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What is Hadronization?

• General features/models of soft QCD
– Local parton-hadron duality (LPHD)
– Universal low-scale effective       (ULSEA)

• Formation of individual hadrons
– Monte Carlo models
– Thermal models
– AdS/QCD

αS

In practice, two rather distinct meanings:
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General Ideas
• Local parton-hadron duality

– Momentum & flavour follows parton flow
– Predicts asymptotic spectra
– Predicts two-particle correlations

• Universal low-scale effective
– Related to “tube” model
– Regulates IR renormalons in PT
– Predicts power corrections to event shapes
– Predicts jet shapes and energy corrections

αS

3



Hadronization Models Bryan Webber

Local parton-hadron duality
• Evolution equation for fragmentation function 

has extra z2 due to soft gluon coherence

• Solution by moments

• Anomalous dimension dominates asymptotically

t
∂

∂t
F (x, t) =

∫ 1

x

dz

z

αS

2π
P (z)F (x/z, z2t)

F̃ (N, t) ∼ exp
[∫ t

t0

γ(N,αS)
dt′

t′

]
F̃ (N, t0)

γ(N,αS) =
αS

2π

∫ 1

0
zN−1+2γ(N,αS)P (z)
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• This is regular at N=1

γ(N,αS) =
αS

2π

∫ 1

0
zN−1+2γ(N,αS)P (z)

γ(N,αS) =
1
4

[√
(N − 1)2 +

8CAαS

π
− (N − 1)

]

=
√

CAαS

2π
− 1

4
(N − 1) +

1
32

√
2π

CAαS
(N − 1)2 + · · ·

∼ CAαS

π

1
N − 1 + 2γ(N,αS)
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∫ t

γ(N,αS(t′))
dt′

t′
=

∫ αS(t) γ(N,αS)
β(αS)

dαS

β(αS) = −bα2
S + · · ·

F̃ (N, t) ∼ exp

[
1
b

√
2CA

παS
− 1

4bαS
(N − 1) +

1
48b

√
2π

CAα3
S

(N − 1)2 + · · ·
]

αS=αS(t)

where                              .  Hence

Mean 
multiplicity

 Position 
of peak

Width 
of peak

N ↔ ξ ≡ ln(1/x)• Gaussian in            Gaussian in
• Mean multiplicity

〈n(s)〉 =
∫ 1

0
dx F (x, s) = F̃ (1, s)

∼ exp
1
b

√
2CA

παS(s)
∼ exp

√
2CA

πb
ln

( s

Λ2

)
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LPHD Predictions
• Good agreement with data

Average Multiplicity

! Mean number of hadrons is N = 1 moment of fragmentation function:

〈n(s)〉 =

Z 1

0
dx F (x, s) = F̃ (1, s)

∼ exp
1

b

s

2CA

παS(s)
∼ exp

s

2CA

πb
ln

„

s

Λ2

«

(plus NLL corrections) in good agreement with data.
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! Width of distribution

σ =
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LPHD in pp    dijets
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Two-particle energy correlations
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where a is a constant that depends on the number of colors and the number of effectively

massless quarks. The unknown term O(1) is expected to be independent of τ . The predicted

dependence of the inclusive momentum distribution on jet hardness is shown in Fig. 1.

The two-parton momentum correlation function R(ξ1, ξ2) is defined to be the ratio of the

two- and one-parton momentum distribution functions:

R(ξ1, ξ2) =
D(ξ1, ξ2)

D(ξ1)D(ξ2)
, (2)

where D(ξ1, ξ2) = d2N
dξ1dξ2

. The momentum distributions are normalized as follows:
∫

D(ξ)dξ = 〈n〉, where 〈n〉 is the average multiplicity of partons in a jet, and
∫

D(ξ1, ξ2)dξ1dξ2 = 〈n(n − 1)〉 for all pairs of partons in a jet. The average multiplicity

of partons 〈n〉 is a function of the dijet mass Mjj and the size of the opening angle θc. For

θc = 0.5, 〈n〉 varies from ∼ 6 to ∼ 12 for Mjj in the range 80–600 GeV/c2 [4].

