Matching and merging
Matrix Elements with Parton Showers III

Leif Lönnblad

Department of Theoretical Physics
Lund University

MCnet/CTEQ Summer School
Debrecen 08.08.16
Outline of Lectures

- Lecture I: Introduction, Tree-level ME, NLO, PS, ordering, basic strategies, ...
- Lecture II: Tree-level ME merging with PS, CKKW(-L), Pseudo Shower, MLM, e^+e^- comparison, ...
- Lecture III: ME+PS merging in pp, NLO matching with PS, MC@NLO, POWHEG, NL3, ...
Outline

ME+PS merging in hadronic collisions
 CKKW-L
 CKKW
 MLM
 Pseudo-Shower

The W+jets benchmark
 The models
 Tevatron
 LHC
 Conclusions

NLO matching
 MC@NLO
 POWHEG
 CKKW-L@NLO

Summary
ME+PS merging in hadronic collisions

The main difference here is that we have incoming partons. We have to worry about:

- parton densities
- initial-state showers
- algorithm to construct scales (and intermediate states).

(Will assume $W+$jets production throughout, but it can easily be generalized.)
Longitudinally invariant k_\perp-algorithm

$d_{ij} = \min(k_{\perp i}, k_{\perp j}) \left[\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2 \right]$

$d_i = k_{\perp i}$
Longitudinally invariant k_\perp-algorithm

$$d_{ij} = \min(k_{\perp i}^2, k_{\perp j}^2) \left[\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2 \right]$$

$$d_i = k_{\perp i}$$
Longitudinally invariant k_\perp-algorithm

\[d_{ij} = \min(k_{\perp i}^2, k_{\perp j}^2) \left[\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2 \right] \]

\[d_i = k_{\perp i} \]
Longitudinally invariant k_{\perp}-algorithm

$$d_{ij} = \min(k_{\perp i}^2, k_{\perp j}^2) \left[\Delta \eta_{ij}^2 + \Delta \phi_{ij}^2 \right]$$

$$d_i = k_{\perp i}$$
The leading order W cross section:

$$d\sigma_{pp\rightarrow W} = \sum_{q,\bar{q}'} xf_q(x_+, m_W) xf_{q'}(x_-, m_W) \hat{\sigma}_{q\bar{q}'\rightarrow W}(sx_+x_-) \frac{dx_+}{x_+} \frac{dx_-}{x_-}$$

Making one step ($g \rightarrow q$) backward in the initial-state shower:

$$dP(\rho, z) = \frac{\alpha_s}{2\pi} P_{g\rightarrow q}(z) \frac{xf_g(x_+/z, \rho)}{xf_q(x_+, \rho)} \Delta S_0(\rho_{\text{max}}, \rho) \frac{d\rho}{\rho} dz,$$
Comparing with the cross section for getting the same thing from the matrix element:

\[
d\sigma_{pp \to Wq} = \sum_{\bar{q},q'} x_f g \left(\frac{x_+}{z}, \mu \right) x_f \bar{q}' \left(x_-, \mu \right) \hat{\sigma}_{gq'} \to W\bar{q} \left(s \frac{x_+}{z} x_-, z, \rho \right) \frac{dx_+}{x_+} \frac{dx_-}{x_-} d\rho dz
\]

And we identify

\[
\frac{\hat{\sigma}_{gq'} \to W\bar{q} \left(\frac{x_+}{z} x_-, S, z, \rho \right)}{\hat{\sigma}_{q\bar{q}' \to W} \left(s x_+ x_- \right)} d\rho dz
\]

with

\[
\frac{\alpha_s}{2\pi} P_{g \to q} (z) \frac{d\rho}{\rho} dz,
\]
In CKKW-L, the way to handle this is to construction scales and intermediate states, using the “inverse-PS” algorithm, taking care to separate initial- from final-state emission.

