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limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

QCD → Abelian Gauge Theory

limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Procedures for QCD 
should be valid for QED
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General remarks about orbital angular mo-
mentum
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Invariant under boosts!  Independent of P
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
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P+
=

k0 + k3

P 0 + P 3
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum
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General remarks about orbital angular mo-
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Light-Front Wavefunctions
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Hadronization at the Amplitude Level
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Hadronization at the Amplitude Level
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Hadronization at the Amplitude Level
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator

Large Threshold 
Corrections

Sommerfeld-
Schwinger 

Factor

παs

β

Q

Q̄

10



 

Heisenberg Matrix 
FormulationLight-Front QCD

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

HQCD
LF |Ψh >= M2

h|Ψh >

HQCD
LF =

∑

i

[
m2 + k2

⊥
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

LQCD → HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

DLCQ: Periodic BC in x−. Discrete k+; frame-independent truncation
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     QCD
 
        Only quarks and gluons involve basic vertices: Quark-gluon vertex

More exactly

Gluon vertices

Fundamental Couplings 

colored particles couple to gluons

Similar to QED
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 

I- . 
1 II 

0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 

16 
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16 

LIGHT-FRONT SCHRODINGER EQUATION

G.P. Lepage, sjbA+ = 0

Υ→ ggg → d̄X

Υ→ ggg → p̄n̄X

R = Γ(Υ→d̄X)
Γ(Υ→p̄n̄X)

R = C

ū(x) "= d̄(x)

s̄(x) "= s(x)

13
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

14

Intrinsic heavy quarks    
s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p " 30%

Violation of Gottfried sum rule

ū(x) #= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

Mueller: BFKL DYNAMICS    

14



 

HQCD
LF |Ψh >= M2

h|Ψh >

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Light-Front QCD
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Discretized Light-Cone 

Quantization

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

DLCQ:  Frame-independent, No fermion doubling; Minkowski Space

HQCD
LF |Ψh >= M2

h|Ψh >
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General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

LFWFs

B-Decays

GPDs

Distribution 
Amplitudes

Hadronization 
at the amplitude level
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

19

Holography: Unique mapping derived from equality of LF and 
AdS  formula for current matrix elements: em and gravitational!

ψ(x, ζ) =
√

x(1− x)ζ−1/2φ(ζ)

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ

[
− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −
1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)
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1
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3
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3
4

5

1

2

0

FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent
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+κ4ζ2 confining potential:
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Prediction from AdS/CFT: Meson LFWF
ψ(x, k⊥)

ψ(x, k⊥)
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1.3
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1.5

0
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0.1
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0
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       “Soft Wall” 
model

(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

21
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
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0
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0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

κ = 0.375 GeV

massless quarks

ψM (x, k⊥) =
4π

κ
√

x(1− x)
e
− k2

⊥
2κ2x(1−x)

22
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x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
p4
T

− d
dζ2 ≡

k2
⊥

x(1−x)

Conjecture for massive quarks

− d
dζ2 → − d

dζ2 + m2
a

x +
m2

b
1−x ≡

k2
⊥+m2

a
x +

k2
⊥+m2

b
1−x

LF Kinetic Energy in 
momentum space 

Holographic Variable

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

Assume LFWF is a dynamical function of the  
quark-antiquark invariant mass squared

− d

dζ2
→ − d

dζ2
+

m2
1

x
+

m2
2

1− x
≡ k2

⊥ + m2
1

x
+

k2
⊥ + m2

2

1− x

de Teramond, sjbm1

m2
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ψ(x,b⊥) =
cκ√

π

√
x(1− x) e

− 1
2κ2x(1−x)b2

⊥−
1

2κ2

»
m2

1
x −

m2
2

1−x

–

ψ(x,k⊥) =
4πc

κ
√

x(1− x)
e
− 1

2κ2

„
k2
⊥

x(1−x)+
m2

1
x +

m2
2

1−x

«

z → ζ → χ

χ2 = b2x(1− x) +
1
κ4

[
m2

1

x
+

m2
2

1− x
]

Result:  Soft-Wall LFWF  for massive constituents  

LF WF  in  impact space: soft-wall model 
with massive quarks 

+

24



 

2

where c is the dimensionless normalization factor

c−2 =
∫ 1

0
dx e

− 1
κ2

„
m2

1
x +

m2
2

1−x

«

. (5)

The Fourier transform of (4) is the impact space LFWF

ψ̃(x,b⊥) =
c κ√

π

√
x(1− x) e−

1
2 κ2χ2

, (6)

where the invariant quantity χ is

χ2 = x(1− x)b2
⊥ +

1
κ4

[
m2

1

x
+

m2
2

1− x

]
. (7)

Impact space holographic LFWFs for the π, K, D, ηc, B
and ηb mesons are depicted in Fig. 1.

