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• Use AdS/CFT to provide an approximate, covariant, 
and analytic model of hadron structure with 
confinement at large distances, conformal behavior at 
short distances

• Analogous to the Schrodinger Theory for Atomic 
Physics

• AdS/QCD Light-Front Holography

• Hadronic Spectra and Light-Front 
Wavefunctions

• Hadronization at the Amplitude Level

Goal:

2
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Hadronization at the Amplitude Level
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Prediction from AdS/CFT: Meson LFWF
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       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)
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Applications of AdS/CFT  to QCD 

in collaboration with Guy de Teramond

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 

5
5



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008 6Exploring QCD, Cambridge, August 20-24, 2007 Page 7

6



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008 7Exploring QCD, Cambridge, August 20-24, 2007 Page 8

7



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008 8Exploring QCD, Cambridge, August 20-24, 2007 Page 9

8



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008 9Exploring QCD, Cambridge, August 20-24, 2007 Page 10

9



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008 10

We will consider both holographic models 

1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the β

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(ηµνdxµdxν − dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z → 0 corresponds to the Q→∞, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/ΛQCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ϕ(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).
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Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

1
s−M2+iMΓ

q2 → q2 + iε→ q2 + iMΓ

Fix Γ from height

Γρ = 111 MeV

Conformal Theories are invariant under the 
Poincare and conformal transformations with  

the generators of SO(4,2)

SO(4,2)  has a mathematical representation on AdS5

11
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AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(ηµνdxµdxν − dz2),

xµ → λxµ, z → λz, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 → λ2x2, z → λz.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z → 0 correspond to theQ→∞, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 1112

invariant measure

12



AdS/QCD  Stan Brodsky 
 SLAC & IPPP

Rutherford
May 30, 2008

• QCD is not conformal;  however, it has 
manifestations of a scale-invariant theory: 
Bjorken scaling, dimensional counting for hard 
exclusive processes

• Conformal window:

• Use mathematical mapping of the conformal 
group  SO(4,2) to AdS5 space

Map AdS5 X S5 to conformal N=4 SUSY

13

αs(Q2) ! const at small Q2.

High Q2 from short distances

Fπ(Q2)

z2 = ζ2 = b2⊥x(1− x) = O( 1
Q2)

L

κ = 2ΛQCD

V = −βκ2ζ

Maldacena:

AdS/CFT: Anti-de Sitter Space / Conformal Field Theory

13
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Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Deur, Korsch, et al:  Effective Charge from Bjorken Sum Rule
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Deur, Korsch, et al.
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Fig: Infrared conformal window ( from Deur et al., arXiv:0803.4119 )

From String to Things, INT, Seattle, April 10, 2008 Page 8
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• Dyson-Schwinger Analysis:    QCD Coupling has IR 
Fixed Point                                      

• Evidence from Lattice Gauge Theory 

• Define coupling from observable: indications of IR 
fixed point for QCD effective charges

• Confined gluons and quarks have maximum wavelength 

• Decoupling of QCD vacuum polarization at small Q2  

• Justifies application of AdS/CFT in strong-coupling 
conformal window

IR Conformal Window for QCD?

16

Shrock, 
de Teramond, 

sjb

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

x1

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Serber-
Uehling
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FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[2ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

A

B

C

D

Constituent Counting Rules

FH(t) ∝ 1
tnH−1

MAB→CD(s, t) = F (θcm)
sntot−4

dσ
dt (s, t) = F (θcm)

s[ntot−2]

s = E2
cm

−t = Q2

φH(xi, Q)

ψ(x, k⊥)

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)

17

Conformal symmetry and PQCD predict  leading-twist 
scaling behavior of  fixed-CM angle exclusive amplitudes

Characteristic scale of QCD: 300 MeV

Many new  J-PARC, GSI, J-Lab, Belle, Babar tests

Farrar & sjb; Matveev, Muradyan, 
Tavkhelidze

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

17
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Conformal QCD Window in Exclusive Processes

• Does αs develop an IR fixed point? Dyson–Schwinger Equation Alkofer, Fischer, LLanes-Estrada,

Deur . . .

• Recent lattice simulations: evidence that αs becomes constant and is not small in the infrared

Furui and Nakajima, hep-lat/0612009 (Green dashed curve: DSE).

• Phenomenological success of dimensional scaling laws for exclusive processes

dσ/dt ∼ 1/sn−2, n = nA + nB + nC + nD,

implies QCD is a strongly coupled conformal theory at moderate but not asymptotic energies

Farrar and sjb (1973); Matveev et al. (1973).

• Derivation of counting rules for gauge theories with mass gap dual to string theories in warped space

(hard behavior instead of soft behavior characteristic of strings) Polchinski and Strassler (2001).

• Example: Dirac proton form factor: F1(Q2) ∼
[
1/Q2

]n−1
, n = 3

Q4F p
1 (Q2) [GeV4]
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From: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Exploring QCD, Cambridge, August 20-24, 2007 Page 12
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• Example: Dirac proton form factor: F1(Q2) ∼
[
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Quark-Counting : dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

powern = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)
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Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

dσ
dt (pp→ pp) = F (θCM)

s10

Data: n = 9.7± 0.5

n = 4× 3− 2 = 10

√
s =

e+

q

q̄

Best Fit  

cm2

GeV2

Reflects
underlying 
conformal 
scale-free 

interactions

19

Angular distribution  -- quark interchange

19
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dσ
dt (γp→ π+n)

20
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 3

+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal  Invariance + 

Confinement at large 
distances

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Light Front Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

21
21
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Dirac’s Amazing  Idea: 
The Front Form

Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has

S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486 315

Instant Form Front Form 

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

z0 = 1
ΛQCD

z∆

∆ = 3 + L: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

σ = ct− z

Evolve in 
light-front time!

22

Evolve in 
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949)

22



 

Each element of 
flash photograph  

illuminated  
at same LF time

τ = t + z/c

23
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‘Tis a mistake / Time flies not
It only hovers on the wing

Once born the moment dies not
‘tis an immortal thing

...A moment standing still for ever.

James Montgomery 1833

24
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The poetical works of James Montgomery

25
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of P
μ 

26

Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

26
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S.J. Brodsky et al. / Nuclear Physics B 593 (2001) 311–335 331

moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

Conserved 
LF Fock state by Fock State
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angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
〉 → | − 1

2
+ 1〉 configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1

boson constituents. The fermion constituent has spin projection in the opposite direction

to the spin J z of the whole system. However, for ultra-relativistic binding in which the

transversal motions of the constituents are large compared to the fermion masses, the

Table 1

Spin decomposition of the J z = + 1
2
electron

Configuration Fermion spin sz
f

Boson spin sz
b

Orbital ang. mom. lz

∣∣+ 1
2

〉
→

∣∣+ 1
2

+ 1
〉

+ 1
2

+1 −1
∣∣+ 1

2

〉
→

∣∣− 1
2

+ 1
〉

− 1
2

+1 0
∣∣+ 1

2

〉
→

∣∣+ 1
2

− 1
〉

+ 1
2

−1 +1

n-1 orbital angular momenta

Angular Momentum on the Light-Front

Nonzero Anomalous Moment -->Nonzero orbital angular momentum
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General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

LFWFs

B-Decays

GPDs

Distribution 
Amplitudes

Hadronization 
at the amplitude level

28
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

∑

a

∫
[dx][d2k⊥]

∑

j

ej

[
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

∑

a

∫
[dx][d2k⊥]

∑

j

ej
1

2
× (11)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi) +
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

,

F3(q2)

2M
=

∑

a

∫
[dx][d2k⊥]

∑

j

ej
i

2
× (12)

[
− 1

qL
ψ↑∗

a (xi,k
′
⊥i, λi) ψ↓

a(xi,k⊥i, λi)−
1

qR
ψ↓∗

a (xi,k
′
⊥i, λi) ψ↑

a(xi,k⊥i, λi)
]

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

∫
[dx] [d2k⊥] ≡

∑

λi,ci,fi

[
n∏

i=1

(∫ ∫ dxi d2k⊥i

2(2π)3

)]