Then reweight a produced n–parton event with

$$\frac{xf_{p_0}(x_+^0, m_W) \cdot xf_{q_0}(x_-^0, m_W)}{xf_{p_n}(x_+^n, \mu) \cdot xf_{q_n}(x_-^n, \mu)}$$

where the partons p_0 and q_0 and their energy fractions x_+^0 and x_-^0 are obtained from the constructed S_0 state.
Then for each constructed state, S_i, the event is weighted by the running α_s, the no-emission probability, $\Delta_{S_i}(q_i, q_{i+1})$, using the Sudakov veto algorithm, and a PDF ratio

$$\frac{xf_{p_{i+1}}(x_{+(i+1)}, q_{i+1}) \cdot xf_{q_{i+1}}(x_{-(i+1)}, q_{i+1})}{xf_{p_i}(x_{+i}, q_{i+1}) \cdot xf_{q_i}(x_{-i}, q_{i+1})}$$

In this way we get exactly the same Sudakov form factors and PDF ratios as in the shower.

Note however that the total cross section is forced to be the LO one (as in the original shower).
Here we use the boost-invariant k_\perp-algorithm to construct the emission scales.

In each step we either cluster two final-state partons together, or cluster one parton to the beam, corresponding to an final- and initial-state splitting respectively.

The reweighting of α_s and analytical Sudakov form factors works in the same way as for e^+e^-.
No PDF weighting is necessary!

This is because the Sudakov form factors are not proper no-emission probabilities:

\[P_{\text{no-emission}} = \frac{xf_p(x, q_2)}{xf_p(x, q_1)} \frac{\Delta_p(q_1, \mu)}{\Delta_p(q_2, \mu)} \]

and all PDF ratios cancel!

Life becomes simpler and the total cross section becomes beyond LO (although not NLO).
The reason CKKL-L anyway insists on including the ratios is that the correspondence between the no-emission probability and the Sudakov form factors is only true for DGLAP evolution. And CKKW-L was originally implemented for ARIADNE, which is not strictly DGLAP (it includes a resummation of large logarithms of x).
In CKKW-L, the maximum scale on the shower applied to \(S_0 \) is the same as for the stand-alone shower. For a strict DGLAP shower this is typically \(m_W \).

In ARIADNE and PYTHIA (in case the first emission is ME-reweighted), the maximum scale is given by the kinematical limit, e.g. \(p_\perp < \sqrt{s}/2 \).

In CKKW, the maximum scale for the vetoed shower from the \(S_n \) state, and for the Sudakov form factors, is typically taken to be \(m_\perp W \).

I.e. no no-emission probability above \(m_\perp W \), which is fine as long as there are no large logarithms of \(\sqrt{s}/m_W \sim x \).
Again we use the boost-invariant k_\perp-algorithm to define the ME generation cutoff, μ_0, and the constructed emission scales.

The maximum scale in the shower is $m_\perp W$.

In the original (A\textsc{L}P\textsc{G}E\textsc{N}) implementation a cone algorithm is used to cluster the showered even. Here the minimum E_\perp of the jets is set to $\mu > \mu_0$, and the R_{cone} is larger than the minimum ΔR in the ME generation.

A jet is matched to a parton if the $\Delta R_{\text{jet,parton}} < 1.5 \times R_{\text{cone}}$.
Other MLM implementations

\textbf{MADEvent} has another implementation which uses the k_\perp-algorithm throughout in much the same way as was described for e^+e^-.

\textbf{HELAC} is very close to \textbf{ALPGEN}.

Pseudo-Shower

Follows the modifications used in CKKW-L when going from e^+e^- to pp.
The W+jets benchmark

W+jets is a good benchmark to compare the algorithms in pp. What follows is a comparison between:

- Sherpa, implementing CKKW (with PYTHIA-like virtuality ordered shower).
- CKKW-L using ARIADNE.
- ALPGEN using MLM merging with HERWIG.
- MADEVENT using MLM merging with PYTHIA, virtuality-ordered shower.
- HELAC using MLM merging with PYTHIA, virtuality-ordered shower.
Notes:

- Pseudo-Shower not included here (see refs.)
- **ARIADNE** is not DGLAP-based.
- **PYTHIA** with CKKW and two flavours of MLM.
- Same flavour of MLM with both **PYTHIA** and **HERWIG**.
- All use similar cuts on ME and up to 4 jets.
Tevatron energies

All procedures allowed different variations of parameters. Merging scale and scale choice in α_s-reweighting in common.
ME+PS merging in hadronic collisions

The W+jets benchmark

NLO matching

The models

Tevatron

LHC

\[
\frac{d\sigma}{dp_T} (\text{pb/GeV})
\]