The non-perturbative input to hard exclusive processes
and heavy hadron decays can be computed in terms of
gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of
partons at zero transverse impact distance in a Fock
state with a fixed number of constituents. The me-
son DA is computed from the transverse integral of the
valence quark light-front wavefunction in the light-cone
gauge [17]

φM (x,Q) =
∫ k2

⊥<Q2
d2k⊥
16π3

ψM (x,k⊥), (8)

and thus φ(x) ≡ φ(x,Q → ∞) → ψ̃(x,b⊥ → 0)/
√

4π.
From (6) we obtain the holographic distribution ampli-
tude φ(x)

φM (x) =
c κ

2π

√
x(1− x) e

− 1
2κ2

»
m2

1
x +

m2
2

1−x

–

, (9)

in the soft wall model. The distribution amplitudes for
the π, K, D, ηc, mesons are shown in Fig. 2. Predictions
for the first and second moment of the meson distribution
amplitude

〈ξN 〉M =

∫ 1
−1 ξNφM (ξ)
∫ 1
−1 φM (ξ)

, (10)

and comparison with available lattice computations are
given on Table I . In the chiral limit, the AdS distribu-
tion amplitude φAdS(x) ∼

√
x(1− x) gives for the second

moment 〈ξ2〉AdS → 1/4, compared with the asymptotic
value 〈ξ2〉PQCD → 1/5 from the PQCD asymptotic DA
φPQCD(x) ∼ x(1− x) [17] .

...............

III. PARTONIC MASS SHIFT

We compute the partonic mass shift contribution to a
meson due to the constituents quark masses [21]

M2 =M2
massless +

〈
m2

1

x

〉
+

〈
m2

2

1− x

〉
, (11)

FIG. 1: Two-parton flavored meson holographic LFWF
ψ(x,b⊥): (a) |π+〉 = |ud〉, (b) |K+〉 = |us〉, (c) |D+〉 = |cd〉,
(d) |ηc〉 = |cc〉, (e) |B+〉 = |ub〉 and (f) |ηb〉 = |bb〉. Values
for the quark masses used are mu = 2 MeV, md = 5 MeV,
ms = 95 Mev, mc = 1.25 GeV and mb = 4.2 GeV. The value
of κ = 0.375 GeV is extracted from the pion form factor [16].

for the holographic LFWF (4). Results for the partonic
mass shift contribution ∆M =

(
M2 −M2

massless

)1/2 are
compared with hadronic masses on Table II.

.....

IV. CONCLUSIONS

..........

|π+ >= |ud̄ > |K+ >= |us̄ >

|D+ >= |cd̄ >

|ηb >= |bb̄ >

|ηc >= |cc̄ >

mu = 2 MeV
md = 5 MeV

ms = 95 MeV

mc = 1.25 GeV

mb = 4.2 GeV

κ = 375 MeV

b[GeV−1]

x

|B+ >= |ub̄ >

25
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator
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Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

IfM2
n ≤ Λ2

QCD coalesce to hadron

IfM2
n ≥ Λ2

QCD continue to evolve

For each color-singlet cluster

M2
n =

n∑

i=1

k2
⊥i

xi

avoids gluon avalanche in jet evolution, heavy hadron decays

27
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e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator

AdS/QCD 
Hard Wall 

Confinement:

Capture if ζ2 = x(1− x)b2
⊥ > 1

Λ2
QCD

i.e.,
M2 = k2

⊥
x(1−x) < Λ2

QCD
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• DGLAP and ERBL Evolution from gluon emission and 
exchange

• Factorization Scale for structure functions and 
fragmentation functions set: 

29

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

IfM2
n ≥ Λ2

QCD use PQCD hard gluon exchange

µfact = ΛQCD

29
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• Only positive + momenta; no backward time-ordered 
diagrams

• Frame-independent!  Independent of P+ and Pz

• LC gauge: No ghosts; physical helicity

•  Jz= Lz + Sz conservation at every vertex

• Sum all amplitudes with same initial-and final-state helicity, 
then square to get rate

• Renormalize each UV-divergent amplitude using 
“alternating denominator” method 