The Fong-Webber approximation of Eq. (2) for the two-parton momentum correlation

function [6] can be written as follows:

R(∆ξ1, ∆ξ2) = r0 + r1(∆ξ1 + ∆ξ2) + r2(∆ξ1 − ∆ξ2)
2, (3)

where ∆ξ = ξ − ξ0, and the parameters r0, r1, and r2 define the strength of the correlation

and depend on the variable τ = ln(Q/Qeff ). Equation (3) is valid only for partons with ξ

around the peak of the inclusive parton momentum distribution, in the range ∆ξ ∼ ±1.

The parameters r0, r1, and r2 are calculated separately for quark and gluon jets from an

expansion in powers of 1/
√

τ using the assumption that the number of effectively massless

quarks Nf is 3. Keeping only terms controlled by theory, the parameters are:

rq
0 = 1.75 −

0.64√
τ

, rq
1 =

1.6

τ 3/2
, rq

2 = −
2.25

τ 2
, (4)

rg
0 = 1.33 −

0.28√
τ

, rg
1 =

0.7

τ 3/2
, rg

2 = −
1.0

τ 2
, (5)

where q and g superscripts denote the correlation parameters for partons in quark jets and

gluon jets, respectively.

The theoretical prediction of the shape of the two-parton momentum correlation distri-

bution function is shown in Fig. 2. Along the central diagonal ∆ξ1 = −∆ξ2, the shape of

the two-parton momentum correlation is parabolic with a maximum at ∆ξ1 = ∆ξ2. Along
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Universal low-scale effective
• Infrared renormalon

• Divergent series: truncate at smallest term                    
(                             )      uncertainty                               

Asymptotics of perturbation theory

It is expected that perturbation series will diverge at
high order.

There may even be signs of this already for some
observables, e.g. the Gross–Llewellyn Smith sum rule:

1

6

∫ 1

0
dx (F ν

3 + F ν̄
3 ) = 1−

αS

π
− 3.6

(αS

π

)2
− 19

(αS

π

)3
+ · · ·

One source of divergence is renormalon chain graphs

F ∼ αS

∞
∑

n=0

n!

(

β0αS

2πp

)n

! Quark loops ⇒ β0 = −2Nf/3

p = 1, 2, . . . depends on observable F

Infrared renormalon ⇔ low momentum in loops

! “Naive non-Abelianization”: replace

Nf → Nf − 33/2 , β0 → 11 − 2Nf/3

– Typeset by FoilTEX – 8

= αS(Q)
∑

n

n![2bαS(Q)]n

nm = [2bαS(Q)]−1 ⇒
δF ∼ nm![2bαS(Q)]nm ∼ e−nm =

Λ
Q

F ∼
∫ Q

0

dpt

Q
αS(pt)

= αS(Q)
∑

n

∫ Q

0

dpt

Q

[
bαS(Q) ln

Q2

p2
t

]n

αS
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• Renormalon is due to 
IR divergence of

• Postulate universal 
IR-regular

• Power corrections 
depend on

• Match NP & PT at  

αS

αS

α0(µI) =
1
µI

∫ µI

0
αS(pt) dpt

µI ∼ 2 GeV

Power Corrections
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Power corrections to event shapes
• 1/Q renormalon present in C, absent in y3

0

0.1

0.2

0.3

0.4

0.5

0 20 40 60 80 100 120 140 160 180 200
!
""
s [GeV]

#C
$

O(%S
2)+Power Corr.