16π3δ

(

1−
n∑

i=1

xi

)

δ(2)

(
n∑

i=1

k⊥i

)

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {λi}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function differentiate between the struck and spectator constituents; namely, we
have [13, 15]

k′
⊥j = k⊥j + (1− xj)q⊥ (14)

for the struck constituent j and

k′
⊥i = k⊥i − xiq⊥ (15)

for each spectator i, where i $= j. Note that because of the frame choice q+ = 0, only
diagonal (n′ = n) overlaps of the light-front Fock states appear [14].
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6

Drell, sjbA(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

x̂, ŷ plane

M2(L) ∝ L

Must have ∆%z = ±1 to have nonzero F2(q2)

-

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

29

q2 = −q2
⊥

q+ = 0

29
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-

graviton

Anomalous gravitomagnetic moment  B(0)

B(0) = 0 Each Fock State

sum over constituents

30

Hwang, Schmidt, sjb; 
Holstein et al

Okun, Kobzarev, Teryaev:  B(0) Must vanish because of 
Equivalence Theorem 

q2 = −q2
⊥

30
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

31

Holography: Unique mapping derived from equality of LF and 
AdS  formula for current matrix elements: em and gravitational!

ψ(x, ζ) =
√

x(1− x)ζ−1/2φ(ζ)

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

31



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008

3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ

[
− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −
1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)
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2

0

FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Light-Front Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

32

+κ4ζ2 confining potential:

32
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Prediction from AdS/CFT: Meson LFWF
ψ(x, k⊥)

ψ(x, k⊥)

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

(GeV)

de Teramond, sjb

33

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

33
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb

34

φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

κ = 0.375 GeV

massless quarks

ψM (x, k⊥) =
4π

κ
√

x(1− x)
e
− k2

⊥
2κ2x(1−x)

34
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Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to 
hard exclusive processes, heavy hadron decays. Defined 
for mesons, baryons

• Evolution Equations from PQCD,                             
OPE, Conformal Invariance

• Compute from valence light-front wavefunction in 
light-cone gauge

35

φH(xi, Q)

φM (x,Q) =
∫ Q

d2"k ψqq̄(x,"k⊥)

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

x

1− x

k2
⊥ < Q2

Lepage, sjb

Lepage, sjb

Frishman,Lepage, Sachrajda, sjb

Peskin Braun

Efremov, Radyushkin Chernyak etal

∑

i

xi = 1

35
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0
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0.6

0.8

1

Untitled-1 1

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Hard Wall: Truncated Space Confinement

Soft Wall: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation
Baldini, Kloe and Volmer

de Teramond, sjb
See also: Radyushkin 
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

37

Intrinsic heavy quarks    
s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p " 30%

Violation of Gottfried sum rule

ū(x) #= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

Mueller: BFKL DYNAMICS    
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Light Antiquark Flavor Asymmetry
• Naïve Assumption 

from gluon splitting:

 E866/NuSea (Drell-Yan)
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Heisenberg Matrix 
FormulationLight-Front QCD

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

HQCD
LF |Ψh >= M2

h|Ψh >

HQCD
LF =

∑

i

[
m2 + k2

⊥
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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LQCD → HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

DLCQ: Periodic BC in x−. Discrete k+; frame-independent truncation
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HQCD
LF |Ψh >= M2

h|Ψh >

In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Matrix 
Formulation

Light-Front QCD

H.C. Pauli  & sjb

DLCQ
Discretized Light-Cone 

Quantization

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions

DLCQ:  Frame-independent, No fermion doubling; Minkowski Space

HQCD
LF |Ψh >= M2

h|Ψh >
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Use AdS/CFT orthonormal LFWFs 
as a basis for diagonalizing

the QCD LF Hamiltonian

• Good initial approximant

• Better than plane wave basis

• DLCQ discretization -- highly successful 1+1

• Use independent HO LFWFs, remove CM 
motion

• Similar to Shell Model calculations

Vary, Harinandrath, Maris, sjb
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Pauli, Hornbostel, Hiller, 
McCartor, sjb
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In terms of the hadron four-momentum P =
(P+, P−, !P⊥) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P−P+− !P2

⊥, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,

HQCD
LC |Ψh〉 =M2

h |Ψh〉

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$
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!
$!"

b!
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(k$
&
, #$

&
)d!

$"M
(k$
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD

Use AdS/QCD  basis functions
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front 
Perturbation theory;   coalesce quarks via LFWFs

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 
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A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P
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g

q̄
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pp → p + J/ψ + p
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q̄

q

pp → p + J/ψ + p

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

τ = x+

e+

e−

Event amplitude 
generator

AdS/QCD 
Hard Wall 

Capture if ζ2 = x(1− x)b2
⊥ > 1

Λ2
QCD

i.e.,
M2 = k2

⊥
x(1−x) < Λ2

QCD
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N-1N+1

N N

NN

Light-Front Wave Function Overlap Representation

See also: Diehl, Feldmann, Jakob, Kroll
DGLAP
region

DGLAP
region

ERBL
region

N=3 VALENCE QUARK ⇒ Light-cone Constituent quark model

N=5 VALENCE QUARK + QUARK SEA ⇒ Meson-Cloud model

Diehl, Hwang, sjb,  NPB596, 2001
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DVCS/GPD
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S.J. Brodsky et al. / Nuclear Physics B 596 (2001) 99–124 103

Fig. 3. Light-cone time-ordered contributions to deeply virtual Compton scattering. Only the

contributions of leading power in 1/Q are illustrated. These contributions illustrate the factorization

property of the leading twist amplitude.

see Fig. 3. We specify the frame by choosing a convenient parametrization of the light-cone

coordinates for the initial and final proton:

P =
(

P+, !0⊥,
M2

P+

)
, (3)

P ′ =
(

(1− ζ )P+,− !∆⊥,
M2 + !∆2

⊥
(1− ζ )P+

)
, (4)

whereM is the proton mass. We use the component notation V = (V +, !V⊥,V −), and our

metric is specified by V ± = V 0±V z and V 2 = V +V − − !V 2
⊥. The four-momentum transfer

from the target is

∆ = P − P ′ =
(

ζP+, !∆⊥,
t + !∆2

⊥
ζP+

)
, (5)

where t = ∆2. In addition, overall energy–momentum conservation requires ∆− =
P− − P ′−, which connects !∆2

⊥, ζ , and t according to

t = 2P · ∆ = −ζ 2M2 + !∆2
⊥

1− ζ
. (6)

As in the case of space-like form factors, it is convenient to choose a frame where the

incident space-like photon carries q+ = 0 so that q2 = −Q2 = −!q 2⊥:

Nuclear Physics B 596 (2001) 99–124

www.elsevier.nl/locate/npe

Light-cone wavefunction representation of deeply
virtual Compton scattering !

Stanley J. Brodsky a, Markus Diehl a,1, Dae Sung Hwang b

a Stanford Linear Accelerator Center, Stanford University, Stanford, CA 94309, USA
b Department of Physics, Sejong University, Seoul 143-747, South Korea

Received 25 September 2000; accepted 22 November 2000

Abstract

We give a complete representation of virtual Compton scattering γ ∗p → γp at large initial photon

virtuality Q2 and small momentum transfer squared t in terms of the light-cone wavefunctions of

the target proton. We verify the identities between the skewed parton distributions H(x, ζ, t) and

E(x, ζ, t) which appear in deeply virtual Compton scattering and the corresponding integrands of

the Dirac and Pauli form factors F1(t) and F2(t) and the gravitational form factors Aq(t) and Bq(t)

for each quark and anti-quark constituent. We illustrate the general formalism for the case of deeply

virtual Compton scattering on the quantum fluctuations of a fermion in quantum electrodynamics at

one loop. ! 2001 Elsevier Science B.V. All rights reserved.

PACS: 12.20.-m; 12.39.Ki; 13.40.Gp; 13.60.Fz

1. Introduction

Virtual Compton scattering γ ∗p → γp (see Fig. 1) has extraordinary sensitivity to

fundamental features of the proton’s structure. Particular interest has been raised by the

description of this process in the limit of large initial photon virtuality Q2 = −q2 [1–5].

