High Energy Neutrino Experiments

Amy Connolly University College London Neutrino Horizons in the 21st Century 18 April, 2008

Cosmíc Messengers

- Only cosmic messengers observed so far are (charged) cosmic rays and gamma rays
- Neutrinos would
 - Point back to their source
 - Travel cosmological distances unattenuated
 - Extend beyond CR cutoff
 - Expect neutrinos from:
 - Gamma Ray Bursts
 - Active Galactic Nuclei
 - CR interactions with CMB
- I will discuss experiments searching for cosmic neutrinos above $\sim 10^{12}$ eV

The only extraterrestrial neutrinos seen: The Sun and SN1987a

Each source has:

- **1.** Had a important impact on particle physics
- **2.** Looked deeper into the source than otherwise possible

The Sun

Supernova 1987a

Weak eigenstates ≠ mass eigenstates

 \rightarrow neutrinos have mass

Lack of dispersion → mass limits

Attenuation Lengths

	Attenuation Length		
	water	ice	salt
EM optical (Cerenkov)	~ 50 m	~ 100 m	? (large)
EM radio (0.1-1.0 GHz)	~ 0	~1 km	~few 100 m?
Acoustic (10 kHz)	~ 10 km	? (large)	? (large)

- Steeply falling spectrum → larger volumes needed to reach higher energies
- Optical: 10¹¹ 10¹⁸ eV
- Radio: > 10¹⁸ eV
- Acoustic: Above 10¹⁸ eV, under investigation

70 strings 1500-2500 m deep 160 tanks (IceTop) (40 strings, 80 tanks are deployed)

USA, Germany, Sweden, Belgium, UK, New Zealand, The Netherlands, Venezuela

Construction to be completed in 2011 70× the size of Amanda II

Optical Technique: Ice and Water

- Advantages of Ice as Medium
 - Established hole-drilling and infrastructure at South Pole
 - No bioluminescence
 - No biology "muddying waters"
 - No currents
- Advantages of Water as Medium

- View region of sky that includes galactic center
- More pleasant places to work!

DUMAND: First deep sea neutrino telescope - 4.8 km deep off coast of Hawaii 1980-1995

BAIKAL: Bottom (1100 m deep) of Siberian freshwater lake NT200: 8 cables with 192 optical modules (OM's) 1998 Constrained diffuse cosmic v flux, WIMPs, Mag. Monpls., point sources Funding for R&D towards 1 km³ detector: TDR 2008, deployment 2010

Current Underwater Neutrino Experiments in the Mediterranean

ANTARES

- 10 out of 12 lines installed
- + 1 instrumentation line
 - Environmental sensors, light emitters, video cameras
 - 18 hydrophones over 3 storeys
- Last 5+1 installed in 2007

 Reconstructed events from data taken Feb-May 2007

- Steep fall at cosθ=0.2 expected from cosmic ray muons
- Upward going events are neutrino candidates

• A Consortium of 40 institutes from 10 European countries

. . .

- <u>Cyprus</u>:France:
- Univ. Cyprus Nicosia
- **France:** CEA/Saclay, CNRS/IN2P3 (APC Paris, CPP Marseille, IReS Strasbourg), Univ. Haute Alsace/GRPHE, IFREMER
- Germany: Univ. Erlangen, FTZ (Univ. Kiel)
- Greece: HCMR Anavissos, HOU Patras, NCSR Athens, NOA/Nestor Athens, Univ. Athens
- Ireland: DIAS Dublin
- Italy: CNR/ISMAR, INFN (Univs. Bari, Bologna, Catania, Genova, Napoli, Pisa, Roma-1, LNS Catania, LNF Frascati), INGV, Tecnomare SpA
- Netherlands: NIKHEF/FOM Amsterdam, Univ. Amsterdam, Univ. Utrecht, KVI (Univ. Groningen)
- Romania ISS Bucharest
- <u>Spain</u>: IFIC (CSIC) Valencia, Univ. Valencia, UP Valencia
- UK: Oceanlab (Univ. Aberdeen), Univ. Leeds, Univ. Liverpool, Univ. Sheffield