O(%S
2) only

JADE
L3
ALEPH
DELPHI
OPAL
SLD

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 20 40 60 80 100 120 140 160 180 200
!
""
s [GeV]

#y
3$

JADE
DELPHI
OPAL
SLD
L3

12



Hadronization Models Bryan Webber

ULSEA results from e+e
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ULSEA results from DIS

• Consistent with e+e

FRIF Workshop on First Principles Non-Perturbative QCD of Hadron Jets
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ULSEA hadronic jet energy correction

In order to make an explicit connection with event shape studies [13], we can rewrite

Eq. (3.18) in more detail as

A(µI) =
1

π
µI

[

α0 (µI) − αs(pt) −
β0

2π

(

ln
pt

µI
+

K

β0
+ 1

)

α2
s(pt)

]

, (3.19)

where α0 ≡ (1/µI)
∫ µI

0 αs(kt)dkt is the average coupling over the infrared region, familiar

from event shape studies, and we have carried out the subtraction of the perturbative

coupling, αs(pt), to two-loop accuracy in the MS scheme, where K = CA

(

67
18 − π2

6

)

− 5
9nf .

Note that similar expressions in Ref. [13] are rescaled by the Milan factor, accounting for

gluon decays; this rescaling will be discussed below, in Section 3.5.

The integral over the soft gluon direction can be evaluated by choosing polar coor-

dinates in the η − φ plane and expanding in powers of the radial variable. Discarding

the spurious collinear divergence arising when the gluon is emitted along the outgoing leg,

which cancels against an identical one in the ‘global’ term, as shown in the Appendix, one

finds

〈δpt〉
(1j)
h = C1j A(µI)

(

−
1

R
+

5

16
R −

23

3072
R3 −

95

147456
R5 + O

(

R7
)

)

. (3.20)

By symmetry, an identical result is obtained for the 2j dipole, formed by the trigger hard

parton and the other incoming parton with momentum p2.

3.2 Dipole involving the trigger and recoil jets

In this case the transverse momentum of the soft gluon with respect to the dipole, which

we label with (jr), is given by

κ2
t,jr = k2

t e−η
(

cosh2 η − cos2 φ
)

, (3.21)

which leads to the integral

〈δpt〉
(jr)
h = Cjr A(µI)

∫

η2+φ2<R2
dη

dφ

2π

cos φ
(

cosh2 η − cos2 φ
)3/2

. (3.22)

This can be evaluated as before, using polar coordinates and expanding in powers of R.

One finds

〈δpt〉
(jr)
h = Cjr A(µI)

(

−
1

R
−

1

4
R +

1

192
R3 −

5

2304
R5 + O

(

R7
)

)

. (3.23)

3.3 Incoming dipole

The dipole involving the two incoming partons, labelled as (12), is the simplest to compute,

since in this case κt,12 = kt. For this dipole the integration over the interior of the jet does

not produce a 1/R correction, since there is no collinear enhancement for radiation emitted

by the incoming partons as the jet becomes narrow. We expect radiation from this dipole
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The dipole involving the two incoming partons, labelled as (12), is the simplest to compute,

since in this case κt,12 = kt. For this dipole the integration over the interior of the jet does

not produce a 1/R correction, since there is no collinear enhancement for radiation emitted

by the incoming partons as the jet becomes narrow. We expect radiation from this dipole

– 11 –

Dasgupta, Magnea & Salam, JHEP02(2008)055
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ULSEA jet energy correction
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Optimal Jet Cone Size
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“Tube”  Model for Jet Fragmentation
• Precursor of MC models
• Shows some features of ULSEA
Experimentally,                 two jets:
Flat rapidity plateau and limited
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Tube model gives simple estimates of hadronization
corrections to perturbative quantities.

E.g. Jet energy and momentum:

with                                     mean transverse momentum.
Estimate from Fermi motion

Jet acquires non-perturbative mass:
Large: ~ 10 GeV for 100 GeV jets.
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Independent Fragmentation Model 
(Field-Feynman)

MC implementation of tube model.

Longitudinal momentum distribution = arbitrary 
fragmentation function: parameterization of data.

Transverse momentum distribution = Gaussian.

