ME+PS merging in hadronic collisions The W+jets benchmark NLO matching

UNIVERSITY

Matching and merging Matrix Elements with Parton Showers III

Leif Lönnblad

Department of Theoretical Physics Lund University

MCnet/CTEQ Summer School Debrecen 08.08.16

MCnet

Leif Lönnblad

1

Outline of Lectures

- Lecture I: Introduction, Tree-level ME, NLO, PS, ordering, basic strategies, ...
- ► Lecture II: Tree-level ME merging with PS, CKKW(-L), Pseudo Shower, MLM, e⁺e⁻ comparison, ...
- Lecture III: ME+PS merging in pp, NLO matching with PS, MC@NLO, POWHEG, NL³, ...

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching

Outline

ME+PS merging in hadronic collisions CKKW-L

CKKW MLM Pseudo-Shower

The W+jets benchmark

The models Tevatron LHC Conclusions

NLO matching

MC@NLO Powheg CKKW-L@NLO

Summary

ME+PS merging in hadronic collisions

The main difference here is that we have incoming partons We have to worry about

- parton densities
- initial-state showers
- algorithm to construct scales (and intermediate states).

(Will assume W+jets production throughout, but it can easily be generalized.)

4

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching, MLM

Longitudinally invariant k_{\perp} **-algorithm**

Lund University

ż

SI

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching, _____MLM

Longitudinally invariant k_{\perp} **-algorithm**

SI

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching, _____MLM

Longitudinally invariant k_{\perp} **-algorithm**

ż

SI

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching, MLM

Longitudinally invariant k_{\perp} -algorithm

$$d_{ij} = \min(k_{\perp i}^2, k_{\perp j}^2) \left[\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2 \right]$$

 $d_i = k_{\perp i}$

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching, ,MLM

The leading order *W* cross section:

$$d\sigma_{\rho\rho\rightarrow W} = \sum_{\mathbf{q}, \mathbf{\bar{q}}'} x f_{\mathbf{q}}(x_+, m_W) x f_{\mathbf{\bar{q}}'}(x_-, m_W) \hat{\sigma}_{\mathbf{q}\mathbf{\bar{q}}'\rightarrow W}(\mathbf{s}x_+x_-) \frac{dx_+}{x_+} \frac{dx_-}{x_-}$$

Making one step (g \rightarrow q) backward in the initial-state shower

$$dP(\rho, z) = \frac{\alpha_{s}}{2\pi} P_{g \to q}(z) \frac{x f_{g}(\frac{x_{+}}{z}, \rho)}{x f_{q}(x_{+}, \rho)} \Delta_{S_{0}}(\rho_{\max}, \rho) \frac{d\rho}{\rho} dz,$$

Matching and Merging III

ME+PS merging in hadronic collisions CKKW-L The W+jets benchmark CKKW NLO matching MLM

Comparing with the cross section for getting the same thing from the matrix element:

$$d\sigma_{\rho\rho \to W\bar{q}} = \sum_{\bar{q},\bar{q}'} x\!f_{g}(\frac{x_{+}}{z},\mu) x\!f_{\bar{q}'}(x_{-},\mu) \hat{\sigma}_{g\bar{q}' \to W\bar{q}}(s\frac{x_{+}}{z}x_{-},z,\rho) \frac{dx_{+}}{x_{+}} \frac{dx_{-}}{x_{-}} d\rho dz$$

And we identify

$$\frac{\hat{\sigma}_{g\bar{q}' \to W\bar{q}}(\frac{x_{+}}{z}x_{-}S, z, \rho)}{\hat{\sigma}_{q\bar{q}' \to W}(sx_{+}x_{-})} d\rho dz$$

with

$$rac{lpha_{
m s}}{2\pi} P_{
m g
ightarrow
m q}(z) rac{d
ho}{
ho} dz,$$

CKKW-L

In CKKW-L, the way to handle this is to construction scales and intermediate states, using the "inverse-PS" algorithm, taking care to separate initial- from final-state emission.

Then reweight a produced *n*-parton event with

$$\frac{\textit{xf}_{\rho_0}(\textit{x}_{+0},\textit{m}_W)\cdot\textit{xf}_{q_0}(\textit{x}_{-0},\textit{m}_W)}{\textit{xf}_{\rho_n}(\textit{x}_{+n},\mu)\cdot\textit{xf}_{q_n}(\textit{x}_{-n},\mu)}$$

where the partons p_0 and q_0 and their energy fractions x_{+0} and x_{0} and x_{0} are obtained from the constructed S_0 state.