(a) Alpgen

Ariadne

Helac

MadEvent

Sherpa

Matching and Merging III

Leif Lönnblad

Lund University
\[\Delta \eta = |\eta_W - \eta_{\text{jet}}| \]
ALPGEN

\(\mu = 10, 20, 30 \text{ GeV}, \text{ ME: } \sqrt{d_1} > \mu, \text{ PS: } \sqrt{d_1} < \mu. \)
ME+PS merging in hadronic collisions
The W+jets benchmark
NLO matching

The models
Tevatron
LHC

SHERPA

ARIADNE

Matching and Merging III
Leif Lönnblad
Lund University
LHC energies

![Graph showing LHC energies comparison between different generators: Alpgen, Ariadne, Helac, MadEvent, Sherpa. The x-axis represents the number of jets (≥ 0, ≥ 1, ≥ 2, ≥ 3, ≥ 4), and the y-axis represents the ratio of cross-sections σ(W+ ≥ N jets) / <σ> for different generators.](image)
ME+PS merging in hadronic collisions

The W+jets benchmark

NLO matching

\[\frac{d\sigma}{dp_T} (\text{pb}/\text{GeV}) \]

(a) Alpgen

Ariadne

Helac

MadEvent

Sherpa

Matching and Merging III
\[\Delta \eta = |\eta_W - \eta_{\text{jet}}| \]
- Clear wiggles near cutoff μ.
- Far above μ, results are independent of μ.
- Different models differ, but within systematic uncertainties of each model.
- Largest difference found from ARIADNE (not DGLAP).
NLO matching

\[d\sigma_0 = \left[C_0^{\text{ME}}(p_{1..m}, \mu) + \alpha_s C_{0,1}^{\text{PS}}(p_{1..m}; \mu) + \alpha_s^2 C_{0,2}^{\text{PS}}(p_{1..m}; \mu) + \ldots \right] d\Phi_m \]

\[d\sigma_{+1}(\mu) = \left[\alpha_s C_1^{\text{ME}}(p_{1..m}, q_1; \mu) + \alpha_s^2 C_{1,1}^{\text{PS}}(p_{1..m}, q_1; \mu) + \ldots \right] d\Phi_{m+1} \]

\[d\sigma_{+2}(\mu) = \left[\alpha_s^2 C_2^{\text{ME}}(p_{1..m}, q_1, q_2; \mu) + \alpha_s^3 C_{2,1}^{\text{PS}}(p_{1..m}, q_1, q_2; \mu) + \ldots \right] d\Phi_{m+2} \]

\vdots
NLO matching

\[d\sigma_0 = \left[C^\text{ME}_0(p_{1..m}; \mu) + \alpha_s C^\text{ME}_{0,1}(p_{1..m}; \mu) + \alpha_s^2 C^\text{PS}_{0,2}(p_{1..m}; \mu) + \ldots \right] d\Phi_m \]

\[d\sigma_{+1}(\mu) = \left[\alpha_s C^\text{ME}_1(p_{1..m}, q_1; \mu) + \alpha_s^2 C^\text{ME}_{1,1}(p_{1..m}, q_1; \mu) + \ldots \right] d\Phi_{m+1} \]

\[d\sigma_{+2}(\mu) = \left[\alpha_s^2 C^\text{ME}_2(p_{1..m}, q_1, q_2; \mu) + \alpha_s^3 C^\text{ME}_{2,1}(p_{1..m}, q_1, q_2; \mu) + \ldots \right] d\Phi_{m+2} \]

\[\vdots \]
NLO matching

\[d\sigma_0 = \left[C_0^{\text{ME}}(p_1..m; \mu) + \alpha_s C_{0,1}^{\text{ME}}(p_1..m; \mu) + \alpha_s^2 C_{0,2}^{\text{PS}}(p_1..m; \mu) + \ldots \right] d\Phi_m \]

\[d\sigma_{+1}(\mu) = \left[\alpha_s C_{1,1}^{\text{ME}}(p_1..m, q_1; \mu) + \alpha_s^2 C_{1,1}^{\text{PS}}(p_1..m, q_1; \mu) + \ldots \right] d\Phi_{m+1} \]

\[d\sigma_{+2}(\mu) = \left[\alpha_s^2 C_{2}^{\text{PS}}(p_1..m, q_1, q_2; \mu) + \alpha_s^3 C_{2,1}^{\text{PS}}(p_1..m, q_1, q_2; \mu) + \ldots \right] d\Phi_{m+2} \]