Recursively apply 
Hook up remaining soft    and

Strongly frame dependent.
No obvious relation with perturbative emission.
Not infrared safe.
Not a model of confinement.
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2-d String Model of Mesons
Light quarks connected by string.
L=0 mesons only have ‘yo-yo’ modes:

Obeys area law:

x

t

21



Hadronization Models Bryan Webber

The Lund String Model
Start by ignoring gluon radiation:
       annihilation = pointlike source of       pairs
Intense chromomagnetic field within string       pairs created 

by tunnelling.  Analogy with QED:

Expanding string breaks into mesons long before yo-yo point.
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Lund Symmetric Fragmentation Function
String picture  constraints on fragmentation function:
• Lorentz invariance
• Acausality
• Left—right symmetry

     adjustable parameters for quarks     and

Fermi motion  Gaussian transverse momentum.
Tunnelling probability becomes

    and         = main tuneable parameters of model
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Baryon Production
Baryon pictured as three quarks attached to a common centre:

At large separation, can consider two quarks tightly bound: diquark

 diquark treated like antiquark.

Two quarks can tunnel nearby in phase space: baryon—antibaryon pair
Extra adjustable parameter for each diquark!

Alternative “popcorn” model: 
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Three-Jet Events
So far: string model = motivated, constrained independent 

fragmentation!
New feature: universal
Gluon = kink on string  the string effect

Infrared safe matching with parton shower: gluons with
           inverse string width irrelevant.
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String Model Summary
• String model strongly physically motivated.
• Very successful fit to data.
• Universal: fitted to          , little freedom elsewhere.

• How does motivation translate to prediction?
 ~ one free parameter per hadron/effect!

• Blankets too much perturbative information?

• Can we get by with a simpler model?
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Cluster Model: Preconfinement
Planar approximation: gluon = colour—anticolour pair.

Follow colour structure of parton shower: colour-singlet 
pairs end up close in phase space

Mass spectrum of colour-singlet pairs asymptotically 
independent of energy, production mechanism, …

Peaked at low mass
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Cluster mass distribution
• Independent of shower scale

– depends on      andQ0 Λ
Q
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The Naïve Cluster Model
Project colour singlets onto continuum of high-mass 

mesonic resonances (=clusters).  Decay to lighter well-
known resonances and stable hadrons.

Assume spin information washed out:
 decay = pure phase space.

 heavier hadrons suppressed
baryon & strangeness suppression ‘for free’ (i.e. 

untuneable).
Hadron-level properties fully determined by cluster mass 

spectrum, i.e. by perturbative parameters.
Shower cutoff         becomes parameter of model.

29



Hadronization Models Bryan Webber

The Cluster Model

Although cluster mass spectrum peaked at small m, broad tail at 
high m.

“Small fraction of clusters too heavy for isotropic two-body decay 
to be a good approximation”   Longitudinal cluster fission:

Rather string-like.
Fission threshold becomes crucial parameter.
~15% of primary clusters get split but ~50% of hadrons come from them.
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The Cluster Model
“Leading hadrons are too soft”

 ‘perturbative’ quarks remember their direction somewhat

Rather string-like.

Extra adjustable parameter.
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Strings
“Hadrons are produced by 

hadronization: you must 
get the non-perturbative 
dynamics right”

Improving data has meant 
successively refining 
perturbative phase of 
evolution…

Clusters
“Get the perturbative phase 

right and any old 
hadronization model will 
be good enough”

Improving data has meant 
successively making non-
perturbative phase more 
string-like…

???
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Comparisons with LEP1/SLC: Spectra
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Comparisons with LEP1/SLC: Shapes
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Thermal Model
• Assume                    jets in thermal equilibrium

– 3 parameters T, V,  
e+e− → 2

γs
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Figure 1. Comparison between thermal model predictions and experimental particle multiplici-
ties for e+e− collisions at

√
s=91 GeV.