Particle/Astroparticle institutes (32) – Sea science/technology institutes (7) – Coordinator

KM3NeT DESIGN REPORT

- Design Study supported by the European Union with 9 M€, overall budget ~20 M€.
- Started on Feb. 1, 2006; will run for 3 years Objectives

• Design a cost effective neutrino telescope with:

- Effective volume
- Angular resolution for muons (E_v >10 TeV)
- Energy threshold: few 100 GeV. When pointing

0.1° ~100 GeV

>1 km³

- Sensitivity to all neutrino flavours, CC/NC reactions
- Field of view close to 4π for high energies

Deliverables

- Conceptual Design Report by Fall 2007
- Technical Design Report by the end of 2008

Site choice will depend on:

- Depth
- Distance from shore
- Bioluminescence rate
- Sedimentation
- Biofouling
- Sea currents
- Earth quake profile
- Access to on-shore facilities

KM3NeT-UK Activities The University of Sheffield LED Beacon Pulser Assembly

L. Thompson, J. Perkin, O. Veledar

The relative time offset of Optical Modules in ANTARES is measured using a system of LED based optical beacons [arXiv:astro-ph/0703355]

Rise times of the optical pulse are typically 2–3ns with an energy of 150pJ or 4×10^8 photons per pulse

Using a new circuit design [doi:10.1088/0957-233/18/1/016] and current LED technologies the following developments are being researched:

- Increase pulse-pulse stability
- Increase pulse amplitude
- Remove need for ext. trigger
- Drive multiple LEDs from 1 board
- Preserve ns timing of pulses

UHE Neutrinos (>10¹⁸ eV): Need for Detection Volume Beyond km³ ~ 10 GZK neutrinos / km² / year 10¹⁸ eV: v N interaction length \approx 300 km \rightarrow 0.03 neutrinos / km³ / year At most, we see 1/2 the sky \rightarrow 10⁻² neutrinos / km³ / year

> To be assured sensitivity to "guaranteed" GZK neutrino flux, we need >>10² km³ detection volume

Radio Technique: Gurgen Askaryan (1962)

- Coherent Cerenkov signal from net "current," instead of from individual tracks
- A ~20% charge asymmetry develops:
 - Compton scattering: $\gamma + e^{-}(at rest) \rightarrow \gamma + e^{-}$
 - Positron annihilation: e+ + e-(at rest) $\rightarrow \gamma + \gamma$
- Excess moving with v > c/n in matter
- \rightarrow Cherenkov Radiation dP \propto v dv
- If $\lambda >> R_{Moliere} \rightarrow Coherent Emission$ P ~ N² ~ E²
- $\lambda > R_{Moliere} \rightarrow Radio/Microwave Emission$

Long radio attenuation lengths in ice, salt, sand

Macroscopic size: $R_{Moliere} \approx 10$ cm, L ~ meters

Pioneering Radio Cerenkov Experiments FORTE GLUE RICE

RICE 1999-present Antennas on AMANDA strings 100-1000 MHz dipoles V~10 km³. sr Data up to 2005 published

FORTE 97-99 Greenland Ice Log periodic antenna, 20-300 MHz A=10⁵ km².sr

GLUE/Goldstone 99: In Lunar regolith ~2 GHz A=6.10⁵ km².sr

Radio Ice Cerenkov Experiment

MIT, Whitman College, U. of Delaware, U. of Canterbury, University of Kansas, University of Kansas Design Laboratory

- Martin A. Pomerantz Observatory
 - 1 km from S. Pole
- 16 buried radio receivers in 200 m x 200 m x 200 m area
- Detects Cerenkov radiation in 0.2 GHz to 1 GHz frequency range

The ANITA Collaboration

USA UK (UCL)