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching, MLM

Then for each constructed state, S_i , the event is weighted by the running α_s , the no-emission probability, $\Delta_{S_i}(q_i, q_{i+1})$, using the Sudakov veto algorithm, and a PDF ratio

$$\frac{\textit{xf}_{\textit{p}_{i+1}}(\textit{x}_{+(i+1)},\textit{q}_{i+1})\cdot\textit{xf}_{q_{i+1}}(\textit{x}_{-(i+1)},\textit{q}_{i+1})}{\textit{xf}_{\textit{p}_i}(\textit{x}_{+i},\textit{q}_{i+1})\cdot\textit{xf}_{q_i}(\textit{x}_{-i},\textit{q}_{i+1})}$$

In this way we get exactly the same Sudakov form factors and PDF ratios as in the shower.

Note however that the total cross section is forced to be the LO one (as in the original shower).

CKKW

Here we use the boost-invariant k_{\perp} -algorithm to construct the emission scales.

In each step we either cluster two final-state partons together, or cluster one parton to the beam, corresponding to an finaland initial-state splitting respectively.

The reweighting of α_s and analytical Sudakov form factors works in the same way as for $e^+e^-.$

ME+PS merging in hadronic collisions CKKW-L The W+jets benchmark CKKW NLO matching, MLM

No PDF weighting is necessary!

This is because the Sudakov form factors are not proper no-emission probabilities:

$$P_{\text{no-emission}} = \frac{xf_{\rho}(x, q_2)}{xf_{\rho}(x, q_1)} \frac{\Delta_{\rho}(q_1, \mu)}{\Delta_{\rho}(q_2, \mu)}$$

and all PDF ratios cancel!

Life becomes simpler and the total cross section becomes beyond LO (although not NLO).

ME+PS merging in hadronic collisions	CKKW-L
The W+jets benchmark	CKKW
NLO matching	, MLM

The reason CKKL-L anyway insists on including the ratios is that the correspondence between the no-emission probability and the Sudakov form factors is only true for DGLAP evolution.

And CKKW-L was originally implemented for ARIADNE, which is not strictly DGLAP

(it includes a resummation of large logarithms of x).

In CKKW-L, the maximum scale on the shower applied to S_0 is the same as for the stand-alone shower. For a strict DGLAP shower this is typically m_W .

In ARIADNE and PYTHIA (in case the first emission is ME-reweighted), the maximum scale is given by the kinematical limit, e.g. $p_{\perp} < \sqrt{s}/2$.

In CKKW, the maximum scale for the vetoed shower from the S_n state, and for the Sudakov form factors, is typically taken to be $m_{\perp W}$.

I.e. no no-emission probability above $m_{\perp W}$, which is fine as long as there are no large logarithms of $\sqrt{s}/m_W \sim x$.

MLM

Again we use the boost-invariant k_{\perp} -algorithm to define the ME generation cutoff, μ_o , and the constructed emission scales.

The maximum scale in the shower is $m_{\perp W}$.

In the original (ALPGEN) implementation a cone algorithm is used to cluster the showered even. Here the minimum E_{\perp} of the jets is set to $\mu > \mu_0$, and the $R_{\rm cone}$ is larger than the minimum ΔR in the ME generation.

A jet is matched to a parton if the $\Delta R_{\text{jet,parton}} < 1.5 \times R_{\text{cone}}$

CKKW MLM Pseudo-Shower

Other MLM implementations

MADEVENT has another implementation which uses the k_{\perp} -algorithm throughout in much the same way as was described for e^+e^- .

HELAC is very close to ALPGEN.

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching CKKW MLM Pseudo-Shower

Pseudo-Shower

Follows the modifications used in CKKW-L when going from $\mathrm{e^+e^-}$ to pp.

The W+jets benchmark

W+jets is a good benchmark to compare the algorithms in *pp*. What follows is a comparison between:

- Sherpa, implementing CKKW (with PYTHIA-like virtuality ordered shower).
- CKKW-L using ARIADNE.
- ► ALPGEN using MLM merging with HERWIG.
- MADEVENT using MLM merging with PYTHIA, virtuality-ordered shower.
- HELAC using MLM merging with PYTHIA, virtuality-ordered shower.

	The models
The W+jets benchmark	
NLO matching	Ĵ LHC

Notes:

- Pseudo-Shower not included here (see refs.)
- ARIADNE is not DGLAP-based.
- PYTHIA with CKKW and two flavours of MLM.
- Same flavour of MLM with both PYTHIA and HERWIG.
- All use similar cuts on ME and up to 4 jets.