Table 2
Values of fit parameters in e+e− collisions at different energies.
√

s[GeV] T[MeV] V[fm3] γs χ2/dof

10 152±1.7 20±1.5 0.82±0.02 333/21

29-35 156±1.7 24±1.4 0.92±0.03 95/18

91 154±0.50 40±1.0 0.76±0.007 631/30

130-200 154±2.8 46±4.3 0.72±0.03 12/2

However, excluding those particles from the fit does not result in a significant improvement
of the χ2 values, as is discussed below.

A further difficulty is visible if one inspects χ2 contour lines as shown in Fig. 3. One notices
in this figure an anticorrelation between the three fit parameters which is particularly
strong in (T,V) space. Closer inspection reveals, in addition, a series of local minima which
indicates the difficulty in the determination of the fit parameters. Such local minima are
typical for poor fits and imply that the true uncertainties in the fit parameters are likely
much larger than the values obtained from the standard fit procedure employed here.

Despite these caveats about fit quality and uncertainties it is noteworthy that the temper-
ature parameters obtained from the data are close to 155 MeV and nearly independent of
energy, similar to results of previous investigations. In contrast, the volume increases with

A Andronic et al., arXiv:0804.4132
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Thermal model results
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Figure 1. Comparison between thermal model predictions and experimental particle multiplici-
ties for e+e− collisions at

√
s=91 GeV.

Table 2
Values of fit parameters in e+e− collisions at different energies.
√

s[GeV] T[MeV] V[fm3] γs χ2/dof

10 152±1.7 20±1.5 0.82±0.02 333/21

29-35 156±1.7 24±1.4 0.92±0.03 95/18

91 154±0.50 40±1.0 0.76±0.007 631/30

130-200 154±2.8 46±4.3 0.72±0.03 12/2

However, excluding those particles from the fit does not result in a significant improvement
of the χ2 values, as is discussed below.

A further difficulty is visible if one inspects χ2 contour lines as shown in Fig. 3. One notices
in this figure an anticorrelation between the three fit parameters which is particularly
strong in (T,V) space. Closer inspection reveals, in addition, a series of local minima which
indicates the difficulty in the determination of the fit parameters. Such local minima are
typical for poor fits and imply that the true uncertainties in the fit parameters are likely
much larger than the values obtained from the standard fit procedure employed here.

Despite these caveats about fit quality and uncertainties it is noteworthy that the temper-
ature parameters obtained from the data are close to 155 MeV and nearly independent of
energy, similar to results of previous investigations. In contrast, the volume increases with
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Holographic Model
• Strongly-coupled gauge theory dual to 

weakly-coupled 5D gravity
– Promising approach to IR behaviour of QCD
– Relative hadron multiplicities given by 5D radial 

wave function overlap with common Gaussian
– 4 parameters (1 energy dependent)
– Nick Evans will explain more!
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Hadron Yields at LEP1
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Conclusions?
• General ideas (LPHD, ULSEA) successful 

at 20% level, but
– No systematic scheme for improvement
– Don’t say anything about hadrons

• Monte Carlo models more successful
– Complete final states
– Matched to perturbation theory
– But ad hoc parameters

• Other models (thermal, holographic)
– Fewer parameters but limited predictions
– How to match to perturbation theory?
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The Underlying Event
• Protons are extended objects
• After a parton has been scattered out of each, what 

happens to the remnants?

• Only viable current model: multiple parton interactions
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Multiple Parton Interaction Model (PYTHIA/JIMMY)
For small pt min and high energy inclusive parton—parton 

cross section is larger than total proton—proton cross 
section.

More than one parton—parton scatter per proton—
proton

Need a model of spatial distribution within proton
 Perturbation theory gives n-scatter distributions
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Double Parton Scattering

• CDF Collaboration, 
PR D56 (1997) 3811

σDPS =
σγjσjj

σeff

σeff = 14± 1.7+1.7
−2.3 mb

42



Hadronization Models Bryan Webber

Tuning PYTHIA to the Underlying Event
• Rick Field (CDF): keep all parameters that can be fixed 

by LEP or HERA at their default values.  What’s left?
• Underlying event.  Big uncertainties at LHC...
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