\vdots
MC@NLO

Based on NLO-subtraction method

\[
d\sigma_0 = \left[C_0^{\text{ME}}(p_{1..m}) + \alpha_s C_0^{\text{loop}}(p_{1..m}) \right. \\
+ \alpha_s \int d^3 q' C_1^{\text{CS}}(p_{1..m}, q') \left. \right] d\Phi_m \\
d\sigma_1 = \alpha_s \left[C_1^{\text{ME}}(p_{1..m}, q') - C_1^{\text{CS}}(p_{1..m}, q') \right] d\Phi_{m+1}
\]

\[d\sigma^{\text{NLO}} = d\sigma_0 + d\sigma_1.\]

\(C_1^{\text{CS}}\) must reproduce the soft and collinear poles in \(C_1^{\text{ME}}\).
MC@NLO

Based on NLO-subtraction method

\[
 d\sigma_0 = \left[C_{0}^{\text{ME}}(p_1..m) + \alpha_s C_{0}^{\text{loop}}(p_1..m) \right. \\
 + \left. \int d^3 q' C_{1}^{\text{PS}}(p_1..m, q') \right] d\Phi_m \\
 d\sigma_{+1} = \alpha_s \left[C_{1}^{\text{ME}}(p_1..m, q') - C_{1}^{\text{PS}}(p_1..m, q') \right] d\Phi_{m+1} \\
 d\sigma^{\text{NLO}} = d\sigma_0 + d\sigma_1.
\]

\(C_{1}^{\text{CS}} \) must reproduce the soft and collinear poles in \(C_{1}^{\text{ME}} \).

We can use the splitting function of any reasonable PS.
Note that calculating \(C_0^{\text{loop}} + \int d^3q C_1^{\text{PS}} \) is highly non-trivial.
Note that σ_1 is not a proper $+1$ parton cross section, most of this is integrated over and put into σ_0.

Now we can add a parton shower to get the no-parton cross section

$$d\sigma_0(\rho_c) = \left[C_0^{\text{ME}}(p_1..m) + \alpha_s C_0^{\text{loop}}(p_1..m) \right. + \alpha_s \int_0^{\rho_0} d\rho \int d^2 x C_1^{\text{PS}}(p_1..m, \rho, x) \left. \right] d\Phi_m \times \Delta S_0(\rho_0, \rho_c)$$

Note difference in integration region.
Note that σ_1 is not a proper +1 parton cross section, most of this is integrated over and put into σ_0.

Now we can add a parton shower to get the no-parton cross section

$$d\sigma_0(\rho_c) = \left[C_0^{\text{ME}}(p_1\ldots m) + \alpha_s C_0^{\text{loop}}(p_1\ldots m) + \alpha_s \int_0^{\rho_0} d\rho \int d^2x C_1^{\text{PS}}(p_1\ldots m, \rho, x) \right] d\Phi_m \times \left(1 - \alpha_s \int_{\rho_c}^{\rho_0} d\rho \int d^2x \frac{C_1^{\text{PS}}(p_1\ldots m, \rho, x)}{C_0^{\text{ME}}(p_1\ldots m)} + \mathcal{O}(\alpha_s^2) \right)$$

Note difference in integration region.
Note that σ_1 is not a proper $+1$ parton cross section, most of this is integrated over and put into σ_0.

Now we can add a parton shower to get the no-parton cross section

$$d\sigma_0(\rho_c) = \left[C_{0}^{\text{ME}}(p_1..m) + \alpha_s C_{0}^{\text{loop}}(p_1..m) \right. $$

$$\left. + \alpha_s \int_{0}^{\rho_0} d\rho \int d^2x C_{1}^{\text{PS}}(p_1..m, \rho, x) \right] d\Phi_m$$

$$\times \left(1 - \alpha_s \int_{\rho_c}^{\rho_0} d\rho \int d^2x \frac{C_{1}^{\text{PS}}(p_1..m, \rho, x)}{C_{0}^{\text{ME}}(p_1..m)} + O(\alpha_s^2) \right)$$