Even though the final state photon is on-shell, one finds that the deeply virtual process

probes the elementary quark structure of the proton near the light-cone as an effective

local current, or in other words, that QCD factorization applies [3,6,7].

In contrast to deep inelastic scattering, which measures only the absorptive part of

the forward virtual Compton amplitude, ImTγ ∗p→γ ∗p , deeply virtual Compton scattering

!Work partially supported by the Department of Energy, contract DE-AC03-76SF00515.

E-mail addresses: sjbth@slac.stanford.edu (S.J. Brodsky), markus.diehl@desy.de (M. Diehl),

dshwang@kunja.sejong.ac.kr (D.S. Hwang).
1 Supported by the Feodor Lynen Program of the Alexander von Humboldt Foundation.

0550-3213/01/$ – see front matter ! 2001 Elsevier Science B.V. All rights reserved.

PII: S0550-3213(00)00695-7

Local J=0 
fixed pole

contribution
Szczepaniak, Llanes-

Estrada, sjb

AJ=0 ∼ e2
qs

0F (t)

Close, Gunion, sjb
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encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.

The deeply virtual Compton amplitude can be evaluated explicitly by starting from the

Fock state representation for both the incoming and outgoing proton, using the boost

properties of the light-cone wavefunctions, and evaluating the matrix elements of the

currents for a quark target. One can also directly evaluate the non-local current matrix

elements (16) in the same framework. In the following we will concentrate on the

generalized Compton form factors H and E. Formulae analogous to our results can be

obtained for H̃ and Ẽ.

For the n → n diagonal term (∆n = 0), the relevant current matrix element at quark

level is
∫
dy−

8π
eixP+y−/2

〈
1;x ′

1P
′+, $p′

⊥1,λ
′
1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣

y+=0,y⊥=0

=
√

x1x
′
1

√
1− ζδ(x − x1)δλ′

1λ1
, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in

the domain ζ ! x ! 1 [17]:
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=
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j=1
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(n)
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)
ψ

↑
(n)
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)
, (39)
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1− ζ

∆1 − i∆2

2M
E(n→n)(x, ζ, t)
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∑
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where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′

⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′

⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′

⊥i = $0⊥. In Eqs. (39) and (40) one has to
sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.
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encode all of the bound state quark and gluon properties of hadrons, including their

momentum, spin and flavor correlations, in the form of universal process- and frame-

independent amplitudes.
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level is
∫
dy−

8π
eixP+y−/2

〈
1;x ′

1P
′+, $p′

⊥1,λ
′
1

∣∣ψ̄(0)γ +ψ(y)
∣∣1;x1P

+, $p⊥1,λ1
〉∣∣
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, (38)

where for definiteness we have labeled the struck quark with the index i = 1. We thus

obtain formulae for the diagonal (parton-number-conserving) contributions to H and E in
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)
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)
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where the arguments of the final-state wavefunction are given by

x ′
1 = x1 − ζ

1− ζ
, $k′

⊥1 = $k⊥1 − 1− x1

1− ζ
$∆⊥ for the struck quark,

x ′
i = xi

1− ζ
, $k′

⊥i = $k⊥i + xi

1− ζ
$∆⊥ for the spectators i = 2, . . . , n.

(41)

One easily checks that
∑n

i=1 x ′
i = 1 and

∑n
i=1 $k′

⊥i = $0⊥. In Eqs. (39) and (40) one has to
sum over all possible combinations of helicities λi and over all parton numbers n in the

Fock states. We also imply a sum over all possible ways of numbering the partons in the

n-particle Fock state so that the struck quark has the index i = 1.

Example of LFWF representation 
of GPDs  (n => n)

Diehl,Hwang, sjb
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Analogous formulae hold in the domain ζ − 1 < x < 0, where the struck parton in the

target is an antiquark instead of a quark. Some care has to be taken regarding overall signs

arising because fermion fields anticommute. For details we refer to [17,27].

For the n + 1→ n − 1 off-diagonal term ("n = −2), let us consider the case where
quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current leaving

n−1 spectators. Then xn+1 = ζ −x1 and #k⊥n+1 = #∆⊥ − #k⊥1. The remaining n−1 partons
have total plus-momentum (1−ζ )P+ and transverse momentum− #∆⊥. The current matrix
element now is
∫

dy−

8π
eixP+y−/2

〈
0
∣∣ψ̄(0)γ +ψ(y)

∣∣2;x1P
+, xn+1P

+, #p⊥1, #p⊥n+1,λ1,λn+1
〉∣∣∣

y+=0,y⊥=0
= √

x1xn+1 δ(x − x1)δλ1−λn+1, (42)

and we thus obtain the formulae for the off-diagonal contributions to H and E in the

domain 0! x ! ζ :
√
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1− ζ
2
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4
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2

)√
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=
(√
1− ζ

)3−n
∑
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i=1

dxi d
2#k⊥i
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j=1
xj
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(
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#k⊥j

)

× 16π3δ(xn+1 + x1 − ζ )δ(2)
(#k⊥n+1 + #k⊥1 − #∆⊥

)

× δ(x − x1)ψ
↑∗
(n−1)

(
x ′
i ,

#k′
⊥i ,λi

)
ψ

↑
(n+1)

(
xi, #k⊥i ,λi

)
δλ1−λn+1,

(43)

1√
1− ζ

∆1 − i∆2

2M
E(n+1→n−1)(x, ζ, t)

=
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1− ζ
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∑
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#k′
⊥i ,λi
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ψ

↓
(n+1)
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xi, #k⊥i ,λi

)
δλ1−λn+1,

(44)

where i = 2, . . . , n label the n − 1 spectator partons which appear in the final-state hadron
wavefunction with

x ′
i = xi

1− ζ
, #k′

⊥i = #k⊥i + xi

1− ζ
#∆⊥. (45)

We can again check that the arguments of the final-state wavefunction satisfy
∑n

i=2 x ′
i = 1,∑n

i=2 #k′
⊥i = #0⊥. We imply in (43) and (44) a sum over all possible ways of numbering the

partons in the initial wavefunction such that the quark with index 1 and the antiquark with

index n + 1 annihilate into the current.
The powers of

√
1− ζ in (39), (40) and (43), (44) have their origin in the integration

measures in the Fock state decomposition (36) for the outgoing proton. The fractions x ′
i
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target is an antiquark instead of a quark. Some care has to be taken regarding overall signs

arising because fermion fields anticommute. For details we refer to [17,27].

For the n + 1→ n − 1 off-diagonal term ("n = −2), let us consider the case where
quark 1 and antiquark n + 1 of the initial wavefunction annihilate into the current leaving
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We can again check that the arguments of the final-state wavefunction satisfy
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The powers of
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Example of LFWF representation 
of GPDs  (n+1 => n-1)

Diehl,Hwang, sjb
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Annihilation amplitude needed for Lorentz Invariance

Exact Formula! 
Hwang, SJB

Non-perturbative complication from IC Fock states!

Henley, 
Sczcepaniack, sjb
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes, 
distribution amplitudes, direct subprocesses, 
hadronization.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries Leading-Twist 

Sivers Effect

!Sp ·!q×!pq

D. S. Hwang, 
I. A. Schmidt, 

sjb

Light-Front Wavefunction  
S and P- Waves

QCD S- and P-
Coulomb Phases
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Final-State Interactions Produce 
T-Odd  (Sivers Effect)

• Bjorken Scaling!

• Arises from Interference of Final-State Coulomb 
Phases in S and P waves

• Relate to the quark contribution to the target 
proton anomalous magnetic moment

54

!S ·!p jet×!q

!S ·!p jet×!q

Hwang, Schmidt. sjb; 
Burkardt

i
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N.C.R. Makins, NNPSS, July 28, 2006
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• First evidence for non-zero 
Sivers function!