ME+PS merging in hadronic collisions The W+jets benchmark The models Tevatron

tchina

Tevatron energies

All procedures allowed different variations of parameters Merging scale and scale choice in α_s -reweighting in common

Matching and Merging III

Leif Lönnblad

ME+PS merging in hadronic collisions	
The W+jets benchmark	Tevatron
NLO matching	¹ LHC

Leif Lönnblad

Lund University

JM.CA

* SIG ME+PS merging in hadronic collisions The W+jets benchmark The models Tevatron

NLO matching

$$\Delta \eta = \left| \eta_{W} - \eta_{\text{jet}} \right|$$

Lund University

VM·CA

< E

ME+PS merging in hadronic collisions The models The W+jets benchmark Tevatron NLO matching, LHC

ME+PS merging in hadronic collisions The W+jets benchmark The models Tevatron

LISIS * ALAN

< E

ME+PS merging in hadronic collisions The W+jets benchmark NLO matching____LHC

ME+PS merging in hadronic collisions The W+jets benchmark The models Tevatron

< E

Matching and Merging III

5 Leif Lönnblad

ME+PS merging in hadronic collisions The W+jets benchmark Tevatron LHC

LHC energies

Matching and Merging III

Lund University

VM.CA

< • • • **•**

The W+jets benchmark	LHC
NLO matching	Conclusions

N.C

*

ME+PS merging in hadronic collisions The W+jets benchmark Tevatron LHC

a Conc

$$\Delta \eta = \left| \eta_{W} - \eta_{\text{jet}} \right|$$

VM·CA

• • • • • • • • • • •

ME+PS merging in hadronic collisions	
The W+jets benchmark	LHC
NLO matching	Conclusions

- Clear wiggles near cutoff μ .
- Far above μ , results are independent of μ .
- Different models differ, but within systematic uncertainties of each model.
- ► Largest difference found from ARIADNE (not DGLAP).

The W+jets benchmark MC@NLO NLO matching PowHEG Summarv CKKW-L@

NLO matching

1

$$d\sigma_{0} = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}C_{0,1}^{\text{PS}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}^{2}C_{0,2}^{\text{PS}}(\boldsymbol{p}_{1..m};\mu) + \dots\right]d\Phi_{m}$$

$$d\sigma_{+1}(\mu) = \left[\alpha_{s}C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \alpha_{s}^{2}C_{1,1}^{\text{PS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \dots\right]d\Phi_{m+1}$$

$$d\sigma_{+2}(\mu) = \left[\alpha_{s}^{2}C_{2}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1},\boldsymbol{q}_{2};\mu) + \alpha_{s}^{3}C_{2,1}^{\text{PS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1},\boldsymbol{q}_{2};\mu) + \dots\right]d\Phi_{m+2}$$

Matching and Merging III 30 Leif Lönnblad

VM.C.

The W+jets benchmark MC@NLO NLO matching Powneg Summary CKKW-L@NL

NLO matching

1

$$d\sigma_{0} = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s} C_{0,1}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}^{2} C_{0,2}^{\text{PS}}(\boldsymbol{p}_{1..m};\mu) + \dots \right] d\Phi_{m}$$

$$d\sigma_{+1}(\mu) = \left[\alpha_{s} C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \alpha_{s}^{2} C_{1,1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \dots \right] d\Phi_{m+1}$$

$$d\sigma_{+2}(\mu) = \left[\alpha_{s}^{2} C_{2}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\boldsymbol{q}_{2};\mu) + \alpha_{s}^{3} C_{2,1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\boldsymbol{q}_{2};\mu) + \dots \right] d\Phi_{m+2}$$

Matching and Merging III 30 Leif Lönnblad

VM.C.

The W+jets benchmark MC@NLO NLO matching PowHEG Summary CKKW-L@NI

NLO matching

1

$$d\sigma_{0} = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s} C_{0,1}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}^{2} C_{0,2}^{\text{PS}}(\boldsymbol{p}_{1..m};\mu) + \dots \right] d\Phi_{m}$$

$$d\sigma_{+1}(\mu) = \left[\alpha_{s} C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \alpha_{s}^{2} C_{1,1}^{\text{PS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \dots \right] d\Phi_{m+1}$$

$$d\sigma_{+2}(\mu) = \left[\alpha_{s}^{2} C_{2}^{\text{PS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1},\boldsymbol{q}_{2};\mu) + \alpha_{s}^{3} C_{2,1}^{\text{PS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1},\boldsymbol{q}_{2};\mu) + \dots \right] d\Phi_{m+2}$$

Matching and Merging III 30 Leif Lönnblad

VM.C.

MC@NLO

Based on NLO-subtraction method

$$d\sigma_{0} = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m}) + \alpha_{s}C_{0}^{\text{loop}}(\boldsymbol{p}_{1..m}) + \alpha_{s}\int d^{3}\boldsymbol{q}'C_{1}^{\text{CS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}')\right]d\Phi_{m}$$
$$d\sigma_{+1} = \alpha_{s}\left[C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}') - C_{1}^{\text{CS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}')\right]d\Phi_{m+1}$$

$$d\sigma^{\text{NLO}} = d\sigma_0 + d\sigma_1.$$

 C_1^{CS} must reproduce the soft and collinear poles in C_1^{ME} .

