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The Universe Age  380,000 years just after the atoms were 
formed and the Universe becomes transparent -- henceforth 
these Big Bang photons travel unhindered through the Universe
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As the Universe expands, the Big Bang photons in the 
visible spectrum get redshifted into microwave photons
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The Big Bang photons from the time of atom formation 
(380,000 yrs) are observed as microwave background 
radiation, with a Black Body spectrum corresponding to a 
temperature of about 3 K = -270o C                                        
(redshifted from a temperature of about 3,000 K )

Cosmic microwave background
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The Universe according to WMAP5 
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Temperature Maps

Earth

Universe
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We can learn a lot from these temperature maps
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The Standard The Standard CDM ModelCDM Model
� Flat Universe
� Dark Energy 
� Dark Matter

Dark matter density      .
.                              .

Scalar spectral index      

How solid is 
this paradigm?
Sarkar
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Third peak 
measures 
dark matter 
density and 
provides 
indirect 
evidence for 
the neutrino 
cosmic 
background 
at 95% C.L.

Angular Power Spectrum from WMAP5

NEW NEW 
RESULTRESULT
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63%

makes up 12%

15% of  total

- since  =1 it is deduced that the  energy 
density of neutrinos must make up 10 %

The Universe at the decoupling 
time 380,000 years after big bang

Dark energy is 
insignificant
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Position of First Peak 
Measures the Geometry 

of the Universe



The Relative Height of Second Peak 
Measures the Density of Baryons



The Relative Height of 
Third Peak Measures the 

Density of Dark Matter

Dark Matter Domination  
(later times � lower peaks)

Photon Domination                        
(earlier times � higher peaks)
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The Big Questions and Neutrino Mass

What is the origin of the Universe and its constituent parts?

 Origin of the Universe
Sneutrino inflation 

 Origin of dark energy                                
Neutrino dark energy  » m

4

 Origin of dark matter
Neutrino limits 

 Origin of atoms
Types of leptogenesis
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Dark Matter has been ``seen��Origin of Dark Matter
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The Bullet Cluster of Galaxies
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How Dark Matter Evolves

This computer 
simulation 
takes the CMB 
temperature 
fluctuations as 
seeds of 
density 
fluctuations 
which evolve in 
time to give 
long filaments 
of dark matter
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By the time the Universe is 100 million  years  
old it is dominated by filaments of dark 
matter around which the galaxy clusters and 
superclusters will form
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Who is the dark matter particle?Who is the dark matter particle?

Likely suspects

�Neutralino

�Singlino

�Gravitino

�Neutrino

Standard neutrinos give hot dark 
matter � disfavoured

(keV neutrinos can give warm 
dark matter � not discussed here) 

CDM CDM 

Hot or WarmHot or Warm
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CMB 
power 

spectrum

Galaxy 
power 

spectrum

Tegmark
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WMAP/LSS HDM limits on neutrino mass*

WMAP5 onlyWMAP5 only

* Forget MaVaNs
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Present and Future Cosmology limits on the 
sum of neutrino masses 

Lesgourgues

Present Future

Lesgourgues
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Cosmology vs Neutrinoless DBD

Inverted hierarchy is 
TESTABLE 

Normal hierarchy is 
NOT TESTABLE

from: F. Feruglio, A. Strumia, F. Vissani ('02)

Approx. degeneracy 
is TESTABLE

0 DBD

cosmo

future 



18/04/2008
Steve King, Neutrino Horizons,          

Coseners House, Abingdon 27

Origin of atoms 
  106.1 0.2 10b bn n

n
 
   

MurayamaMurayama

Want to understandWant to understand
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�Right-handed neutrinos are produced in early universe and 
decay out of equilibrium giving net lepton numbers Le , L , L
�CP violation from complex Yukawa couplings

�Out of equilibrium Boltzmann eqs lead to Le , L , L partial 
washouts

�Surviving Le, L , L are processed into B via B-L conserving 
sphalerons

Fukugita,Yanagida
Silvia Pascoli talkLeptogenesis
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Type I and II  Type I and II  leptogenesisleptogenesis

R

LL

Type I Type I Type IIType II Antusch,SFKCovi,Roulet,Vissani
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Thermal leptogenesis limits on m and MR1 

AntuschAntusch

MR1 can be as low 
as » 108 GeV for 
neutrino mass 
near the Klapdor
claim
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Can MR1 be reduced further? 

�Resonant leptogenesis � degenerate RH neutrinos 

�Extended models � more Higgs, more leptons, leptoquarks

�Non-thermal leptogenesis � produce RH neutrinos directly 
from inflaton decay 

�Preheating of right-handed neutrinos � non-perturbative
enhancement

SFK,Luo,Miller,Nevzorov

Pilaftsis et al

Lazarides,Shafi

Bastero-Gil,SFK
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Origin of the Universe

Why is the Universe so big 
and flat? 

What seeds the density 
perturbations?