• Multiple renormalization scales (BLM)

30

Features of  LF T-Matrix Formalism

30
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• Same principle as antihydrogen production: off-shell coalescence

• coalescence to hadron favored at equal rapidity, small transverse 
momenta

• leading heavy hadron production:  D and B mesons produced at 
large z

• hadron helicity conservation if  hadron LFWF has Lz =0

• Baryon AdS/QCD LFWF has aligned and anti-aligned quark spin

31

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P
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• Coalesce color-singlet cluster to hadronic state if 

• The coalescence probability amplitude is the LF 
wavefunction

• No IR divergences: Maximal gluon and quark wavelength 
from confinement

32

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

M2
n =

n∑

i=1

k2
⊥i + m2

i

xi
< Λ2

QCD

Ψn(xi,!k⊥i, λi)

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P
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• Includes Effects of Initial and Final State Interactions 
from gluon exchange

• Sivers, Collins, Boer-Mulders Effects

• Diffractive Channels

• Heavy quark threshold corrections

• Intrinsic Heavy Quark Effects

•  s(x) versus anti-s(x) asymmetry

33

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”
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• Generates PQCD Hard Tail of LFWF at high x and high 
transverse momentum

• Dimensional Counting rules and Color Transparency for 
Hard Exclusive Channels

• Counting rules for structure functions and fragmentation 
functions at large x and z: 

34

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

IfM2
n ≥ Λ2

QCD use PQCD hard gluon exchange

(1− x)2nspect−1, (1− z)2nspect−1

34
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Deep Inelastic Electron-Proton Scattering

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p
d

g

γ*

g jetu
u

eʼ e

3-20
06

8735
A1

p

d
g

γ*

g

jet

u
u

eʼ

e

3-20068735A1

g

Gluonic 
Bremmstrahlung

DGLAP Evolution

Off-shell Effect: Breakdown of DGLAP at x ~1 !

k2 ∼ − k2
⊥

1−x → −∞ at x→ 1

x

Struck quark is virtual

Off-shell Effect: Breakdown of DGLAP at z ~1 !
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Higher Fock State Coalescence

Asymmetric Hadronization !

s

s̄

Λ

Ds→p "= D(s→ p̄)

|uudss̄ >

s

s̄

Λ

Ds→p "= D(s→ p̄)

|uudss̄ >

s

s̄

Λ

Ds→p "= D(s→ p̄)

|uudss̄ >

s

s̄

Λ

Ds→p(z) "= Ds→p̄(z)

|uudss̄ >

s

s̄

Λ

Ds→p(z) "= Ds→p̄(z)

|uudss̄ >

p

ψp
5(xi, k⊥i, λi)

s

s̄

Λ

Ds→p(z) "= Ds→p̄(z)

|uudss̄ >

p

ψp
5(xi, k⊥i, λi)

B-Q Ma, sjb
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0.0
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8229A01

A
 p s

p–
  
(z

)
s

s̄

Λ

App̄
s (z) =

Ds→p(z)−Ds→p̄(z)
Ds→p(z)+Ds→p̄(z)

Consequence of sp(x) #= s̄p(x)

|uudss̄ >$ |K+Λ >

Ds→p(z) #= Ds→p̄(z)

s

s̄

Λ

App̄
s (z) =

Ds→p(z)−Ds→p̄(z)
Ds→p(z)+Ds→p̄(z)

Consequence of sp(x) #= s̄p(x)

|uudss̄ >$ |K+Λ >

Ds→p(z) #= Ds→p̄(z)

s

s̄

Λ

App̄
s (z) =

Ds→p(z)−Ds→p̄(z)
Ds→p(z)+Ds→p̄(z)

Consequence of sp(x) #= s̄p(x)

|uudss̄ >$ |K+Λ >

Ds→p(z) #= Ds→p̄(z)

s

s̄

Λ

App̄
s (z) =

Ds→p(z)−Ds→p̄(z)
Ds→p(z)+Ds→p̄(z)

Consequence of sp(x) #= s̄p(x)

|uudss̄ >$ |K+Λ >

Ds→p(z) #= Ds→p̄(z)
B-Q Ma, sjb
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|uudcc̄> Fluctuation in Proton
QCD: Probability ∼Λ

2
QCD

M2
Q

|e+e−!+!− > Fluctuation in Positronium
QED: Probability ∼(meα)4

M4
!