Leif Lönnblad
MC@NLO

Based on NLO-subtraction method

$$d\sigma_{0} = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m}) + \alpha_{s}C_{0}^{\text{loop}}(\boldsymbol{p}_{1..m}) + \alpha_{s}\int d^{3}\boldsymbol{q}'\boldsymbol{C}_{1}^{\text{PS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}')\right]d\Phi_{m}$$
$$d\sigma_{+1} = \alpha_{s}\left[C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}') - C_{1}^{\text{PS}}(\boldsymbol{p}_{1..m},\boldsymbol{q}')\right]d\Phi_{m+1}$$

$$d\sigma^{\text{NLO}} = d\sigma_0 + d\sigma_1.$$

 C_1^{CS} must reproduce the soft and collinear poles in C_1^{ME} .
We can use the splitting function of any reasonable PS.

Matching and Merging III

Leif Lönnblad

Lund University

Si

	MC@NLO
NLO matching	Powheg
	_CKKW-L@NLO

Note that calculating " $C_0^{\text{loop}} + \int d^3 q C_1^{\text{PS}}$ " is highly non-trivial.

The W+jets benchmark MC@NLO NLO matching PowHeg Summary CKKW-L@NLO

Note that σ_1 is not a proper +1 parton cross section, most of this is integrated over and put into σ_0 .

Now we can add a parton shower to get the no-parton cross section

$$d\sigma_{0}(\rho_{c}) = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m}) + \alpha_{s}C_{0}^{\text{loop}}(\boldsymbol{p}_{1..m}) \right. \\ \left. + \alpha_{s}\int_{0}^{\rho_{0}}d\rho \int d^{2}x C_{1}^{\text{PS}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x}) \right] d\Phi_{m} \\ \times \Delta_{S_{0}}(\rho_{0},\rho_{c})$$

Note difference in integration region.

The W+jets benchmark MC@NLO NLO matching PowHeg Summary CKKW-L@NLO

Note that σ_1 is not a proper +1 parton cross section, most of this is integrated over and put into σ_0 .

Now we can add a parton shower to get the no-parton cross section

$$d\sigma_{0}(\rho_{c}) = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m}) + \alpha_{s}C_{0}^{\text{loop}}(\boldsymbol{p}_{1..m}) + \alpha_{s}\int_{0}^{\rho_{0}}d\rho\int d^{2}xC_{1}^{\text{PS}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x})\right]d\Phi_{m}$$

$$\times \left(1 - \alpha_{s}\int_{\rho_{c}}^{\rho_{0}}d\rho\int d^{2}x\frac{C_{1}^{\text{PS}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x})}{C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m})} + \mathcal{O}(\alpha_{s}^{2})\right)^{*}$$
Note difference in integration region.

The W+jets benchmark MC@NLO NLO matching PowHeg Summary CKKW-L@NLO

Note that σ_1 is not a proper +1 parton cross section, most of this is integrated over and put into σ_0 .

Now we can add a parton shower to get the no-parton cross section

$$d\sigma_{0}(\rho_{c}) = \left[C_{0}^{\mathrm{ME}}(\boldsymbol{p}_{1..m}) + \alpha_{s}C_{0}^{\mathrm{loop}}(\boldsymbol{p}_{1..m}) + \alpha_{s}\int_{0}^{\rho_{0}}d\rho\int d^{2}xC_{1}^{\mathrm{PS}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x})\right]d\Phi_{m}$$
$$\times \left(1 - \alpha_{s}\int_{\rho_{c}}^{\rho_{0}}d\rho\int d^{2}x\frac{C_{1}^{\mathrm{PS}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x})}{C_{0}^{\mathrm{ME}}(\boldsymbol{p}_{1..m})} + \mathcal{O}(\alpha_{s}^{2})\right)$$

Note difference in integration region.

We then get the one-parton cross section

$$d\sigma_{+1}(\rho_c) = \alpha_s \bigg[C_1^{\text{ME}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x}) - C_1^{\text{PS}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x}) \bigg] \Delta_{\text{S}_1}(\rho, \rho_c) d\Phi_{m+1} \\ + \bigg[C_0^{\text{ME}} + \alpha_s C_0^{\text{hoop}} + \alpha_s \int C_1^{\text{PS}} \bigg] \times \alpha_s \frac{C_1^{\text{PS}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x})}{C_0^{\text{ME}}(\boldsymbol{p}_{1..m})} \\ \times \Delta_{\text{S}_0}(\rho_0, \rho) \Delta_{\text{S}_1}(\rho, \rho_c) d\Phi_{m+1} \bigg]$$