Note difference in integration region.
We then get the one-parton cross section

\[d\sigma_{+1}(\rho_c) = \alpha_s \left[C_{1}^{\text{ME}}(p_{1..m}, \rho, x) - C_{1}^{\text{PS}}(p_{1..m}, \rho, x) \right] \Delta S_1(\rho, \rho_c) d\Phi_{m+1} \]

\[+ \left[C_0^{\text{ME}} + \alpha_s C_0^{\text{loop}} + \alpha_s \int C_1^{\text{PS}} \right] \times \alpha_s \frac{C_{1}^{\text{PS}}(p_{1..m}, \rho, x)}{C_0^{\text{ME}}(p_{1..m})} \]

\[\times \Delta S_0(\rho_0, \rho) \Delta S_1(\rho, \rho_c) d\Phi_{m+1} \]

To leading order we are left with \(\alpha_s C_{1}^{\text{ME}} \)
We then get the one-parton cross section

\[d\sigma_{+1}(\rho_c) = \alpha_s \left[C_{1}^{\text{ME}}(p_{1..m}, \rho, x) - C_{1}^{\text{PS}}(p_{1..m}, \rho, x) \right] \Delta S_{1}(\rho, \rho_{c}) d\Phi_{m+1} \]

\[+ \left[C_{0}^{\text{ME}} + \alpha_s C_{0}^{\text{loop}} + \alpha_s \int C_{1}^{\text{PS}} \right] \times \alpha_s \frac{C_{1}^{\text{PS}}(p_{1..m}, \rho, x)}{C_{0}^{\text{ME}}(p_{1..m})} \times \Delta S_{0}(\rho_{0}, \rho) \Delta S_{1}(\rho, \rho_{c}) d\Phi_{m+1} \]

To leading order we are left with \(\alpha_s C_{1}^{\text{ME}} \)
We then get the one-parton cross section

\[
d\sigma_{+1}(\rho_c) = \alpha_s \left[C_{1}^{\text{ME}}(p_{1..m}, \rho, x) - C_{1}^{\text{PS}}(p_{1..m}, \rho, x) \right] \Delta S_1(\rho, \rho_c) d\Phi_{m+1} \\
+ \left[C_0^{\text{ME}} + \alpha_s C_0^{\text{loop}} + \alpha_s \int C_1^{\text{PS}} \right] \times \alpha_s \frac{C_{1}^{\text{PS}}(p_{1..m}, \rho, x)}{C_0^{\text{ME}}(p_{1..m})} \times \Delta S_0(\rho_0, \rho) \Delta S_1(\rho, \rho_c) d\Phi_{m+1}
\]

To leading order we are left with \(\alpha_s C_1^{\text{ME}} \)
If you change the shower, you have to redo the NLO calculation.

The first Parton shower emission will be correct NLO
Not necessarily the hardest emission if you have bad ordering.

Requires $\Delta_{S_0}(\rho_0, \rho) \sim 1$ when ρ distributed as
$C^\text{ME}_1(\rho) - C^\text{PS}_1(\rho)$ (No soft and collinear poles.)

Event weights may become negative
(sum is finite and positive for reasonable observables).
What if we use a parton shower for which the first/hardest emission is correct to $O(\alpha_s)$, $C_1^{\text{ME}} = C_1^{\text{PS}}$

$$d\sigma_0(\rho_c) = \left[C_0^{\text{ME}}(p_{1..m}) + \alpha_s C_0^{\text{loop}}(p_{1..m}) \right. + \alpha_s \int_0^{\rho_0} d\rho \int d^2x C_1^{\text{ME}}(p_{1..m}, \rho, x) \right] d\Phi_m$$

$$\times \Delta S_0(\rho_0, \rho_c)$$
What if we use a parton shower for which the first/hardest emission is correct to $O(\alpha_s)$, $C_{1}^{\text{ME}} = C_{1}^{\text{PS}}$.

$$d\sigma_0(\rho_c) = \left[C_{0}^{\text{ME}}(p_{1..m}) + \alpha_s C_{0}^{\text{loop}}(p_{1..m}) \right. \\
+ \alpha_s \int_0^{\rho_0} d\rho \int d^2x C_{1}^{\text{ME}}(p_{1..m}, \rho, x) \left. \right] d\Phi_m \times \left(1 - \alpha_s \int_{\rho_c}^{\rho_0} d\rho \int d^2x \frac{C_{1}^{\text{ME}}(p_{1..m}, \rho, x)}{C_{0}^{\text{ME}}(p_{1..m})} + O(\alpha_s^2) \right)$$
\[
\begin{align*}
d\sigma_{+1}(\rho_c) &= \left[C_{0}^{\text{ME}} + \alpha_s C_{0}^{\text{loop}} + \int C_{1}^{\text{ME}} \right] \times \alpha_s \frac{C_{1}^{\text{ME}}(p_{1\ldots m}, \rho, x)}{C_{0}^{\text{ME}}(p_{1\ldots m})} \\
&\times \Delta_{S_0}(\rho_0, \rho) \Delta_{S_1}(\rho, \rho_c) d\Phi_{m+1}
\end{align*}
\]