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb

38

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2

⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

τ = t + z/c

< p|G
3
µν

m2
Q

|p > vs. < p|F
4
µν

m4
#

|p >

+κ4ζ2

dσ
dxF

(pp → HX)[fb]

fb

πq → γ∗q

38
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color - Octet + Color - Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
(Kopeliovich, Schmidt, Soffer, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin, Tung)

• Many empirical tests  

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

PQQ̄QQ̄ ∼ α2
sPQQ̄

Pcc̄/p # 1%

Q

Q̄

b⊥ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb
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c

Hoyer, Peterson, SJB

Measure c(x) in Deep Inelastic 
Lepton-Proton Scattering

40
40
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J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too sma#

41

factor of 30 !

41
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• EMC data: c(x, Q2) > 30×DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)

42
42
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pp → p + J/ψ + p

e+

e−

γ∗
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γ∗
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q̄

q

pp → p + J/ψ + p

H̄(p̄e+)

p̄

e+

e−

Z

u

d

1− x

s̄

d̄

Qpp̄ =
√

s

Qpp̄(GeV )

p

p̄

H̄(p̄e+)

p̄

e+

e−

Z

u

d

H̄(p̄e+)

p̄

e+

e−

Z

u

d

1− x

ū

c

c̄

s̄

d̄

Qpp̄ =
√

s

1− x

ū

c

c̄

s̄

d̄

Qpp̄ =
√

s

1− x

ū

c

c̄

s̄

d̄

Qpp̄ =
√

s

Qpp̄(GeV )

p

p̄

γ(k) γ∗(q)

x

e

e′

1− x

ψp
uudc̄c(xi,"k⊥i, λi)

ū

c

c̄

s̄

d̄

Intrinsic charm model:  
predict proton at same rapidity as charm quark: high z

Timelike Test of Charm Distribution in Proton

1− x

ū

c

c̄

s̄

d̄

Qpp̄ =
√

s

zD(z) = ±F (x = 1/z)

D(z)c→pX

X = cūd̄ū

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

zD(z) = ±F (x = 1/z)

D(z)c→pX

X = cūd̄ū

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

1− x

ū

c

c̄

s̄

d̄

Qpp̄ =
√

s

1− x

ū

c

c̄

s̄

d̄

Qpp̄ =
√

s

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

X = cūd̄ū

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)

Gribov-Lipatov crossing at large z

1− x

ū

c

c̄

s̄

d̄

Qpp̄ =
√

s

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2

⊥

X = cūd̄ū

F (Q2)I→F =
∫

dzΦF (z)J(Q, z)ΦI(z)
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u
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– 
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u
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– 

u

d

d
– 

11-2003 
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e
+

e
– 

!*

u

K
– 0

s

d
– 

d
– 

"!

u
d

s
– 

de
+

e
– 

!*

What if we ask for a specific final state?

Exclusive Processes

e+e− → pp̄

αs(Q) ∝ 1
lnQ

σ(e+e−→three jets)
σ(e+e−→two jets)

proportional to αs(s)

proportional to αs(Q)

Ratio of rate for e+e− → qq̄g to e+e− → qq̄

at Q = ECM = Ee− + Ee+

Probability decreases with number of constituents!

R(e+e− → HH̄) ∝ |F (s)|2

s = (Ee+ + Ee−)
2

R(e+e− → HH̄) ∝ [ 1
s2

]nq−1

e−

∆x×∆p > h
2π

α

1fm = 10−15m = 10−13cm

R(e+e− → HH̄) ∝ |F (s)|2

s = (Ee+ + Ee−)
2

R(e+e− → HH̄) ∝ [ 1
s2

]nq−1

e−

∆x×∆p > h
2π

α

1fm = 10−15m = 10−13cm

R(e+e− → HH̄) ∝ |F (s)|2

s = (Ee+ + Ee−)
2

|F (s)| ∝ [1s ]
nq−1

R(e+e− → HH̄) ∝ [ 1
s2

]nq−1

e−

∆x×∆p > h
2π

α
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P+

!"⊥

−!"⊥

P+

Interaction of a and b when !r⊥a ! !r⊥b and σa ! σb

!r⊥a =conj [xa
!"⊥ + !k⊥a]

σa =conj [xa]

Universal Light Front 
Wavefunctions 
independent of 

xa
!"⊥ + !k⊥a

ΨB(xb,!k⊥b)

ΨA(xa,!k⊥a)

P+, !⊥
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• Hidden Color:  Six-quark color-singlet Fock states of 
deuteron from hard gluon exchange:

• Deuteron LFWF not always product of nucleon clusters

46

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

d

46
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

47

deuteron

5 X 5  Matrix Evolution Equation  for deuteron 
distribution amplitude

d
Evolution of 5 color-singlet Fock states 

Φn(xi, Q) =
∫ k2

⊥i<Q2
Π′d2k⊥jψn(xi,"k⊥j)

n = 1 · · ·5

y =
∑3

i=1 xi

"#⊥ =
∑3

i=1
"k⊥i

1
9 np, 4

45 ∆∆, 4
5 hiddencolor

θcm = 90o

ψd(xi,"k⊥i) = ψbody
d × ψn × ψp

Hidden Color of Deuteron

Ji, Lepage, sjb
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dσ
dt (γd→ Δ++Δ−)# dσ

dt (γd→ pn) at high Q2

dσ
dt (γd→ Δ++Δ−)# dσ

dt (γd→ pn) at high Q2

Lepage, Ji, sjb

• Deuteron six quark wavefunction:

•  5 color-singlet combinations of 6 color-triplets -- 
one state  is |n  p>

• Components evolve towards equality at short 
distances

• Hidden color states dominate deuteron form 
factor and photodisintegration at high 
momentum transfer

• Predict 

Hidden Color in QCD

48
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eʼ
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g
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u

u

eʼ
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Deep Inelastic Electron-Deuteron Scattering

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

p d g

γ*

g

jet

u

u

eʼ
e

3-2006
8735A1

x

d

Hidden color:  excited target spectator system  
No nucleon spectator
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color-Octet Color-Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
(Kopeliovich, Schmidt, Soffer, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin, Tung)

• Many empirical tests  

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

PQQ̄QQ̄ ∼ α2
sPQQ̄

Pcc̄/p # 1%

Q

Q̄

b⊥ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb
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|uudcc̄> Fluctuation in Proton
QCD: Probability ∼Λ

2
QCD

M2
Q

|e+e−!+!− > Fluctuation in Positronium
QED: Probability ∼(meα)4

M4
!

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb

51

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2

⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

τ = t + z/c

< p|G
3
µν

m2
Q

|p > vs. < p|F
4
µν

m4
#

|p >

+κ4ζ2

dσ
dxF

(pp → HX)[fb]

fb

πq → γ∗q

Charm at Threshold

51



Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Gell Mann-Low Effective Charge

52
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• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.

• If one chooses a different scale, one can sum an infinite number of graphs 
-- but always recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

• No renormalization scale ambiguity!   

53

Electron-Electron Scattering in QED

t u

53
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Another Example in QED: Muonic Atoms

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

ψH(x,"k⊥, λi)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

e+e−

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

Z

e+e−

V (q2) = −ZαQED(q2)
q2

αQED = 1
1−Π(Q2)

ψH(x,#k⊥, λi)

pH

x,#k⊥

1− x,−#k⊥

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

ψH(x,#k⊥, λi)

pH

x,#k⊥

1− x,−#k⊥

Scale is unique:  Tested to ppm

e+e−

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

µ2
R ≡ q2

ψH(x,#k⊥, λi)

pH

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

Z
This is very important!

This is very important!

This is very important!

This is very important!

Gyulassy: Higher Order VP verified to

0.1% precision in µ Pb

+
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QED Renormalization
Scale Setting in LFPth 

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

µ+

µ−

!+

!−

α(µ2 = xgD4) D4 = s−
4∑

i=1

k2
⊥i + m2

i

xi

xg

Scale sets effective # leptons
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Alternate Denominator:  UV Subtraction Method 

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

µ+

µ−

!+

!−

D4D3s

D4 = s−
4∑

i=1

k2
⊥i + m2

i

xi
Tren :

1
s−D4

→ 1
s−D4

− 1
D3 −D4

Roskies
Suaya

sjb
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limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

QCD → Abelian Gauge Theory

limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD 
must be applicable to QED
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µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q

Q̄

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q

Q̄

Example of Multiple BLM Scales
 Angular distributions of massive quarks and leptons close to threshold.

Hoang, Kuhn, Teubner, sjb
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General Structure of the 

Three-Gluon Vertex

3 index tensor            built out of          and          

with 
321

ˆ
!!!" !#g 321

,, ppp

0
321
$%% ppp

“THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX”

M.B. and Stanley J. Brodsky.  hep-ph/0602199. Submitted to PRD

1
p

3
p2

p
3

!
2

!