• ⇒ presence of non-zero quark

orbital angular momentum!
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P
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~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz != 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model

Schmidt, Lu: Hermes
charge pattern follow quark 
contributions to anomalous 

moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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T ) the Collins fragmentation function, hq
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(kT ) quark transverse momenta implies that the different functions involved can not be
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final results are summarized in Ref. [9], de-
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and the corresponding average values of the
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The statistical correlation in the fit between
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virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiation

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!

Boer, Hwang, sjb
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

PQCD Factorization (Lam Tung):

Model: Boer,
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Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-
inclusive DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are not probability 
distributions

• Nuclear Shadowing, Antishadowing-  Not in Target WF

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY                   distribution at leading twist from double ISI-- not given 
by PQCD factorization -- breakdown of factorization!

• Wilson Line Effects not 1 even in LCG

• Must correct hard subprocesses for initial and final-state soft gluon 
attachments

• Corrections to Handbag Approximation in DVCS!

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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• Polchinski & Strassler: AdS/CFT  builds in conformal symmetry at 
short distances; counting rules for form factors and hard exclusive 
processes; non-perturbative derivation

• Goal: Use AdS/CFT to provide an approximate model of hadron 
structure with confinement at large distances, conformal behavior 
at short distances

• de Teramond, sjb:  AdS/QCD Holographic Model: Initial “semi-
classical” approximation to QCD.  Predict light-quark hadron 
spectroscopy,  form factors.

• Karch, Katz, Son, Stephanov: Linear Confinement

• Mapping of AdS amplitudes to 3+ 1 Light-Front equations, 
wavefunctions

• Use AdS/CFT wavefunctions as expansion basis for diagonalizing 
HLFQCD ; variational methods
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• Use mapping of conformal group SO(4,2) to AdS5

• Scale Transformations represented by wavefunction  
in 5th dimension

• Match solutions at small z to conformal dimension of 
hadron wavefunction at short distances

• Hard wall model: Confinement at large distances and 
conformal symmetry in interior

• Truncated space simulates “bag” boundary conditions

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

ψ(z0) = 0

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

x2
µ → λ2x2

µ

z → λz

ψ(z0) = 0

0 < z < z0

z0 = 1
ΛQCD

ψ(z) ∼ z∆ at z → 0

AdS/CFT
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD.

• Normalizable AdS modes Φ(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

0

2

4

z

Φ(z)

3-2006
8721A13

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

Confinement 
in the 5th 

dimension
z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

Twist dimension 
of meson

z0 = 1
ΛQCD

z∆

∆: conformal dimension of meson

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

de Teramond, sjb

Identify hadron by its interpolating operator at z  -- > 0

62

• Near the boundary of AdSd+1 space z → 0:

Φ(x, z) → z∆Φ+(x) + zd−∆Φ−(x).

• Φ−(x) is the boundary limit of non-normalizable mode (source): Φ− = Φ0

• Φ+(x) is the boundary limit of the normalizable mode (physical states)

• Using the equations of motion AdS action reduces to a UV surface term

Seff =
Rd−1

4
lim
z→0

∫
ddx

1
zd−1

Φ∂zΦ,

• Seff is identified with the boundary functional WCFT

〈O〉Φ0
=

δWCFT

δΦ0
=

δSeff

δΦ0
∼ Φ+(x),

Balasubramanian et. al. (1998), Klebanov and Witten (1999).

• Physical AdS modes ΦP (x, z) ∼ e−iP ·x Φ(z) are plane waves along the Poincaré coordinates with

four-momentum Pµ and hadronic invariant mass states PµPµ = M2.

• For small-z Φ(z) ∼ z∆. The scaling dimension ∆ of a normalizable string mode, is the same
dimension of the interpolating operatorO which creates a hadron out of the vacuum: 〈P |O|0〉 %= 0.

∆ = 2 + L
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2 Bosonic Modes

• Conformal metric: ds2 = g!mdx!dxm. x! = (xµ, z), g!m →
(
R2/z2

)
η!m .

• Action for massive scalar modes on AdSd+1:

S[Φ] =
1
2

∫
dd+1x

√
g 1

2

[
g!m∂!Φ∂mΦ− µ2Φ2

]
,
√

g → (R/z)d+1.

• Equation of motion
1
√

g

∂

∂x!

(√
g g!m ∂

∂xm
Φ

)
+ µ2Φ = 0.

• Factor out dependence along xµ-coordinates , ΦP (x, z) = e−iP ·x Φ(z), PµPµ =M2 :
[
z2∂2

z − (d− 1)z ∂z + z2M2 − (µR)2
]
Φ(z) = 0.

• Solution: Φ(z)→ z∆ as z → 0,

Φ(x, z) = Cz
d
2 J∆− d

2
(zM) , ∆ = 1

2

(
d +

√
d2 + 4µ2R2

)
.

• Normalization

Rd−1
∫ Λ−1

QCD

0

dz

zd−1
Φ2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

∆ = 2 + L (µR)2 = L2 − 4d = 4

Φ(z) = Czd/2J∆−d/2(zM)
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AdS Schrodinger Equation for bound state 
of  two scalar constituents:

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

Mµν,Pµ,D,Kµ,

the generators of S

Analytically continue

Derived from variation of Action in AdS5

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

V(z) = −1−4L2

4z2 + κ4z2

Mµν,Pµ,D,Kµ,

Hard wall model: truncated space

Let Φ(z) = z3/2φ(z)

Interpret L
 as orbital angular 

momentum
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AdS/QCD G. F. de Téramond

• Pseudoscalar mesons: O3+L = ψγ5D{!1 . . . D!m}ψ (Φµ = 0 gauge).

• 4-d mass spectrum from boundary conditions on the normalizable string modes at z = z0,

Φ(x, zo) = 0, given by the zeros of Bessel functions βα,k: Mα,k = βα,kΛQCD

• Normalizable AdS modes Φ(z)

10 2 3 4

1

2

0

3

4

5

z

Φ(z)

2-2006
8721A7

10 2 3 4

-2

-4

0

2

4

z

Φ(z)

2-2006
8721A8

Fig: Meson orbital and radial AdS modes for ΛQCD = 0.32 GeV.

Caltech High Energy Seminar, Feb 6, 2006 Page 19

z∆

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Q2FK(Q2)

z∆

z0

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

z∆

z0 = 1
ΛQCD

γd→ np

γγ → π+π−

γγ → K+K−

s = E2
cm = W2 = Q2

Q4GMp(Q
2)

Match fa!-off at sma! z to conformal twist-dimension 
at short distances

∆ = 2 + L
twist

S = 0

O2+L
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10 2 3 4

1
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0
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z
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2-2007
8721A18

-2

-4

0
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4

Φ(z)

10 2 3 4
z2-2007

8721A19

Fig: Orbital and radial AdS modes in the hard wall model for ΛQCD = 0.32 GeV .
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Fig: Light meson and vector meson orbital spectrum ΛQCD = 0.32 GeV
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Bosonic Solutions: General Spin

d = 4 ∆ = 2 + L (µR)2 = L2 − (2− S)2

Higher Spin Bosonic Modes HW

• Each hadronic state of integer spin S ≤ 2 is dual to a normalizable string mode

Φ(x, z)µ1µ2···µS = εµ1µ2···µS e−iP ·x ΦS(z).

with four-momentum Pµ and spin polarization indices along the 3+1 physical coordinates.

• Wave equation for spin S-mode W. S. l’Yi, Phys. Lett. B 448, 218 (1999)

[
z2∂2

z − (d+1−2S)z ∂z + z2M2−(µR)2
]
ΦS(z) = 0,

• Solution

Φ̃(z)S =
( z

R

)S
Φ(z)S = Ce−iP ·xz

d
2 J∆− d

2
(zM) ε(P )µ1µ2···µS ,

• We can identify the conformal dimension:

∆ =
1
2
(
d +

√
(d− 2S)2 + 4µ2R2

)
.