To leading order we are left with $lpha_{
m s}C_{
m 1}^{
m ME}$

1515 * ALAN

We then get the one-parton cross section

$$d\sigma_{+1}(\rho_c) = \alpha_s \bigg[C_1^{\text{ME}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x}) - C_1^{\text{PS}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x}) \bigg] \Delta_{\text{S}_1}(\rho, \rho_c) d\Phi_{m+1} \\ + \bigg[C_0^{\text{ME}} + \alpha_s C_0^{\text{loop}} + \alpha_s \int C_1^{\text{PS}} \bigg] \times \alpha_s \frac{C_1^{\text{PS}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x})}{C_0^{\text{ME}}(\boldsymbol{p}_{1..m})} \\ \times \Delta_{\text{S}_0}(\rho_0, \rho) \Delta_{\text{S}_1}(\rho, \rho_c) d\Phi_{m+1} \bigg]$$

To leading order we are left with $lpha_{
m s} C_{
m 1}^{
m ME}$

NR SIGI

We then get the one-parton cross section

$$d\sigma_{+1}(\rho_c) = \alpha_s \bigg[C_1^{\text{ME}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x}) - C_1^{\text{PS}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x}) \bigg] \Delta_{\text{S}_1}(\rho, \rho_c) d\Phi_{m+1} \\ + \bigg[C_0^{\text{ME}} + \alpha_s C_0^{\text{loop}} + \alpha_s \int C_1^{\text{PS}} \bigg] \times \alpha_s \frac{C_1^{\text{PS}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x})}{C_0^{\text{ME}}(\boldsymbol{p}_{1..m})} \\ \times \Delta_{\text{S}_0}(\rho_0, \rho) \Delta_{\text{S}_1}(\rho, \rho_c) d\Phi_{m+1} \bigg]$$

To leading order we are left with $\alpha_{\rm s}C_{\rm 1}^{\rm ME}$

MINICAL STATES

	MC@NLO
NLO matching	Powheg
	CKKW-L@NLO

- If you change the shower, you have to redo the NLO calculation.
- The first Parton shower emission will be correct NLO Not necessarily the hardest emission if you have bad ordering.
- ► Requires $\Delta_{S_0}(\rho_0, \rho) \sim 1$ when ρ distributed as $C_1^{\text{ME}}(\rho) C_1^{\text{PS}}(\rho)$ (No soft and collinear poles.)
- Event weights may become negative (sum is finite and positive for reasonable observables).

POWHEG CKKW-L@NLO

POWHEG (reweighting)

What if we use a parton shower for which the first/hardest emission is correct to $O(\alpha_s)$, $C_1^{ME} = C_1^{PS}$

$$d\sigma_{0}(\rho_{c}) = \left[C_{0}^{\mathrm{ME}}(\boldsymbol{p}_{1..m}) + \alpha_{s}C_{0}^{\mathrm{loop}}(\boldsymbol{p}_{1..m}) + \alpha_{s}\int_{0}^{\rho_{0}}d\rho\int d^{2}xC_{1}^{\mathrm{ME}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x})\right]d\Phi_{m}$$

$$\times \Delta_{S_{0}}(\rho_{0},\rho_{c})$$

< D > < P</p>

POWHEG (reweighting)

What if we use a parton shower for which the first/hardest emission is correct to $O(\alpha_s)$, $C_1^{ME} = C_1^{PS}$

$$d\sigma_{0}(\rho_{c}) = \left[C_{0}^{\mathrm{ME}}(\boldsymbol{p}_{1..m}) + \alpha_{s}C_{0}^{\mathrm{loop}}(\boldsymbol{p}_{1..m}) + \alpha_{s}\int_{0}^{\rho_{0}}d\rho\int d^{2}xC_{1}^{\mathrm{ME}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x})\right]d\Phi_{m}$$

$$\times \left(1 - \alpha_{s}\int_{\rho_{c}}^{\rho_{0}}d\rho\int d^{2}x\frac{C_{1}^{\mathrm{ME}}(\boldsymbol{p}_{1..m},\rho,\boldsymbol{x})}{C_{0}^{\mathrm{ME}}(\boldsymbol{p}_{1..m})} + \mathcal{O}(\alpha_{s}^{2})\right)$$

	MC@NLO
NLO matching	Powheg
	_CKKW-L@NLO

$$d\sigma_{+1}(\rho_c) = \begin{bmatrix} C_0^{\text{ME}} + \alpha_s C_0^{\text{loop}} + \int C_1^{\text{ME}} \end{bmatrix} \times \alpha_s \frac{C_1^{\text{ME}}(\boldsymbol{p}_{1..m}, \rho, \boldsymbol{x})}{C_0^{\text{ME}}(\boldsymbol{p}_{1..m})} \\ \times \Delta_{\mathcal{S}_0}(\rho_0, \rho) \Delta_{\mathcal{S}_1}(\rho, \rho_c) d\Phi_{m+1}$$

POWHEG assumes a generic p_{\perp} -ordered shower, and implements this first step itself. We should then be able to continue with any p_{\perp} -ordered shower.