Taiwan

University of Hawaii at Manoa Honolulu, Hawaii

University of California at Irvine Irvine, California

University of California at Los Angeles Los Angeles, California

> University College London London, England

University of Delaware Newark, Delaware Jet Propulsion Laboratory Pasadena, California

> University of Kansas Lawrence, Kansas

Ohio State University Columbus, Ohio

Stanford Linear Accelerator Center Pasadena, California

> National Taiwan University Taiwan

Washington University in St. Louis St. Louis, Kansas

Anita-lite: 2 antennas, 2003-2004 Season

- Designed cuts to select Askaryan-like events
 - # cycles in a waveform
 - Integrated power
 - Time coincidence between channels
- Reduce noise with crosscorrelation analysis
- Both analyses find analysis efficiency ~50%
- ANITA-lite ruled out Z-burst models

 Two independent analyses modeled time dependent pulse on measured noise

ANITA Calibration at SLAC: June 2006

Produced Askaryan pulses in ice from a 28.5 GeV electron beam at SLAC $\sim 10^9$ particles per bunch $\rightarrow 10^{19}$ - 10^{20} eV showers

From there, ANITA was off to Antarctica...

ANITA Flight

- ANITA launched on Dec. 15th
- Took 3.5 trips around Antarctica
- In flight for 35 days
- Terminated on Jan 18th
- Full recovery completed
- Analysis is underway
- Expect to either be the first to discover UHE neutrinos or set world's best limits

View of ANITA from the South Pole Picture taken by James Roth

Embedded Radio Detectors Designed to Target Energy Gap

- Detectors embedded in the interaction medium have lower threshold
- Variety of embedded radio detector projects being studied or plannec
- Antarctic ice and salt
- Goal of any nextgeneration experiment: 100 GZK neutrinos/year
- Cross section measurement possible

Limit curves from Barwick et al., Phys.Rev.Lett 96:171101,2006 and references therein, (RICE '06) I. Kravchenko et al., 2006, Phys.Rev.D73:082002,2006, and (AUGER) L.Anchordoqui et al., ICRC Proceedings 2007

IceRay / AURA

USA, UK (UCL)

A next-generation array could deploy antennas:

- On surface (IceRay)
- Deep (AURA):
 - On existing IceCube strings
 - On strings in dedicated radio boreholes

Ice is the only medium that is feasible for all three: optical, radio and acoustic techniques

Preliminary simulations:

- An array of 18-36 stations that could be built by ~2012 could detect 4-8 GZK neutrinos/year
- Pre-curser to larger array that would detect
- 100 GZK neutrinos/year

A fraction of events could be measured in both radio and optical instruments

Suitability of IceCube environment for AURA

• Channel and cluster trigger rates were compared when IceCube/AMANDA were idle and when taking data.

Noise from IceCube/AMANDA is enhanced in lower frequency on a given channel/band
Combined trigger reject most of this noise

• Measurement only down to ~200 MHz

SalSA

- Salt formations can extend several km's wide x 10 km deep
- Salt domes can be very pure ^{De}_{(ki}
- Ground penetrating radar (GPR) has shown very low loss
- Askaryan array in salt could be drilled from surface (expensive) or laid along floors of a salt mine

Attenuation Length Measurements in Salt Cote Blanche Salt Mine, Louisiana, USA

A. Connolly (UCL) , A. Goodhue (UCLA), R. Nichol (UCL), D. Saltzberg (UCLA), M. Cherry (LSU), J. Marsh (LSU)

- Visited Cote Blanche salt mine to measure radio attn. lengths in salt
- Ground penetrating radar (GPR) experts saw lowest loss in any

The ACoRNE project

- Collaboration of scientists from Sheffield-Lancster-IC-Northumbria-UCL
- 3 years funding via Joint Grants Scheme (50-50 STFC and MOD)

- The Qinetic underwater acoustic range, a hydrophone array off Rona in North-West Scotland used by the ACORNE collaboration
- 7 hydrophones read out quasicontinuously at 16bits,140kHz - a total of (~26Tb uncompressed) data taken to date (since December 2005)

Rona Field Trip August

- In August 2007 Rona team injected a number of different pulse types and amplitudes directly above the Rona array
- Analysis is underway
- Boat position, and drift, successfully reconstructed
- One step closer to reconstructing a neutrino!