• Normalization:

Rd−2S−1
∫ Λ−1

QCD

0

dz

zd−2S−1
Φ2

S(z) = 1.
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0
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Fig: Orbital and radial AdS modes in the soft wall model for κ = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for κ = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26
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Higher Spin Bosonic Modes SW

• Effective LF Schrödinger wave equation
[
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L+ S−1)

]
φS(ζ) =M2φS(ζ)

with eigenvalues M2 = 2κ2(2n + 2L + S).

• Compare with Nambu string result (rotating flux tube): M2
n(L) = 2πσ (n + L + 1/2) .

0

2

(a) (b)

4

(G
eV

2 )

0 2 4
5-2006
8694A20

ω (782)
ρ (770)

a2 (1320)

f2 (1270)

ρ3 (1690)

ω3 (1670)

f4 (2050)
a4 (2040)

L
0 2 4

n

ρ (770)

ρ (1450)

ρ (1700)

Vector mesons orbital (a) and radial (b) spectrum for κ = 0.54 GeV.

• Glueballs in the bottom-up approach: (HW) Boschi-Filho, Braga and Carrion (2005); (SW) Colangelo,

De Facio, Jugeau and Nicotri( 2007).

Exploring QCD, Cambridge, August 20-24, 2007 Page 27

[
− d2

dz2
− 1− 4L2

4z2
+ κ4z2 + 2κ2(L+ S−1)

]
φS(z) =M2φS(z)

S = 1S = 1

Soft-wall model

Same slope in n and L 
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Linear particle trajectories

Plot of spins of families of particles against their squared masses:
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• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

Linear particle trajectories

Plot of spins of families of particles against their squared masses:

0
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2
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4
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6
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• 4 degenerate familes of particles: α(t) ≈ 1
2 + 0.9t

The particles in square brackets are listed in the data tables, but there is some
uncertainty about whether they exist.

The function α(t) is called a Regge trajectory.

AdS/QCD Soft Wall Model -- Reproduces  Linear Regge Trajectories
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ∼ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ∼ 1/Q.

J(Q, z), Φ(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode Φ(n) dual to an n partonic Fock state |n〉. At small z, Φ(n)

scales as Φ(n) ∼ z∆n . Thus:

F (Q2) →
[

1
Q2

]τ−1

,

where τ = ∆n − σn, σn =
∑n

i=1 σi. The twist is equal to the number of partons, τ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:
General result from 

AdS/CFT

71

Hadron Form Factors from AdS/CFT 

Polchinski, Strassler
de Teramond, sjb

D(z) ∼ (1− z)2Nspect−1

zD(z) = F (x = 1/z)

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2

⊥

X = cūd̄ū

F (Q2)I→F =
∫ dz

z3ΦF (z)J(Q, z)ΦI(z)

J(Q, z) = zQK1(zQ)

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2)→ α
15π

Q2

m2

Q2 << 4m2

A

High Q2 
from 

small z  ~ 1/Q

J(Q, z) Φ(z)

71
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Current Matrix Elements in AdS Space (HW)

• Hadronic matrix element for EM coupling with string mode Φ(x!), x! = (xµ, z)

ig5

∫
d4x dz

√
g A!(x, z)Φ∗

P ′(x, z)
←→
∂ !ΦP (x, z).

• Electromagnetic probe polarized along Minkowski coordinates (Q2 = −q2 > 0)

A(x, z)µ = εµe−iQ·xJ(Q, z), Az = 0.

• Propagation of external current inside AdS space described by the AdS wave equation

[
z2∂2

z − z ∂z − z2Q2
]
J(Q, z) = 0,

subject to boundary conditions J(Q = 0, z) = J(Q, z = 0) = 1.

• Solution

J(Q, z) = zQK1(zQ).

• Substitute hadronic modes Φ(x, z) in the AdS EM matrix element

ΦP (x, z) = e−iP ·x Φ(z), Φ(z)→ z∆, z → 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 32
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
[
z2∂2

z − z
(
1 + 2κ2z2

)
∂z −Q2z2

]
Jκ(Q, z) = 0.

• Solution bulk-to-boundary propagator

Jκ(Q, z) = Γ
(

1 +
Q2

4κ2

)
U

(
Q2

4κ2
, 0, κ2z2

)
,

where U(a, b, c) is the confluent hypergeometric function

Γ(a)U(a, b, z) =
∫ ∞

0
e−ztta−1(1 + t)b−a−1dt.

• Form factor in presence of the dilaton background ϕ = κ2z2

F (Q2) = R3
∫

dz

z3
e−κ2z2

Φ(z)Jκ(Q, z)Φ(z).

• For large Q2 " 4κ2

Jκ(Q, z)→ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.

Exploring QCD, Cambridge, August 20-24, 2007 Page 34

sjb and GdT 
Grigoryan and Radyushkin
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Space and Time-Like Pion Form Factor

• Hadronic string modes Φπ(z)→ z2 as z → 0 (twist τ = 2)

ΦHW
π (z) =

√
2ΛQCD

R3/2J1(β0,1)
z2J0 (zβ0,1ΛQCD) ,

ΦSW
π (z) =

√
2κ

R3/2
z2.

• Fπ has analytical solution in the SW model Fπ(Q2) = 4κ2

4κ2+Q2 .

-2.5 -2.0 -1.5 -1.0 -0.5 0

0.2

0

0.4

0.6

0.8

1.0

7-2007
8755A3q2  (GeV2)

F π
 (q

2 )

Fig: Fπ(q2) for κ = 0.375 GeV and ΛQCD = 0.22 GeV. Continuous line: SW, dashed line: HW.

Exploring QCD, Cambridge, August 20-24, 2007 Page 38
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Note: Analytical Form of Hadronic Form Factor for Arbitrary Twist

• Form factor for a string mode with scaling dimension τ , Φτ in the SW model

F (Q2) = Γ(τ)
Γ

(
1+ Q2

4κ2

)

Γ
(
τ + Q2

4κ2

) .

• For τ = N , Γ(N + z) = (N − 1 + z)(N − 2 + z) . . . (1 + z)Γ(1 + z).

• Form factor expressed as N − 1 product of poles

F (Q2) =
1

1 + Q2

4κ2

, N = 2,

F (Q2) =
2(

1 + Q2

4κ2

)(
2 + Q2

4κ2

) , N = 3,

· · ·

F (Q2) =
(N − 1)!(

1 + Q2

4κ2

)(
2 + Q2

4κ2

)
· · ·

(
N−1+ Q2

4κ2

) , N.

• For large Q2:

F (Q2)→ (N − 1)!
[
4κ2

Q2

](N−1)

.

Exploring QCD, Cambridge, August 20-24, 2007 Page 43
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• Analytical continuation to time-like region q2 → −q2 (Mρ = 4κ2 = 750 MeV)

• Strongly coupled semiclassical gauge/gravity limit hadrons have zero widths (stable).

-10 -5 0 5 10

-3

-2

-1

0

1

2

7-2007
8755A4q2  (GeV2)

log
 IF

π (
q2 )I

Space and time-like pion form factor for κ = 0.375 GeV in the SW model.

• Vector Mesons: Hong, Yoon and Strassler (2004); Grigoryan and Radyushkin (2007).

Exploring QCD, Cambridge, August 20-24, 2007 Page 40

Mρ = 2κ = 750 MeV
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AdS/QCD G. F. de Téramond

Holographic Model for QCD Light-Front Wavefunctions

SJB and GdT in preparation

• Drell-Yan-West form factor in the light-cone (two-parton state)

F (q2) =
∑

q

eq

∫ 1

0
dx

∫
d2!k⊥
16π3

ψ∗P ′(x,!k⊥ − x!q⊥) ψP (x,!k⊥).

• Fourrier transform to impact parameter space!b⊥

ψ(x,!k⊥) =
√

4π

∫
d2!b⊥ ei!b⊥·!k⊥ψ̃(x,!b⊥)

• Find (b = |!b⊥|) :

F (q2) =
∫ 1

0
dx

∫
d2!b⊥ eix!b⊥·!q⊥

∣∣ψ̃(x, b)
∣∣2

= 2π

∫ 1

0
dx

∫ ∞

0
b db J0 (bqx)

∣∣ψ̃(x, b)
∣∣2,

Caltech High Energy Seminar, Feb 6, 2006 Page 33

Soper

77

Light-Front Representation 
of Two-Body Meson Form Factor
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Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

with ρ̃(x, ζ) QCD effective transverse charge density.