	MC@NLO
NLO matching	Powheg
	_CKKW-L@NLO

- No negative weights
- No need to redo NLO calculation
- ▶ If our PS is not ordered in p_{\perp} , we can use a vetoed shower.
- But we still have problems with un-ordered emissions.

Truncated (vetoed) showers

- Take the state, with some p_{\perp} , generated by POWHEG
- Construct the corresponding splitting variables of your PS: (ρ, x).
- Undo the corresponding emission
- Evolve from maximum scale down to ρ (vetoing emissions above the p_⊥).
- Perform the (ρ, \mathbf{x}) emission
- Continue evolution below ρ (vetoing emissions above the p_⊥).

This can also be used for CKKW.

Truncated (vetoed) showers

- Take the state, with some p_{\perp} , generated by POWHEG
- Construct the corresponding splitting variables of your PS: (ρ, x).
- Undo the corresponding emission
- Evolve from maximum scale down to ρ (vetoing emissions above the p_⊥).
- Perform the (ρ, \mathbf{x}) emission
- Continue evolution below ρ (vetoing emissions above the p_⊥).

This can also be used for CKKW.

The W+jets benchmark^{*} NLO matching Summary

POWHEG CKKW-L@NLO

CKKW-L@NLO (merging)

$$d\sigma_{0} = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}C_{0,1}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}^{2}C_{0,2}^{\text{PS}}(\boldsymbol{p}_{1..m};\mu) + \dots\right]d\Phi_{m}$$

$$d\sigma_{+1}(\mu) = \left[\alpha_{s}C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \alpha_{s}^{2}C_{1,1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \dots\right]d\Phi_{m+1}$$

$$d\sigma_{+2}(\mu) = \left[\alpha_{s}^{2}C_{2}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\boldsymbol{q}_{2};\mu) + \alpha_{s}^{3}C_{2,1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\boldsymbol{q}_{2};\mu) + \dots\right]d\Phi_{m+2}$$

Matching and Merging III 40 Leif Lönnblad

.

Lund University

0.W2

* SIC

The W+jets benchmark^{*} NLO matching Summary

POWHEG CKKW-L@NLO

CKKW-L@NLO (merging) aka NL³

$$d\sigma_{0} = \left[C_{0}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}C_{0,1}^{\text{ME}}(\boldsymbol{p}_{1..m};\mu) + \alpha_{s}^{2}C_{0,2}^{\text{PS}}(\boldsymbol{p}_{1..m};\mu) + \dots\right]d\Phi_{m}$$

$$d\sigma_{+1}(\mu) = \left[\alpha_{s}C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \alpha_{s}^{2}C_{1,1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\mu) + \dots\right]d\Phi_{m+1}$$

$$d\sigma_{+2}(\mu) = \left[\alpha_{s}^{2}C_{2}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\boldsymbol{q}_{2};\mu) + \alpha_{s}^{3}C_{2,1}^{\text{ME}}(\boldsymbol{p}_{1..m},\boldsymbol{q}_{1};\boldsymbol{q}_{2};\mu) + \dots\right]d\Phi_{m+2}$$

Matching and Merging III 40 Leif Lönnblad

.

Lund University

U-W

A B >
 A B >

* 51

Assume we have a tree-level ME generator producing up to N extra partons, using some jet cutoff μ

CKKW-L@NLO

$$d\sigma_{+n}^{\text{tree}}(\mu) = \alpha_{\text{s}}^{n}(\mu_{\text{F}})C_{1}^{\text{ME}}(\boldsymbol{p}_{1..m}, \rho_{1..n}, \boldsymbol{x}_{1..n}; \mu)d\Phi_{m+1}$$

Also assume we have a NLO generator producing states for n < N

$$d\sigma_{+n}^{\rm NLO}(\mu) = \left[\alpha_{\rm s}^{n}(\mu_{\rm F}) C_{\rm 1}^{\rm ME}(\boldsymbol{p}_{1..m}, \rho_{1..n}, \boldsymbol{x}_{1..n}; \mu) + \alpha_{\rm s}^{n+1}(\mu_{\rm F}) C_{\rm 1,1}^{\rm ME}(\boldsymbol{p}_{1..m}, \rho_{1..n}, \boldsymbol{x}_{1..n}; \mu) \right] d\Phi_{m+1}$$

We can reconstruct the scales ρ_i and intermediate states as in CKKW-L.