South Pole Acoustic Test Setup (SPATS)

- 3 string deployed in IceCube holes Jan 2007
- 4th string deployed Jan. 2008
- Goal to measure acoustic properties of ice
- Each string 7 acoustic "stages" (Rx, Tx)
- IceCube Hole 78 includes optical, radio and acoustic

AMADEUS

- 3 acoustic storeys on Instrumentation line of ANTARES
- 3 more planned for another line

OvDE

• Acoustic sensors deployed on NEMO strings in Jan. 2005

Summary

- Visible technique for neutrino detection is well established with IceCube (completion 2011) and KM3NeT (TDR end of this year) set to dig into mainstream models for neutrinos from astro sources
- Radio detection technique brings neutrino astronomy to >100's km³ detection volumes - ice best medium foreseeable future
 - Radio technique setting important constraints
- Acoustic detection holds potential for larger volumes, R&D still needed and much is underway
- Development of next-generation projects is ongoing, and the field is finding the best path forward based on
 - Experience with existing projects
 - Site selection studies
 - Ever maturing simulations
- We (UCL) are looking for UK collaborators on IceRay project
 - Ice is only medium where visible, radio, acoustic are all possible
 - South pole only place where all three techniques being developed

The race is on for cosmic neutrino detection!

NESTOR

- 15 km from Greek coast
- 4100 m depth
- Deploy from floating platform
 →avoid expensive subs
- Star-shaped storeys
- March 2003 data 1 storey
- NuBE-NESTOR km³ GRB detector planned

NEMO

- Off coast of Sicily
- Since 1998: 30 sea campaigns
- Phase 1 completed (test site)
 - 4 15m-long storeys
 - Separated by 150 m
 - Currently taking data
- Phase 2 underway
 - Preferred site
 - Full: 9 x 9 1 km towers

ANITA Signal Acquisition

- Trigger: Signal divided into frequency sub bands (channels)
 - Powerful rejection against narrow bandwidth backgrounds
 - Multi-band coincidence allows better noise rejection
- 8 channels/ antenna
- Require 3/8 channels fire for antenna to pass L1 trigger
- Global trigger analyzes information across antennas
- For Anita-lite, no banding: 4 channels, require 3-fold coincidence

- Full array would be km³ scale, ~5000 OM's on 64 towers
- NEMO Phase 1 completed
 - Construction, deployment, operation of all key elements of test site (2031 m deep, closer to shore)
 - 4 storey tower separated by 150 m, 15 m long storeys
 - Currently taking data
- NEMO Phase 2
 - Work on preferred site (further, deeper) begun

- Star-shaped storeys
- 2 OM's each point: one ↑, one ↓
- Plan to repair cable, deploy 4– storey prototype tower

Accelerator Measurements of Askaryan Signal

Argonne: P. Schoessow, JPL: G. Resch SLAC: C. Field, R. Iverson, A. Odian, D. Walz UCLA: D. Saltzberg, D. Williams UH Manoa: P. Gorham, E. Guillian, R. Milincic

Beam measurements at SLAC using photon beam incident on

- Sand (2000)
- Salt (2002)

Anita-lite (cont)

- Flying two antennas with angular separation 22° allowed us to measure ANITA's angular resolution
- Compare time of arrival of calibration pulses

Angular resolution measured: ANITA-lite: $\sigma(\Delta t)=0.16 \text{ ns} \rightarrow \sigma(\Delta \phi)=2.3^{\pm}$ Full ANITA: expect $\sigma(\Delta t)=0.1 \text{ ns}$ $\rightarrow \sigma(\Delta \phi)=1.5^{\circ}, \sigma(\Delta \theta)=0.5^{\circ}$