• Transversality variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ),

the solution for J(Q, ζ) = ζQK1(ζQ) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35
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• Electromagnetic form-factor in AdS space:

Fπ+(Q2) = R3
∫

dz

z3
J(Q2, z) |Φπ+(z)|2 ,

where J(Q2, z) = zQK1(zQ).

• Use integral representation for J(Q2, z)

J(Q2, z) =
∫ 1

0
dx J0

(
ζQ

√
1− x

x

)

• Write the AdS electromagnetic form-factor as

Fπ+(Q2) = R3
∫ 1

0
dx

∫
dz

z3
J0

(
zQ

√
1− x

x

)
|Φπ+(z)|2

• Compare with electromagnetic form-factor in light-front QCD for arbitrary Q

∣∣∣ψ̃qq/π(x, ζ)
∣∣∣
2

=
R3

2π
x(1− x)

|Φπ(ζ)|2

ζ4

with ζ = z, 0 ≤ ζ ≤ ΛQCD

From String to Things, INT, Seattle, April 10, 2008 Page 29
79
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ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

(x(1− x)|b⊥|

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

LF(3+1)              AdS5

80

Light-Front Holography: Unique mapping derived from 
equality of LF and AdS  formula for current matrix elements

ψ(x, ζ) =
√

x(1− x)ζ−1/2φ(ζ)

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

80
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Gravitational Form Factor of Composite Hadrons

• Gravitational FF defined by matrix elements of the energy momentum tensor Θ++(x)
〈
P ′ ∣∣Θ++(0)

∣∣ P
〉

= 2
(
P+

)2
A(Q2)

• Θµν is computed for each constituent in the hadron from the QCD Lagrangian

LQCD = ψ (iγµDµ −m)ψ − 1
4Ga

µνG
a µν

• Symmetric and gauge invariant Θµν from variation of SQCD =
∫

d4x
√

gLQCD with respect to

four-dim Minkowski metric gµν , Θµν(x) = − 2√
g

δSQCD

δgµν(x) :

Θµν = 1
2ψi(γµDν + γνDµ) ψ − gµνψ (i /D −m) ψ −Ga µλGa ν

λ + 1
4gµνGa

µνG
a µν

• Quark contribution in light front gauge (A+ = 0, g++ = 0)

Θ++(x) =
i

2

∑

f

ψ
f (x)γ+←→∂ +ψf (x)

From String to Things, INT, Seattle, April 10, 2008 Page 1781
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H(Q2, z) = 2
∫ 1

0
x dxJ0

(
zQ

√
1− x

x

)
.

A(Q2) = 2R3

∫
x dx

∫
dz

z3
J0

(
zQ

√
1− x

x

)
|Φ(z)|2 .

ρ̃(x, ζ) = 2
R3

2π

x

1− x

|Φ(ζ)|2

ζ4
.

 Compare  with gravitational form factor from LF

A(Q2) = 2π

∫ 1

0
dx (1− x)

∫
ζdζ J0

(
ζQ

√
1− x

x

)
ρ̃(x, ζ)

Holography:  identify AdS and LF density for all  Q

ζ ≡ z ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣
with

AdS

LF

82
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• Hadronic gravitational form-factor in AdS space

Aπ(Q2) = R3
∫

dz

z3
H(Q2, z) |Φπ(z)|2 ,

where H(Q2, z) = 1
2Q2z2K2(zQ)

• Use integral representation for H(Q2, z)

H(Q2, z) = 2
∫ 1

0
x dxJ0

(
zQ

√
1− x

x

)

• Write the AdS gravitational form-factor as

Aπ(Q2) = 2R3
∫ 1

0
x dx

∫
dz

z3
J0

(
zQ

√
1− x

x

)
|Φπ(z)|2

• Compare with gravitational form-factor in light-front QCD for arbitrary Q

∣∣∣ψ̃qq/π(x, ζ)
∣∣∣
2

=
R3

2π
x(1− x)

|Φπ(ζ)|2

ζ4
,

which is identical to the result obtained from the EM form-factor

From String to Things, INT, Seattle, April 10, 2008 Page 31

Abidin & Carlson 

Gravitational Form Factor in AdS space

Identical  to LF Holography obtained from electromagnetic current
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AdS/QCD can predict
• Momentum fractions for each quark flavor and 

the gluons

• Orbital Angular Momentum for each quark flavor 
and the gluons

• Vanishing Anomalous Gravitomagnetic Moment

• Shape and Asymptotic Behavior of

Af (0) =< xf >,
∑

f

Af (0) = A(0) = 1

Bf (0) =< L3
f >,

∑

f

Bf (0) = B(0) = 0

Af (Q2), Bf (Q2)

Holographic result for LFWF identical for electroweak and 
gravity couplings!  Highly nontrivial consistency test

84



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008 85

Consider the AdS5 metric:

ds2 = R2

z2 (ηµνdxµdxν − dz2).

ds2 invariant if xµ → λxµ, z → λz,

Maps scale transformations to scale changes of the the holographic coordinate z.

We define light-front coordinates x± = x0 ± x3.

Then ηµνdxµdxν = dx0
2 − dx3

2 − dx⊥
2 = dx+dx− − dx⊥

2

and

ds2 = −R2

z2 (dx⊥
2 + dz2) for x+ = 0.

• ds2 is invariant if dx⊥
2 → λ2dx⊥

2, and z → λz, at equal LF time.

• Maps scale transformations in transverse LF space to scale changes of the holographic coordinate z.

• Holographic connection of AdS5 to the light-front.

• Casimir for the rotation group SO(2).

Exploring QCD, Cambridge, August 20-24, 2007 Page 3

Ladder Construction of Orbital States

• Orbital excitations constructed by the L-th application of the raising operator

a†
L = −iΠL

on the ground state:

a†|L〉 = cL|L + 1〉.

• In the light-front ζ-representation

φL(ζ) = 〈ζ|L〉 = CL

√
ζ (−ζ)L

(
1
ζ

d

dζ

)L

J0(ζM)

= CL

√
ζJL (ζM) .

• The solutions φL are solutions of the light-front equation (L = 0,±1,±2, · · · )
[
− d2

dζ2
− 1− L2

4ζ2

]
φ(ζ) = M2φ(ζ),

• Mode spectrum from boundary conditions : φ (ζ = 1/ΛQCD) = 0.

• The effective wave equation in the two-dim transverse LF plane has the Casimir representation L2

corresponding to the SO(2) rotation group [The Casimir for SO(N) ∼ SN−1 is L(L + N − 2) ].

Exploring QCD, Cambridge, August 20-24, 2007 Page 20

Light-Front AdS5 Duality
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Prediction from AdS/CFT: Meson LFWF

ψ(x, k⊥)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

ψ(x, k⊥)(GeV)

de Teramond, sjb
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φM(x, Q0) ∝
√

x(1− x)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

ψM (x, k⊥) =
4π

κ
√

x(1− x
e
− k2

⊥
2κ2x(1−x)

κ = 0.375 GeV

massless quarks
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• Coalesce color-singlet cluster to hadronic state if 

• The coalescence probability amplitude is the LF 
wavefunction

• No IR divergences: Maximal gluon and quark wavelength 
from confinement

87

Features of  LF   T-Matrix Formalism
“Event Amplitude Generator”

M2
n =

n∑

i=1

k2
⊥i + m2

i

xi
< Λ2

QCD

Ψn(xi,!k⊥i, λi)

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P
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Example: Pion LFWF

• Two parton LFWF bound state:

ψ̃HW
qq/π(x,b⊥) =

ΛQCD

√
x(1− x)√

πJ1+L(βL,k)
JL

(√
x(1− x) |b⊥|βL,kΛQCD

)
θ

(
b2
⊥ ≤

Λ−2
QCD

x(1− x)

)
,

ψ̃SW
qq/π(x,b⊥) = κL+1

√
2n!