-- Inflation!
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Status of Inflation � looking good

� Flatness 

� Density perturbations
1. Acoustic peaks 
2. Gaussian
3. Spectral index

� Gravity Waves

� Observed Flatness

� Observed perturbations
1. 3 peaks  observed
2. No evidence for non-Gauss
3. Spectral Index

� Gravity waves not observed

Prediction Observation
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Could the inflaton be a sneutrino? Murayama,Suzuki, 
Yanagida,Yokoyama

Chaotic inflation requires an inflaton with a simple potential 2 21

2
V m 

Could inflaton be SUSY partner of the right-handed neutrino?

Yukawa couplings allow reheating of the Universe uY L H N

Yes but no gauge interactions up to MP (no SO(10) GUTs, etc.)

The mass scale is in the right range  

0.96sn  0.16r  Gravity waves soonGood!
Linde

N

L

UH

N
N

N
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Alternative sneutrino inflation

Hybrid inflation with potential 
2

2 4
2

1
2S

P

N
V M

m
 

 
  

 

Antusch, Bastero-Gil, SFK, Shafi

Radiative corrections important - have been calculated for similar model

1r 

No gravity waves!

Bastero-Gil, SFK, Shafi
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ex
Right-handed neutrino mass generated after inflation
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�( ) / 4N RY Y M    RH N PT M 

In both cases RH neutrino is decoupled from see-saw mechanism         
c.f. sequential dominance  effective 2 RH neutrino models 

Reheating and non-thermal leptogenesis

N

L

UH

N

13 1010 10RM GeV Y
  Sneutrino chaotic inflation

610RHT GeVTo avoid gravitino problem suppose 

Sneutrino hybrid inflation
8 610 10RM GeV Y

  

Ibarra, Ross

Lepton asymmetry may be produced via the cold (non-thermal) 
decays of the sneutrino

9

1

10b RH

R

n T

n M

   for 8 6 710 , 10 , 10R RHM GeV T GeV    
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Summary of sneutrino inflation
 Right-handed scalar neutrino as inflaton: V=m2 giving r=0.16, ns=0.96 

(Murayama,Suzuki,Yanagida,Yokoyama)

 Or sneutrino hybrid inflation r=0, ns» 0.9-1.0 (Antusch, Bastero-Gil, SFK, Shafi) 

Rachel Bean et al 
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Origin of dark energy

Dark Matter

Atoms

NeutrinosPhotons

Dark Energy

Why all Why all 
similar similar 
now?now?

Photon Photon 
decouplingdecoupling NowNow
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 43 4(3.10 )DE eV m  Why is                                              ? Just a coincidence?

Mass Varying Neutrinos (MaVaNs)

Assume that m/ 1/n where  n is background number density, so 
neutrino masses get smaller in early universe (up to local clustering)

This implies that DE » = mn always

To achieve such neutrino masses which depend on background 
neutrinos, new scalar forces between light neutrinos are invoked e.g.

scalar acceleron field responsible for dark energy

But the new force causes neutrinos to clump into neutrino nuggets

 The stability problem 

Fardon,Nelson,Weiner

Afshordi,Kohri,Zaldarriagra
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Conclusion
 Discovery of neutrino mass has profound implications 

for origin of matter and the Universe
 Origin of dark matter � HDM is not preferred  limit on 

neutrino mass of about 1 eV (will improve)
 Origin of atoms � leptogenesis has become the 

leading candidate: type I,II, resonant, non-thermal,�
 Origin of the Universe � the right-handed sneutrino is 

a good candidate for the inflaton, its decay gives 
efficient non-thermal leptogenesis

 Origin of dark energy � cosmic coincidence puzzle, 
with dark energy scale » m is tantalizing but no 
convincing ideas yet in my opinion
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Inflation Formalism

Slow roll parameters � depend on shape of potential

22
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Observables

Universe inflates 
by factor of 
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Chaotic inflation 2 21

2
V m 

510
T
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 

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Slow roll requires  >MP ! 
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Neutrinos and nucleosynthesis
The number of light �neutrino species� (or any light species) 
affects the freeze-out temperature of weak processes which 

determine n/p, and successful nucleosynthesis gives a constraint 
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What about sterile neutrinos? The limit on         applies to them also, 
but they need to be produced during the time when nucleosynthesis
was taking place, and the only way to produce them is via neutrino 
oscillations. This leads to strong limits on the sterile-active neutrino 

mixing angles which disfavour LSND � assuming the primordial 
lepton asymmetry is not anomalously large 

N

3N 
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Sakharov Conditions:
 Baryon number B violation
 C-symmetry and CP-symmetry violation 
 Interactions out of thermal equilibrium

Standard Model satisfies all three (sphalerons violate B but 
conserve B-L) but the predicted value of  is too small

SUSY can help: MSSM, NMSSM, �

Traditionally GUTs are invoked (but B-L must be violated)

Alternatively the see-saw mechanism allows leptogenesis
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Motivation to go beyond MSSM

Exceptional Supersymmetric Standard Model

- Solves  problem of MSSM

- Solves fine tuning problem of MSSM

- Predicts Z�, exotic D quarks, exotic L� leptons at LHC

-Solves gravitino problem in leptogenesis (in progress)

Extra diagrams 
contribute to 
leptogenesis

SFK,Luo,Miller,Nevzorov