1
!

$"
321

ˆ
!!!

14 basis tensors and form factors
22

59

Analytic calculation:
general masses, spin

M. Binger, sjb
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General Structure of the 

Three-Gluon Vertex

3 index tensor            built out of          and          

with 
321

ˆ
!!!" !#g 321

,, ppp

0
321
$%% ppp

“THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX”

M.B. and Stanley J. Brodsky.  hep-ph/0602199. Submitted to PRD

1
p

3
p2

p
3

!
2

!

1
!

$"
321

ˆ
!!!

14 basis tensors and form factors
22

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

!+

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

H. J. Lu
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Properties of the Effective Scale

),,(),,( 22 cbaQcbaQ effeff !!!"

),,(||),,( 22 cbaQcbaQ effeff #### "

||),,(2 aaaaQeff "

||54.5),,(2 aaaaQeff $!!

||||for         ||08.3),,(2 caccaaQeff %%$

||||for         ||8.22),,(2 caccaaQeff %%$!

|||,|||for         
||

||
8.22),,(2 cba
a

bc
cbaQeff %%$

41

Surprising dependence on Invariants

Binger, sjb
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BLM Method

• Satisfies Transitivity,  all aspects of Renormalization Group; scheme 
independent

• Analytic at Flavor Thresholds

• Preserves Underlying Conformal Template

• Physical Interpretation of Scales; Multiple Scales

• Correct Abelian Limit (NC =0) 

• Eliminates unnecessary source of imprecision of PQCD predictions

• Commensurate Scale Relations:  Fundamental Tests of QCD free of 
renormalization scale and scheme ambiguities

• BLM used in many applications, QED, LGTH, BFKL, ...

62
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Kramer & Lampe
Three-Jet Rate

Other Jet Observables:  Rathsman

63
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Transitivity Property of Renormalization Group

A B

C

A      C C      B A       B identical to 

Relation of observables independent of intermediate scheme C

64
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Paul Hoyer Jyväskylä 27.3 2007

25

! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1
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25

! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1

“Direct” Subprocess
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Chicago-Princeton
Collaboration

xπ = xq̄

The p/π+ and p̄/π− ratios as a function of
pT increase dramatically to values ∼ 1 as a
function of centrality in Au + Au collisions
at RHIC which was totally unexpected and
is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT

Dramatic change in 
angular distribution at 

large xF

Direct Subprocess Prediction

 Phys.Rev.Lett.55:2649,1985

Example of a higher-twist 
direct subprocess
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Review of hard scattering and jet analysis Michael J. Tannenbaum
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11

Particle ratio changes with centrality! 

Review of hard scattering and jet analysis Michael J. Tannenbaum
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there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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Crucial Test of Leading -Twist QCD:
Scaling at fixed xT
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As fundamental as Bjorken scaling  in DIS
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xT =
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(
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s)n×Ed3!/dp3(xT ) with n = 5.0. (right) xT scaling of jet cross sections measured in p-p̄ collisions by
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xT for
√
s= 630 and 1800 GeV. Note that the theory curves are plotted in the same way in order to avoid as

much as possible uncertainties from the various parton distribution functions used.

of approximately 15 GeV/fm3. The theory curve appears to show a reduction in suppression with

increasing pT , while, as noted above, the data appear to be flat to within the errors, which clearly

could still be improved.

It is unreasonable to believe that the properties of the medium have been determined by a

theorist’s line through the data which constrains a few parameters of a model. The model and

the properties of the medium must be able to be verified by more detailed and differential mea-

surements. All models of medium induced energy loss [60] predict a characteristic dependence of

the average energy loss on the length of the medium traversed. This is folded into the theoretical

calculations with added complications that the medium expands during the time of the collision,

etc [61]. In an attempt to separate the effects of the density of the medium and the path length

traversed, PHENIX [33, 62] has studied the dependence of the #0 yield as a function of the an-

gle ($% ) to the reaction plane in Au+Au collisions (see Fig. 12). For a given centrality, variation

of $% gives a variation of the path-length traversed for fixed initial conditions, while varying the

centrality allows the initial conditions to vary. Clearly these data reveal much more activity than

the reaction-plane-integrated RAA (Fig. 11) and merit further study by both experimentalists and

theorists.

The point-like scaling of direct photon production in Au+Au collisions indicated by the ab-

13
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dσ
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a given
√
s fall below the asymptote at successively lower values of xT with increasing

√
s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.