(n + L)!
[x(1− x)]

1
2+L|b⊥|Le−

1
2 κ2x(1−x)b2

⊥LL
n

(
κ2x(1− x)b2

⊥
)
.

(a) (b)b b

xx

ψ
(x,
b)

7-2007
8755A11.0

00

0 10 20 0 10 20

0.05

0.10

0.5

1.0

0

0.5

0

0.1

0.2

Fig: Ground state pion LFWF in impact space. (a) HW model ΛQCD = 0.32 GeV, (b) SW model κ = 0.375 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 37
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Second Moment of  Pion Distribution Amplitude

< ξ2 >=
∫ 1

−1
dξ ξ2φ(ξ)

ξ = 1− 2x

φasympt ∝ x(1− x)
φAdS/QCD ∝

√
x(1− x)

Braun et al.

Donnellan et al.

< ξ2 >π= 1/5 = 0.20

< ξ2 >π= 1/4 = 0.25

Lattice (I) < ξ2 >π= 0.28± 0.03

Lattice (II) < ξ2 >π= 0.269± 0.039
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Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Spacelike pion form factor from AdS/CFT

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

Fπ(q2)

q2(GeV 2)

However J/ψ → ρπ

is largest two-body hadron decay

Small value for ψ′ → ρπ

ρ

π

HW: Truncated Space Confinement

SW: Harmonic Oscillator Confinement

One parameter -  set by pion decay constant

Data Compilation from Baldini, Kloe and Volmer

de Teramond, sjb
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Note: Contributions to Mesons Form Factors at Large Q in AdS/QCD

• Write form factor in terms of an effective partonic transverse density in impact space b⊥

Fπ(q2) =
∫ 1

0
dx

∫
db2 ρ̃(x, b,Q),

with ρ̃(x, b,Q) = πJ0 [b Q(1− x)] |ψ̃(x, b)|2 and b = |b⊥|.

• Contribution from ρ(x, b,Q) is shifted towards small |b⊥| and large x→ 1 as Q increases.

0

0.2

0.4

0

0.5

1.0

0

0.5

1.0

01020 01020

0

0.2

0.4

(a) (b)

7-2007
8755A5

bb

xx

ρ(
x,b
)

Fig: LF partonic density ρ(x, b,Q): (a) Q = 1 GeV/c, (b) very large Q.

Exploring QCD, Cambridge, August 20-24, 2007 Page 41
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ

[
− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −
1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
(a) (b)

00.5
1

1
2

3
4

5

0

2

4

0

00.5
1

1
2

3
4

5

1

2

0

FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent

92

+κ4ζ2 confining potential:
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• Identify the zero mode (C = −4κ2) with the pion.

• Light-front Hamiltonian equation

HLF |φ〉 = M2|φ〉,

leads to effective LF Schrödinger wave equation (KKSS)
[
− d2

dζ2
− 1− 4L2

4ζ2
+ κ4ζ2 + 2κ2(L−1)

]
φ(ζ) = M2φ(ζ)

with eigenvalues M2 = 4κ2(n + L) and eigenfunctions

φL(ζ) = κ1+L

√
2n!

(n + L)!
ζ1/2+Le−κ2ζ2/2LL

n

(
κ2ζ2

)
.

• Transverse oscillator in the LF plane with SO(2) rotation subgroup has Casimir L2 representing

rotations for the transverse coordinates b⊥ in the LF.

• SW model is a remarkable example of integrability to a non-conformal extension of AdS/CFT [Chim

and Zamolodchikov (1992) - Potts Model.]

Exploring QCD, Cambridge, August 20-24, 2007 Page 25
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x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

ψ(x,"b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)"b2⊥

z

z∆

z0 = 1
ΛQCD

γd→ np

gu→ γu

pp→ γX

E dσ
d3p

(pp→ γX) = F (θcm,xT )
p4
T

− d
dζ2 ≡

k2
⊥

x(1−x)

Conjecture for massive quarks

− d
dζ2 → − d

dζ2 + m2
a

x +
m2

b
1−x ≡

k2
⊥+m2

a
x +

k2
⊥+m2

b
1−x

LF Kinetic Energy in 
momentum space 

Holographic Variable

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

Assume LFWF is a dynamical function of the  
quark-antiquark invariant mass squared

− d

dζ2
→ − d

dζ2
+

m2
1

x
+

m2
2

1− x
≡ k2

⊥ + m2
1

x
+

k2
⊥ + m2

2

1− x

de Teramond, sjbm1

m2

94



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008 95

ψ(x,b⊥) =
cκ√

π

√
x(1− x) e

− 1
2κ2x(1−x)b2

⊥−
1

2κ2

»
m2

1
x −

m2
2

1−x

–

ψ(x,k⊥) =
4πc

κ
√

x(1− x)
e
− 1

2κ2

„
k2
⊥

x(1−x)+
m2

1
x +

m2
2

1−x

«

z → ζ → χ

χ2 = b2x(1− x) +
1
κ4

[
m2

1

x
+

m2
2

1− x
]

Result:  Soft-Wall LFWF  for massive constituents  

LF WF  in  impact space: soft-wall model 
with massive quarks 

+
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ü

J êY: m1 = 1.25 GeV, m2 = 0

In[13]:=

Plot3D@psi@x, b, 1.25, 1.25, 0.375D, 8x, 0.0001, 0.9999<,

8b, 0.0001, 25 <, PlotPoints Ø 35, ViewPoint Ø 81.2, 1.4, 0.3<,

AspectRatio Ø 1.1, PlotRange -> 880, 1<, 80, 20<, 80, 0.3<<D
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LFWF peaks at 

xi = m⊥iPn
j m⊥j

where
m⊥i =

√
m2 + k2

⊥

J/ψ

ma = mb = 1.25 GeV

x

ψJ/ψ(x, b)
b[GeV−1]

minimum of LF 
energy 

denominator 

κ = 0.375 GeV
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2

where c is the dimensionless normalization factor

c−2 =
∫ 1

0
dx e

− 1
κ2

„
m2

1
x +

m2
2

1−x

«

. (5)

The Fourier transform of (4) is the impact space LFWF

ψ̃(x,b⊥) =
c κ√

π

√
x(1− x) e−

1
2 κ2χ2

, (6)

where the invariant quantity χ is

χ2 = x(1− x)b2
⊥ +

1
κ4

[
m2

1

x
+

m2
2

1− x

]
. (7)

Impact space holographic LFWFs for the π, K, D, ηc, B
and ηb mesons are depicted in Fig. 1.

The non-perturbative input to hard exclusive processes
and heavy hadron decays can be computed in terms of
gauge invariant hadronic distribution amplitudes (DAs),
which describe the momentum-fraction distribution of
partons at zero transverse impact distance in a Fock
state with a fixed number of constituents. The me-
son DA is computed from the transverse integral of the
valence quark light-front wavefunction in the light-cone
gauge [17]

φM (x,Q) =
∫ k2

⊥<Q2
d2k⊥
16π3

ψM (x,k⊥), (8)

and thus φ(x) ≡ φ(x,Q → ∞) → ψ̃(x,b⊥ → 0)/
√

4π.
From (6) we obtain the holographic distribution ampli-
tude φ(x)

φM (x) =
c κ

2π

√
x(1− x) e

− 1
2κ2

»
m2

1
x +

m2
2

1−x

–

, (9)

in the soft wall model. The distribution amplitudes for
the π, K, D, ηc, mesons are shown in Fig. 2. Predictions
for the first and second moment of the meson distribution
amplitude

〈ξN 〉M =

∫ 1
−1 ξNφM (ξ)
∫ 1
−1 φM (ξ)

, (10)

and comparison with available lattice computations are
given on Table I . In the chiral limit, the AdS distribu-
tion amplitude φAdS(x) ∼

√
x(1− x) gives for the second

moment 〈ξ2〉AdS → 1/4, compared with the asymptotic
value 〈ξ2〉PQCD → 1/5 from the PQCD asymptotic DA
φPQCD(x) ∼ x(1− x) [17] .