POWHEG assumes a generic \(p_\perp\)-ordered shower, and implements this first step itself. We should then be able to continue with any \(p_\perp\)-ordered shower.
No negative weights
No need to redo NLO calculation
If our PS is not ordered in p_{\perp}, we can use a vetoed shower.
But we still have problems with un-ordered emissions.
Truncated (vetoed) showers

- Take the state, with some p_{\perp}, generated by POWHEG
- Construct the corresponding splitting variables of your PS: (ρ, x).
- Undo the corresponding emission
- Evolve from maximum scale down to ρ (vetoing emissions above the p_{\perp}).
- Perform the (ρ, x) emission
- Continue evolution below ρ (vetoing emissions above the p_{\perp}).

This can also be used for CKKW.
Truncated (vetoed) showers

- Take the state, with some p_\perp, generated by POWHEG
- Construct the corresponding splitting variables of your PS: (ρ, x).
- Undo the corresponding emission
- Evolve from maximum scale down to ρ (vetoing emissions above the p_\perp).
- Perform the (ρ, x) emission
- Continue evolution below ρ (vetoing emissions above the p_\perp).

This can also be used for CKKW.
CKKW-L@NLO (merging)

\[
d\sigma_0 = \left[C_{0}^{\text{ME}}(\mathbf{p}_{1..m}; \mu) + \alpha_s C_{0,1}^{\text{ME}}(\mathbf{p}_{1..m}; \mu) + \alpha_s^2 C_{0,2}^{\text{PS}}(\mathbf{p}_{1..m}; \mu) + \ldots \right] d\Phi_m
\]

\[
d\sigma_1(\mu) = \left[\alpha_s C_{1}^{\text{ME}}(\mathbf{p}_{1..m}, \mathbf{q}_1; \mu) + \alpha_s^2 C_{1,1}^{\text{ME}}(\mathbf{p}_{1..m}, \mathbf{q}_1; \mu) + \ldots \right] d\Phi_{m+1}
\]

\[
d\sigma_2(\mu) = \left[\alpha_s^2 C_{2}^{\text{ME}}(\mathbf{p}_{1..m}, \mathbf{q}_1, \mathbf{q}_2; \mu) + \alpha_s^3 C_{2,1}^{\text{ME}}(\mathbf{p}_{1..m}, \mathbf{q}_1, \mathbf{q}_2; \mu) + \ldots \right] d\Phi_{m+2}
\]

\vdots \]
CKKW-L@NLO (merging) aka NL3

\[
\begin{align*}
\sigma_0 &= \left[C_{0}^{\text{ME}}(p_{1..m}; \mu) + \alpha_s C_{0,1}^{\text{ME}}(p_{1..m}; \mu) + \alpha_s^2 C_{0,2}^{\text{PS}}(p_{1..m}; \mu) + \ldots \right] d\Phi_m \\
\sigma_{+1}(\mu) &= \left[\alpha_s C_{1}^{\text{ME}}(p_{1..m}, q_1; \mu) + \alpha_s^2 C_{1,1}^{\text{ME}}(p_{1..m}, q_1; \mu) + \ldots \right] d\Phi_{m+1} \\
\sigma_{+2}(\mu) &= \left[\alpha_s^2 C_{2}^{\text{ME}}(p_{1..m}, q_1, q_2; \mu) + \alpha_s^3 C_{2,1}^{\text{ME}}(p_{1..m}, q_1, q_2; \mu) + \ldots \right] d\Phi_{m+2} \\
\vdots
\end{align*}
\]
Assume we have a tree-level ME generator producing up to N extra partons, using some jet cutoff μ

$$d\sigma_{+n}^{\text{tree}}(\mu) = \alpha_s^n(\mu_F) C_1^{\text{ME}}(p_1..m, \rho_1..n, x_1..n; \mu) d\Phi_{m+1}$$