NLO matching

Powheg CKKW-L@NLO

As in CKKW-L we want to

- add a shower below μ ;
- reweight with the running of α_s ;
- reweight with Sudakov form factors above μ .
- reweight with K-factor to get cross sections.

But both the Sudakov form factors and the running of α_s contains α_s^{n+1} terms.

Hence we only want to add only the terms which are $\mathcal{O}(\alpha_s^{n+2})$ and higher.

For the σ_n^{NLO} term, we simply add a cascade below μ . No α_{s} reweighting, or anything else.

CKKW-L@NLO

Then we add the σ_n^{tree} term, but multiply it with

NLO matching

Matching and Merging III

$$d\sigma_{n}^{\text{PScorr}}(\mu) = \alpha_{s}^{n}(\mu_{F})C_{n}^{\text{ME}}(\rho_{1..n};\mu) \times \begin{bmatrix} \mathcal{K}\prod_{i=1}^{n} \frac{\alpha_{s}(\rho_{i})}{\alpha_{s}(\mu_{F})} \Delta_{S_{i-1}}(\rho_{i-1},\rho_{i};\mu) \Delta_{S_{n}}(\rho_{n},\rho_{c};\mu) \\ - \left\{ 1 + k_{1}\alpha_{s}(\mu_{F}) + \alpha_{s}(\mu_{F}) \sum_{i=1}^{n} \frac{\log(\mu_{F}/\rho_{i})}{\alpha_{0}} \\ - \alpha_{s}(\mu_{F}) \sum_{i=1}^{n+1} \int_{\rho_{i}}^{\rho_{i-1}} d\rho' \Gamma_{S_{i-1}}^{\text{PS}}(\rho';\mu) \right\} d\Phi_{m+m}$$

Leif Lönnblad

For the σ_n^{NLO} term, we simply add a cascade below μ . No α_{s} reweighting, or anything else.

CKKW-L@NLO

Then we add the σ_n^{tree} term, but multiply it with

NLO matching

$$d\sigma_{n}^{\text{PScorr}}(\mu) = \alpha_{s}^{n}(\mu_{F})C_{n}^{\text{ME}}(\rho_{1..n};\mu) \times \begin{bmatrix} \kappa \prod_{i=1}^{n} \frac{\alpha_{s}(\rho_{i})}{\alpha_{s}(\mu_{F})} \Delta_{S_{i-1}}(\rho_{i-1},\rho_{i};\mu) \Delta_{S_{n}}(\rho_{n},\rho_{c};\mu) \\ - \left\{ 1 + k_{1}\alpha_{s}(\mu_{F}) + \alpha_{s}(\mu_{F}) \sum_{i=1}^{n} \frac{\log(\mu_{F}/\rho_{i})}{\alpha_{0}} \\ - \alpha_{s}(\mu_{F}) \sum_{i=1}^{n+1} \log \Delta_{S_{i-1}}'(\rho_{i},\rho_{i-1};\mu) \right\} d\Phi_{m+n}$$

$$\Delta' \text{ evaluated with constant } \alpha_{s}(\mu_{F}), \text{ and can be generated in a way inspired by the Sudakov veto algorithm in CKKW-L.}$$

Leif Lönnblad

For n = N, we do the same as in CKKW-L.

- We do not change the higher order α_s -expansion of the PS.
- We match the α_s used in the NLO calculation. The NLO scale-dependence is reduced.
- We need a jet cutoff μ .
- If this jet-scale is very different from the PS evolution scale, ρ, we will have a mismatch.
- We will have negative weights.
- ▶ So far only derived for e⁺e⁻.

Same thing can be done for CKKW.

For n = N, we do the same as in CKKW-L.

- We do not change the higher order α_s -expansion of the PS.
- We match the α_s used in the NLO calculation. The NLO scale-dependence is reduced.
- We need a jet cutoff μ .
- If this jet-scale is very different from the PS evolution scale, ρ, we will have a mismatch.
- We will have negative weights.
- ▶ So far only derived for e⁺e⁻.

Same thing can be done for CKKW.

The W+jets benchmark^{*} NLO matching Summarv

Summary

► Why?

- We need many-parton tree-level ME's to describe rare events.
- We need NLO ME's to get precision.
- We need Parton Showers to evolve partons into partonic jets.
- We need hadronization models to get "real" jets.
- We need to combine ME and PS.
- Tree-level ME + PS reweighting
 - Only works on first/hardest emission.
 - Does not affect total cross section.
 - Similar to POWHEG.

The W+jets benchmark^{*} NLO matching Summary

Summary

► Why?

- We need many-parton tree-level ME's to describe rare events.
- We need NLO ME's to get precision.
- We need Parton Showers to evolve partons into partonic jets.
- We need hadronization models to get "real" jets.
- We need to combine ME and PS.
- Tree-level ME + PS reweighting
 - Only works on first/hardest emission.
 - Does not affect total cross section.
 - Similar to POWHEG.