Remember that this is resolution on *RF direction*

Reflected Rays

- ANITA could (possibly) detect events where a signal is reflected from ice-bedrock interface
- \bullet At SM $\sigma\mbox{'s},$ reflected rays not significant
- At large cross-sections, short pathlengths → down-going neutrinos dominate ! reflected rays important

Moving Trigger Simulation from Frequency Domain to Time Domain

- Currently, simulations model the signal strength by integrating the frequency profile
- Noise contribution is • selected from a Gaussian
- Compare that signal + noise to threshold
- True system integrates lacksquarepower in time domain
- Thermal noise is our largest background ! essential that our system's response to noiseve have built the tools for a time domain simulation

(J. Alvarez-Muniz, et al., Phys.Rev.D62:063001,2000; J. Alvarez-Muniz, et al., Phys.Lett.B411:218-224,1997)

Need to model channel dependent thresholds from ANITA flight

Salt Dome Selection:

U.S. Gulf Coast Most Promising

Salt origin: Shallow Jurassic period sea, 150-200 M yrs old, inshore Gulf coast area dried ~150 Myrs ago
Plasticity at 10-15 km depth leads to 'diapirism' : formation of buoyant extrusions toward surface

Stable salt diapirs all over Gulf coast

- Studying surveys from 70's, 80's by DOE for Nuclear Waste Repository sites
 - Requirements have large overlap with SalSA, large, stable dome, near surface, with dry salt, no economic usage
 - Strong candidates:
 - Richdon (MS), Vacherie (LA), Keechie (TX)
 - Visited dome sites to explore feasibility of

Visit to Vacherie Dome

near Shreveport, Louisiana

Visit to Vacherie Dome

ANITA Calibration at SLAC: June 2006

- Went to SLAC for 2 weeks of beam time in End Station A during June 2006
- Full-up system calibration with actual Askaryan impulses from Ice
 GOALS

- Produce Askaryan pulses in ice from a 28.5 GeV electron beam
- Self-trigger on pulses from full ANITA payload
- Record data at many positions to map out Cherenkov cone

10 ton Ice Target

- ~ 10 ton ice target
- Ironed sides of ice blocks to minimize gaps between blocks
- Ice blocks were assembled into a target 2.0 m x

ANITA Calibration at SLAC: June 2006

- Went to SLAC for 2 weeks of beam time in End Station A during June 2006
- Full-up system calibration with actual Askaryan impulses from Ice
 GOALS

- Produce Askaryan pulses in ice from a 28.5 GeV electron beam
- Self-trigger on pulses from full ANITA payload
- Record data at many positions to map out Cherenkov cone

What Messages Will Neutrinos Carry

- Could point to new sources
- Neutrinos carry information about cosmic rays and their sources
 - Flux could reveal clues about the nature of CR sources
 - Spatial distribution
 - Injection spectra
 - Cosmological constant (subtle)
 - Composition of the CR's
- Center of mass of a 10¹⁷ eV neutrino incident on a nucleon is 14 TeV
 - →Beyond typical LHC energies

Potential for new physics

Cosmic Origin of Radiation

1912 Austrian Victor Hess boarded a balloon with a radiation counter Went to 17,500 ft. altitude Radiation increased with altitude Established "cosmic" origin of natural radiation

- Observations of cosmic particles have led to many groundbreaking discoveries:
- Particle physics: discovery of many subatomic particles (e ⁺, π⁺, μ⁺, K, ...)
- Astrophysics: Discovery of new objects, insights into engines inside them

Ballooning remains an important means for probing the cosmos

I will describe how we are looking for a new class of cosmic radiation from a balloon at 120,000 ft. by looking "down" instead of "up"

Consider a Power Integrator

Integration Time Δt : 1 oscillation

0

 \cap

5

average boresight SNR (Gaussian σ , lin. pol.)

10

- Agreement looks very promising!
- Will be used to assess ANITA sensitivity with in-flight parameters