Also assume we have a NLO generator producing states for $n < N$

$$d\sigma_{+n}^{\text{NLO}}(\mu) = \left[\alpha_s^n(\mu_F) C_1^{\text{ME}}(p_1..m, \rho_1..n, x_1..n; \mu) \right. \right.$$

$$+ \alpha_s^{n+1}(\mu_F) C_{1,1}^{\text{ME}}(p_1..m, \rho_1..n, x_1..n; \mu) \left. \right] d\Phi_{m+1}$$

We can reconstruct the scales ρ_i and intermediate states as in CKKW-L.
As in CKKW-L we want to

- add a shower below μ;
- reweight with the running of α_s;
- reweight with Sudakov form factors above μ.
- reweight with K-factor to get cross sections.

But both the Sudakov form factors and the running of α_s contains α_{s}^{n+1} terms.

Hence we only want to add only the terms which are $O(\alpha_{s}^{n+2})$ and higher.
For the σ_{n}^{NLO} term, we simply add a cascade below μ. No α_s reweighting, or anything else.

Then we add the σ_{n}^{tree} term, but multiply it with

$$d\sigma_{n}^{\text{PScorr}}(\mu) = \alpha_s^n(\mu_F) C_n^\text{ME}(\rho_{1..n}; \mu) \times$$

$$\left[K \prod_{i=1}^{n} \frac{\alpha_s(\rho_i)}{\alpha_s(\mu_F)} \Delta S_{i-1}(\rho_{i-1}, \rho_i; \mu) \Delta S_n(\rho_n, \rho_c; \mu) \right]$$

$$- \left\{ 1 + k_1 \alpha_s(\mu_F) + \alpha_s(\mu_F) \sum_{i=1}^{n} \frac{\log(\mu_F/\rho_i)}{\alpha_0} \right\}$$

$$d\Phi_{m+n}$$
For the \(\sigma^{\text{NLO}}_n \) term, we simply add a cascade below \(\mu \). No \(\alpha_s \) reweighting, or anything else.

Then we add the \(\sigma^{\text{tree}}_n \) term, but multiply it with

\[
\frac{d\sigma^{\text{PScorr}}_n(\mu)}{d\Phi_{m+n}} = \alpha_s^n(\mu_F)C^\text{ME}_n(\rho_{1..n}; \mu) \times \\
K \prod_{i=1}^{n} \frac{\alpha_s(\rho_i)}{\alpha_s(\mu_F)} \Delta_{S_{i-1}}(\rho_{i-1}, \rho_i; \mu) \Delta_{S_n}(\rho_n, \rho_c; \mu) \\
- \left\{ 1 + k_1 \alpha_s(\mu_F) + \alpha_s(\mu_F) \sum_{i=1}^{n} \frac{\log(\mu_F/\rho_i)}{\alpha_0} \right. \\
- \alpha_s(\mu_F) \sum_{i=1}^{n+1} \log \Delta'_{S_{i-1}}(\rho_i, \rho_{i-1}; \mu) \right\} \\
\Delta' \text{ evaluated with constant } \alpha_s(\mu_F), \text{ and can be generated in a way inspired by the Sudakov veto algorithm in CKKW-L.}
For $n = N$, we do the same as in CKKW-L.

- We do not change the higher order α_s-expansion of the PS.
- We match the α_s used in the NLO calculation. The NLO scale-dependence is reduced.
- We need a jet cutoff μ.
- If this jet-scale is very different from the PS evolution scale, ρ, we will have a mismatch.
- We will have negative weights.
- So far only derived for $e^+ e^-$.

Same thing can be done for CKKW.
For $n = N$, we do the same as in CKKW-L.

- We do not change the higher order α_s-expansion of the PS.
- We match the α_s used in the NLO calculation. The NLO scale-dependence is reduced.
- We need a jet cutoff μ.
- If this jet-scale is very different from the PS evolution scale, ρ, we will have a mismatch.
- We will have negative weights.
- So far only derived for e^+e^-.

Same thing can be done for CKKW.
Summary

Why?

- We need many-parton tree-level ME’s to describe rare events.
- We need NLO ME’s to get precision.
- We need Parton Showers to evolve partons into partonic jets.
- We need hadronization models to get “real” jets.
- We need to combine ME and PS.