Although xT -scaling provides a rather general test of the validity QCD without reference to details,

the agreement of the PHENIX measurement of the invariant cross section for !0 production in p-p

collisions at
√
s= 200 GeV [30] with NLO pQCD predictions over the range 2.0≤ pT ≤ 15 GeV/c

(Fig. 4) is, nevertheless, impressive.
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Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization

and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0

production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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particle production:

E
d3!

d3p
=

1

p
n(xT ,

√
s)

T

F(xT ) =
1

√
s
n(xT ,

√
s)
G(xT ) , (3.1)

where xT = 2pT/
√
s. The cross section has two factors, a function F(xT ) (G(xT )) which ‘scales’,

i.e. depends only on the ratio of momenta, and a dimensioned factor, 1/pn(xT ,
√
s)

T (1/
√
s
n(xT ,

√
s)
),

where n(xT ,
√
s) equals 4 in lowest-order (LO) calculations, analogous to the 1/q4 form of Ruther-

ford Scattering in QED. The structure and fragmentation functions are all in the F(xT ) (G(xT ))

term. Due to higher-order effects such as the running of the coupling constant, "s(Q2), the evo-

lution of the structure and fragmentation functions, and the initial-state transverse momentum kT ,

n(xT ,
√
s) is not a constant but is a function of xT ,

√
s. Measured values of n(xT ,

√
s) for #0 in p-p

collisions are between 5 and 8 [5].

The scaling and power-law behavior of hard scattering are evident from the
√
s dependence

of the pT dependence of the p-p invariant cross sections. This is shown for nonidentified charged

hadrons, (h+ + h−)/2, in Fig. 3a. At low pT ≤ 1 GeV/c the cross sections exhibit a “thermal”
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√
s [30].

exp(−6pT ) dependence, which is largely independent of
√
s, while at high pT there is a power-law

tail, due to hard scattering, which depends strongly on
√
s. The characteristic variation with

√
s at

high pT is produced by the fundamental power-law and scaling dependence of Eqs. 2.1, 3.1. This

is best illustrated by a plot of

√
s
n(xT ,

√
s) ×E

d3!

d3p
= G(xT ) , (3.2)

as a function of xT , with n(xT ,
√
s) = 6.3, which is valid for the xT range of the present RHIC

measurements (Fig. 3b). The data show an asymptotic power law with increasing xT . Data at

6
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a given
√
s fall below the asymptote at successively lower values of xT with increasing

√
s, cor-

responding to the transition region from hard to soft physics in the pT region of about 2 GeV/c.

Although xT -scaling provides a rather general test of the validity QCD without reference to details,

the agreement of the PHENIX measurement of the invariant cross section for !0 production in p-p

collisions at
√
s= 200 GeV [30] with NLO pQCD predictions over the range 2.0≤ pT ≤ 15 GeV/c

(Fig. 4) is, nevertheless, impressive.
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Figure 4: (left) PHENIX [30] !0 invariant cross section at mid-rapidity from p-p collisions at
√
s= 200GeV,

together with NLO pQCD predictions fromVogelsang [31, 32]. a) The invariant differential cross section for

inclusive !◦ production (points) and the results from NLO pQCD calculations with equal renormalization

and factorization scales of pT using the “Kniehl-Kramer-Pötter” (solid line) and “Kretzer” (dashed line) sets

of fragmentation functions. b) The relative statistical (points) and point-to-point systematic (band) errors.

c,d) The relative difference between the data and the theory using KKP (c) and Kretzer (d) fragmentation

functions with scales of pT /2 (lower curve), pT , and 2pT (upper curve). In all figures, the normalization

error of 9.6% is not shown. (right) e) p-p data from a) multiplied by the nuclear thickness function, TAA,

for Au+Au central (0-10%) collisions plotted on a log-log scale (open circles) together with the measured

semi-inclusive !0 invariant yield in Au+Au central collisions at
√
sNN = 200 GeV [33]

3.1 The importance of the power law

A log-log plot of the !0 spectrum from Fig. 4a in p-p collisions, shown in Fig. 4e along with

corresponding data from Au+Au collisions [33], illustrates that the inclusive single particle hard-

scattering cross section is a pure power law for pT ≥ 3 GeV/c. The invariant cross section for !0

production can be fit to the form

Ed3#/dp3 & p−nT (3.3)
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FIG. 3: Protons produced in AuAu collisions at RHIC do not exhibit clear scaling properties in the

available pT range. Shown are data for central (0 − 5%) and for peripheral (60 − 90%) collisions.

law Ed3σ/d3p(pp → π+X) ∝ p−8.2
T giving nactive = 6 may indicate a quark-quark scattering

process which produces in addition to the incoming quarks a qq̄ pair, which becomes the

observed pion with high transverse momentum. This process has been analyzed within the

Constituent Interchange Model (CIM) [1], where an incoming qq̄ pair collides with a quark

by interchanging a quark and antiquark. The CIM is motivated by the inclusive to exclusive

transition mentioned above and is in good agreement with the Chicago-Princeton (CP) data

[15]. The model even can reproduce the absolute normalization of the inclusive cross section.

