock & Webber ’91
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Sequential recombination kt/Durham algorithm features

◮ Gives hierarchy to event and jets
Event can be specified

by y23, y34, y45.

◮ Resolution parameter related to
minimal transverse momentum
between jets

Most widely-used jet algorithm in e+e−

◮ Collinear safe: collinear particles recombined early on

◮ Infrared safe: soft particles have no impact on rest of clustering seq.
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Sequential recombination kt alg. at hadron colliders

1st attempt

◮ Lose absolute normalisation scale Q. So use unnormalised di j rather than
yij :

dij = 2min(E 2
i ,E 2

j )(1 − cos θij)

◮ Now also have beam remnants (go down beam-pipe, not measured)
Account for this with particle-beam distance

diB = 2E 2
i (1 − cos θiB)

squared transv. mom. wrt beam
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Sequential recombination kt alg. at hadron colliders

2nd attempt: make it longitudinally boost-invariant

◮ Formulate in terms of rapidity (y), azimuth (φ), pt

dij = min(p2
ti , p

2
tj)∆R2

ij , ∆R2
ij = (yi − yj)

2 + (φi − φj)
2

NB: not ηi , Eti

◮ Beam distance becomes
diB = p2

ti

squared transv. mom. wrt beam

Catani, Dokshitzer, Seymour & Webber ’93

Apart from measures, just like e+e− alg.
Known as exclusive kt algorithm.

Problem: at hadron collider, no single fixed scale (as in Q in e+e−). So
how do you choose dcut? See e.g. Seymour & Tevlin ’06
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Sequential recombination kt alg. at hadron colliders

3rd attempt: inclusive kt algorithm

◮ Introduce angular radius R (NB: dimensionless!)

dij = min(p2
ti , p

2
tj )

∆R2
ij

R2
, diB = p2

ti

◮ 1. Find smallest of dij , diB

2. if ij , recombine them
3. if iB, call i a jet and remove from list of particles
4. repeat from step 1 until no particles left.

S.D. Ellis & Soper, ’93; the simplest to use

Jets all separated by at least R on y , φ cylinder.

NB: number of jets not IR safe (soft jets near beam); number of jets above
pt cut is IR safe.
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Sequential recombination kt is a form of Hierarchical Clustering

Idea behind kt alg. is
to be found over and
over in many areas of
(computer) science.
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Sequential recombination Sequential recombination

kt alg.: Find smallest of

dij = min(k2
ti , k

2
tj )∆R2

ij/R
2, diB = k2

ti

If dij recombine; if diB , i is a jet
Example clustering with kt algo-
rithm, R = 0.7

φ assumed 0 for all towers
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Sequential recombination Sequential recombination variants

Cambridge/Aachen: the simplest of hadron-collider algorithms

◮ Recombine pair of objects closest in ∆Rij

◮ Repeat until all ∆Rij > R — remaining objects are jets

Dokshitzer, Leder, Moretti, Webber ’97 (Cambridge): more involved e+e− form

Wobisch & Wengler ’99 (Aachen): simple inclusive hadron-collider form

Anti-kt : formulated similarly to kt , but with

dij = min

(

1

k2
ti

,
1

k2
tj

)

∆R2
ij

R2
, diB =

1

k2
ti

Cacciari, GPS & Soyez, ’08 [+ Delsart unpublished]

privileges clustering with hard particles first

Privileging different divergences ⇔ different jets; more later. . .
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privileges clustering with hard particles first

Privileging different divergences ⇔ different jets; more later. . .
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Sequential recombination Yet more variants

Plenty more variants too, mostly in e+e−, e.g.

◮ JADE: dij = m2
ij/Q

2 the original seq. rec. alg.

◮ Geneva dij = 8EiEj (1 − cos θij)/9(Ei + Ej)
2

◮ ARCLUS: perform 3 → 2 recombination

In pp, also have modifications of angular measure

◮ QCD-metric angular distance: ∆R2
ij → 2(cosh ∆yij − cos ∆φij)

And beyond just momentum

◮ Flavour-kt algorithm (e+e− and pp)
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Cone

Cone algorithms
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Cone Cone Origins

First ‘jet algorithm’ dates back to Sterman and Weinberg (1977) — the
original infrared-safe cross section:

Groundbreaking; good for 2 jets in e+e−; but never widely generalised
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Cone Cone algorithms today

Unifying idea: momentum flow within a cone only
marginally modified by QCD branching

But cones come in many variants
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ATLAS cone

Seeded, It. + Midpoints CDF MidPoint
PxCone

(ICmp) D0 Run II cone

Seedless (SC) SISCone

†JetClu also has “ratcheting”
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Cone Common features in discussion of cones

◮ Cones are always understood as circles in rapidity (y) and azimuth φ.

◮ A particle i is within the cone of radius R around the axis a if

∆R2
ia = (yi − ya)

2 + (φi − φa)
2 < R2

The usual hadron collider variables

◮ We’ll use R = 0.7 in the examples that follow

◮ And we’ll use events all of whose particles are at φ = 0, for simplicity
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Cone

xCPR
Fixed Cone, Prog Removal (FC-PR)
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0
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p t/GeV
The simplest of the cones

PyCell, CellJet, GetJet

Used e.g. BSM theory; Alpgen MLM

◮ Take hardest particle as seed for
cone axis

◮ Draw cone around it

◮ Convert contents into a “jet” and
remove them from the event

◮ Repeat until no particles left

Notes

◮ “Hardest particle” is collinear
unsafe more later...

◮ Cone and seed axis may not
coincide → iteration
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Jets (p. 35)

Cone

xCPR
[End of lecture 1]

So far

◮ We’ve seen sequential recombination jet algorithms

◮ And we’ve started looking at cone algorithms and run into problems

Tomorrow

◮ Continue with the cones See more problems + some solutions

◮ Take a loot at the physics of jet algorithms
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