Tree-level ME + PS reweighting

- Only works on first/hardest emission.
- Does not affect total cross section.
- Similar to POWHEG.
Summary

Why?
- We need many-parton tree-level ME’s to describe rare events.
- We need NLO ME’s to get precision.
- We need Parton Showers to evolve partons into partonic jets.
- We need hadronization models to get “real” jets.
- We need to combine ME and PS.

Tree-level ME + PS reweighting
- Only works on first/hardest emission.
- Does not affect total cross section.
- Similar to POWHEG.
Tree-level ME + PS merging

- CKKW(-L), Pseudo-Shower and MLM.
- Split the phase space between ME and PS region using jet cutoff, μ.
- Small μ is preferred, but makes things slow.
- Avoid double-counting and under-counting.
- Introduce Sudakov form factors to make ME states exclusive.
- Introduce running α_s to get the same non-leading behavior as PS.
- Hadronic collisions straight-forward.
NLO + PS matching
- MC@NLO
- Use PS splitting function to define NLO subtraction terms.
- Adding PS is easy.
- Only first emissions corrected (not necessarily hardest).
- PS-dependent, negative weights.

NLO + PS reweighting
- POWHEG
- No negative weights
- PS-independent (as long as PS is p_\perp-ordered).
- Only first emission – hardest can be obtained by truncated showers.
NLO + PS matching
- MC@NLO
 - Use PS splitting function to define NLO subtraction terms.
 - Adding PS is easy.
 - Only first emissions corrected (not necessarily hardest).
 - PS-dependent, negative weights.

NLO + PS reweighting
- POWHEG
 - No negative weights
 - PS-independent (as long as PS is p_\perp-ordered).
 - Only first emission – hardest can be obtained by truncated showers.
ME + NLO + PS merging

- Extend CKKW(-L) to NLO
- NL3, but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- μ-dependence, ordering problems, . . .

Parton Shower ordering

- Is very important.
- For any merging/matching procedure.
- Ordering in p_\perp is good.
- Other orderings makes life difficult.
ME + NLO + PS merging
- Extend CKKW(-L) to NLO
- NL3, but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- μ-dependence, ordering problems, ...

Parton Shower ordering
- Is very important.
- For any merging/matching procedure.
- Ordering in p_\perp is good.
- Other orderings makes life difficult.
The W+jets benchmark
NLO matching

Summary

- ME + NLO + PS merging
 - Extend CKKW(-L) to NLO
 - NL³, but also implementation in Sherpa soon(?)
 - Combining different multiplicities to NLO.
 - Negative weights.
 - μ-dependence, ordering problems, . . .

- Parton Shower ordering
 - Is very important.
 - For any merging/matching procedure.
 - Ordering in p_\perp is good.
 - Other orderings makes life difficult.
ME + NLO + PS merging
- Extend CKKW(-L) to NLO
- \(\text{NL}^3 \), but also implementation in Sherpa soon(?)
- Combining different multiplicities to NLO.
- Negative weights.
- \(\mu \)-dependence, ordering problems, ...

Parton Shower ordering
- Is very important.
- For any merging/matching procedure.
- Ordering in \(p_\perp \) is good.
- Other orderings makes life difficult.
The W+jets benchmark

NLO matching

Summary

◮ ME + NLO + PS merging
 ◮ Extend CKKW(-L) to NLO
 ◮ NL^3, but also implementation in Sherpa soon(?)
 ◮ Combining different multiplicities to NLO.
 ◮ Negative weights.
 ◮ μ-dependence, ordering problems, . . .

◮ Parton Shower ordering
 ◮ Is very important.
 ◮ For any merging/matching procedure.
 ◮ Ordering in p_\perp is good.
 ◮ Other orderings makes life difficult.
References

- Veto algorithm for processes with Sudakov form factors.
 - T. Sjöstrand, Pythia 6.4 Physics and Manual (ch 4.2)
- Reweighting (Correcting the hardest emission)
- CKKW
- CKKW-L
The W+jets benchmark
NLO matching

Summary

- **MLM**
 - M. Mangano (Talk at tuning workshop at Fermilab)
- **Pseudo-Shower**
- **Comparisons**
MC@NLO
- S. Frixione, B. Webber, (manual)

POWHEG

NL3
- N. Lavesson, L. Lönnblad, (preprint in preparation)