Obviously, the production mechanism for high pT hadrons changes from
√

s = 20 GeV to
√

s = 200 GeV. For constituent interchange longitudinal momenta of O(1 GeV) can still be

accommodated in the wave function of the proton. When the relevant longitudinal momenta

are about O(10 GeV) at higher energies, interchange is no longer possible which the different

reaction mechanisms with increasing energy.

Moreover, for proton production the pT dependence at Chicago-Princeton energies is

also explained by CIM. A value of n = 12 is a strong indication that higher twists from

wave function effects dominate high pT hadron production around
√

s = 20 GeV. Here the

produced proton is the result of proton scattering on a quark. If protons and pions were

both produced by fragmentation as in the Feynman-Field-Fox parton model, it is hard to

understand how a dimensionless fragmentation function could change n from 8 for pions to

12 for protons.

E dσ
d3p

(pp→ πX) = F (xT ,θCM)

p
neff
T

E dσ
d3p

(pp→ π0X) = F (xT ,θCM)

p
2Neff
T

E dσ
d3p

(pp→ HX) = F (xT ,θCM)

p
neff
T

Continuous rise of neff with xT .

Transition to higher twist reactions where
hadron is made in subprocess
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Figure 6: Power-law exponent n(xT ) for "0 and h spectra in central and peripheral Au+Au collisions at
√
sNN = 130 and 200 GeV [44].

value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since
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due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie
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value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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for meson-meson and baryon-meson conditional yields
and nearly the same magnitude for baryon-meson and
baryon-baryon near side conditional yields. In contrast,
the data show the conditional yield of associated mesons
with baryon triggers to be a factor of two to five times
larger than the conditional yield of baryons associated
with baryon triggers, depending on centrality. The re-
sults presented here also appear to exclude baryon pro-
duction via higher twist mechanisms [32] which would
produce isolated p and p̄. No correlation calculations are
available from the gluon junction model [15], so a com-
parison beyond the successfully described single particle
data could not be done at this point.

We have systematically explored the particle type de-
pendence of jet fragmentation at intermediate pT in
Au+Au collisions at

√
sNN = 200 GeV. The new data

disagree with calculations from the recombination model
presented in [19, 31]. Given the success of recombination
models in reproducing elliptic flow and hadron spectra
data it would be interesting to see if other recombination
calculations are able to describe the data presented here.
We find that near side correlations between meson trig-
gers and associated mesons increase with centrality. Near
side correlations between baryon triggers and associated
mesons show the same centrality dependence except for
the most central collisions where there is a significant
decrease. The first measurements of baryon pairs on the

near side are found to be largely due to opposite charge p-
p̄ pairs. Under the assumption that the above centrality
dependencies of particle pairs and single particles are not
coincidental, one can explain the observed baryon excess
at intermediate pT in Au+Au collisions via jet induced
production of baryon-antibaryon pairs.
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Evidence for  Direct, Higher-Twist 
Subprocesses

• Anomalous power behavior at fixed xT

• Protons more likely to come from direct 
subprocess than pions

• Protons less absorbed than pions in central 
nuclear collisions because of color transparency

• Predicts increasing proton to pion ratio in central 
collisions

• Exclusive-inclusive connection at xT = 1
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• Renormalization scale is not arbitrary;  multiple scales, 
unambiguous at given order

• Heavy quark distributions do not derive exclusively from 
DGLAP or gluon splitting -- component intrinsic to hadron 
wavefunction

• Initial and final-state interactions are not always power 
suppressed in a hard QCD reaction

• LFWFS are universal, but measured nuclear parton 
distributions are not universal -- antishadowing  is flavor 
dependent

• Hadroproduction at large transverse momentum does not 
derive exclusively from 2 to 2 scattering subprocesses 

• Hadronization at the Amplitude Level
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