Tree-level ME + PS merging

- CKKW(-L), Pseudo-Shower and MLM.
- Split the phase space between ME and PS region using jet cutoff, μ.
- Small μ is preferred, but makes things slow.
- Avoid double-counting and under counting.
- Introduce Sudakov form factors to make ME states exclusive.
- Introduce running α_s to get the same non-leading behavior as PS.
- Hadronic collisions straight-forward.

Leif Lönnblad

The W+jets benchmark[^] NLO matching Summary

NLO + PS matching

- MC@NLO
- Use PS splitting function to define NLO subtraction terms.
- Adding PS is easy.
- Only first emissions corrected (not necessarily hardest).
- PS-dependent, negative weights.
- NLO + PS reweighting
 - POWHEG
 - No negative weights
 - ▶ PS-independent (as long as PS is p_{\perp} -ordered).
 - Only first emission hardest can be obtained by truncated showers.

- NLO + PS matching
 - MC@NLO
 - Use PS splitting function to define NLO subtraction terms.
 - Adding PS is easy.
 - Only first emissions corrected (not necessarily hardest).
 - PS-dependent, negative weights.
- NLO + PS reweighting
 - POWHEG
 - No negative weights
 - ▶ PS-independent (as long as PS is p_{\perp} -ordered).
 - Only first emission hardest can be obtained by truncated showers.

ME + NLO + PS merging

- Extend CKKW(-L) to NLO
- NL³, but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- µ-dependence, ordering problems, ...
- Parton Shower ordering
 - Is very important.
 - ► For any merging/matching procedure.
 - Ordering in p_{\perp} is good.
 - Other orderings makes life difficult.

ME + NLO + PS merging

- Extend CKKW(-L) to NLO
- NL³, but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- ▶ µ-dependence, ordering problems, ...

Parton Shower ordering

- Is very important.
- ► For any merging/matching procedure.
- Ordering in p_{\perp} is good.
- Other orderings makes life difficult.

ME + NLO + PS merging

- Extend CKKW(-L) to NLO
- NL³, but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- ▶ µ-dependence, ordering problems, ...
- Parton Shower ordering
 - Is very important.
 - ► For any merging/matching procedure.
 - Ordering in p_{\perp} is good.
 - Other orderings makes life difficult.

ME + NLO + PS merging

- Extend CKKW(-L) to NLO
- NL³, but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- μ-dependence, ordering problems, ...
- Parton Shower ordering
 - Is very important.
 - For any merging/matching procedure.
 - Ordering in p_{\perp} is good.
 - Other orderings makes life difficult.

Lund University

ME + NLO + PS merging

- Extend CKKW(-L) to NLO
- NL³, but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- μ-dependence, ordering problems, ...
- Parton Shower ordering
 - Is very important.
 - For any merging/matching procedure.
 - Ordering in p_{\perp} is good.
 - Other orderings makes life difficult.

References

- Veto algorithm for processes with Sudakov form factors.
 - T. Sjöstrand, Pythia 6.4 Physics and Manual (ch 4.2)
- Reweighting (Correcting the hardest emission)
 - M. Bengtsson, T. Sjöstrand, Phys. Lett. B185 (1987) 435
 - M. Seymour, Nucl. Phys. B436 (1995) 443.
 - M. Seymour, Comp. Phys. Commun. 90 (1995) 95.
 - E. Norrbin, T. Sjöstrand, Nucl. Phys. B603 (2001) 297.
- CKKW
 - S. Catani, et al., *JHEP* **11** (2001) 063.
 - F. Krauss, JHEP 08 (2002) 015.
- CKKW-L
 - L. Lönnblad, JHEP 05 (2002) 046.
 - N. Lavesson, L. Lönnblad, JHEP 07 (2005) 054

MLM

- M. Mangano (Talk at tuning workshop at Fermilab)
- Pseudo-Shower
 - S. Mrenna, P. Richardson, JHEP 05 (2004) 040.
- Comparisons
 - S. Mrenna, P. Richardson, JHEP 05 (2004) 040.
 - J. Alwall, et al., *Eur. Phys. J.* **C53** (2008) 473.
 - N. Lavesson, L. Lönnblad, JHEP 04 (2008) 085

The W+jets benchmark^{*} NLO matching Summary

MC@NLO

- S. Frixione, B. Webber, JHEP 06 (2002) 029
- S. Frixione, B. Webber, (manual)
- POWHEG
 - P. Nason, JHEP 11 (2004) 040
 - P. Nason, G. Ridolfi, JHEP 08 (2006) 077
- ► NL³
 - N. Lavesson, L. Lönnblad, (preprint in preparation)