...............

III. PARTONIC MASS SHIFT

We compute the partonic mass shift contribution to a
meson due to the constituents quark masses [21]

M2 =M2
massless +

〈
m2

1

x

〉
+

〈
m2

2

1− x

〉
, (11)

FIG. 1: Two-parton flavored meson holographic LFWF
ψ(x,b⊥): (a) |π+〉 = |ud〉, (b) |K+〉 = |us〉, (c) |D+〉 = |cd〉,
(d) |ηc〉 = |cc〉, (e) |B+〉 = |ub〉 and (f) |ηb〉 = |bb〉. Values
for the quark masses used are mu = 2 MeV, md = 5 MeV,
ms = 95 Mev, mc = 1.25 GeV and mb = 4.2 GeV. The value
of κ = 0.375 GeV is extracted from the pion form factor [16].

for the holographic LFWF (4). Results for the partonic
mass shift contribution ∆M =

(
M2 −M2

massless

)1/2 are
compared with hadronic masses on Table II.

.....

IV. CONCLUSIONS

..........

|π+ >= |ud̄ > |K+ >= |us̄ >

|D+ >= |cd̄ >

|ηb >= |bb̄ >

|ηc >= |cc̄ >

mu = 2 MeV
md = 5 MeV

ms = 95 MeV

mc = 1.25 GeV

mb = 4.2 GeV

κ = 375 MeV

b[GeV−1]

x

|B+ >= |ub̄ >
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First Moment of  Kaon Distribution Amplitude

ξ = 1− 2x

Braun et al.

Donnellan et al.

< ξ >=
∫ 1

−1
dξ ξ φ(ξ)

< ξ >K= 0.04± 0.02

3

FIG. 2: Two-parton holographic distribution amplitude
φM (x) as function of ξ = 1−2x: a) π meson, (b) K me-
son, c) D meson and d) ηc meson. Values of quark masses
and κ as in Fig. 1. The normalization is arbitrary.

TABLE I: Predictions for the first and second moment of me-
son DA and comparison with available lattice results. Values
of quark masses and κ as in Fig. 1

M 〈ξ〉M 〈ξ2〉M
π 0.25

K 0.04± 0.02 a 0.235± 0.005a

D 0.71 0.54

ηc 0.02

B 0.96 0.91

ηb 0.002

π 0.28± 0.03b

K 0.029± 0.002 b 0.27± 0.02 b

π 0.269± 0.039c

K 0.0272± 0.0005 c 0.260± 0.006 c

aThe results correspond to ms = 65± 25 MeV from [18].
bLattice results from Ref. [19]
cLattice results from Ref. [20]

TABLE II: Partonic mass shift contribution ∆M =`
M2 −M2

massless

´1/2
to the total hadronic mass M2. Ex-

perimental values are from [18].

M ∆M MeV Mexp MeV

π 9 MeV 139.57 MeV

K 150 MeV 493.7 MeV

D 1.3 GeV 1.87 GeV

ηc 2.5 GeV 2.98 GeV

B 4.2 GeV 5.28 GeV

ηb 8.4 GeV
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Baryons in 
Ads/CFT

2 Fermionic Modes

From Nick Evans

• Baryons Spectrum in ”bottom-up” holographic QCD

GdT and Brodsky: hep-th/0409074, hep-th/0501022.

• Conformal metric x! = (xµ, z):

ds2 = g!mdx!dxm

=
R2

z2
(ηµνdxµdxν − dz2).

• Action for massive fermionic modes on AdSd+1:

S[Ψ,Ψ] =
∫

dd+1x
√

g Ψ(x, z)
(
iΓ!D! − µ

)
Ψ(x, z).

• Equation of motion:
(
iΓ!D! − µ

)
Ψ(x, z) = 0

[
i

(
zη!mΓ!∂m +

d

2
Γz

)
+ µR

]
Ψ(x!) = 0.

Helmholtz Institut, Bonn, Oct 16, 2007 Page 20
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Baryons
Holographic Light-Front Integrable Form and Spectrum

• In the conformal limit fermionic spin-1
2 modes ψ(ζ) and spin-3

2 modes ψµ(ζ)
are two-component spinor solutions of the Dirac light-front equation

αΠ(ζ)ψ(ζ) =Mψ(ζ),

where HLF = αΠ and the operator

ΠL(ζ) = −i

(
d

dζ
−

L + 1
2

ζ
γ5

)
,

and its adjoint Π†
L(ζ) satisfy the commutation relations

[
ΠL(ζ),Π†

L(ζ)
]

=
2L + 1

ζ2
γ5.

• Supersymmetric QM between bosonic and fermionic modes in AdS?

Exploring QCD, Cambridge, August 20-24, 2007 Page 47
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• Note: in the Weyl representation (iα = γ5β)

iα =



 0 I

−I 0



 , β =



0 I

I 0



 , γ5 =



I 0

0 −I



 .

• Baryon: twist-dimension 3 + L (ν = L + 1)

O3+L = ψD{!1 . . . D!qψD!q+1 . . . D!m}ψ, L =
m∑

i=1

&i.

• Solution to Dirac eigenvalue equation with UV matching boundary conditions

ψ(ζ) = C
√

ζ [JL+1(ζM)u+ + JL+2(ζM)u−] .

Baryonic modes propagating in AdS space have two components: orbital L and L + 1.

• Hadronic mass spectrum determined from IR boundary conditions

ψ± (ζ = 1/ΛQCD) = 0,

given by

M+
ν,k = βν,kΛQCD, M−

ν,k = βν+1,kΛQCD,

with a scale independent mass ratio.

Exploring QCD, Cambridge, August 20-24, 2007 Page 46
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I = 1/2 I = 3/2

0 2
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4 60 2
L

4 6

2

0
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8
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N (1650)

N (1675)

N (1700)

N (1680)

N (1720)

N (2190)

N (2250)

N (2600)

! (1232)

! (1620)

! (1905)

! (2420)

! (1700)

! (1910)

! (1920)

! (1950)

(b)(a)

(G
e
V

2
)

! (1930)

5656

7070

1-2006
8694A14 

Fig: Light baryon orbital spectrum for ΛQCD = 0.25 GeV in the HW model. The 56 trajectory corresponds to L

even P = + states, and the 70 to L odd P = − states.

Exploring QCD, Cambridge, August 20-24, 2007 Page 48
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SU(6) S L Baryon State

56 1
2 0 N 1

2

+(939)
3
2 0 ∆ 3

2

+(1232)

70 1
2 1 N 1

2

−(1535) N 3
2

−(1520)
3
2 1 N 1

2

−(1650) N 3
2

−(1700) N 5
2

−(1675)
1
2 1 ∆ 1

2

−(1620) ∆ 3
2

−(1700)

56 1
2 2 N 3

2

+(1720) N 5
2

+(1680)
3
2 2 ∆ 1

2

+(1910) ∆ 3
2

+(1920) ∆ 5
2

+(1905) ∆ 7
2

+(1950)

70 1
2 3 N 5

2

−
N 7

2

−

3
2 3 N 3

2

−
N 5

2

−
N 7

2

−(2190) N 9
2

−(2250)
1
2 3 ∆ 5

2

−(1930) ∆ 7
2

−

56 1
2 4 N 7

2

+
N 9

2

+(2220)
3
2 4 ∆ 5

2

+ ∆ 7
2

+ ∆ 9
2

+ ∆ 11
2

+(2420)

70 1
2 5 N 9

2

−
N 11

2

−(2600)
3
2 5 N 7

2

−
N 9

2

−
N 11

2

−
N 13

2

−
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Non-Conformal Extension of Algebraic Structure (Soft Wall Model)

• We write the Dirac equation

(αΠ(ζ)−M)ψ(ζ) = 0,

in terms of the matrix-valued operator Π

Πν(ζ) = −i

(
d

dζ
−

ν + 1
2

ζ
γ5 − κ2ζγ5

)
,

and its adjoint Π†, with commutation relations

[
Πν(ζ),Π†

ν(ζ)
]

=
(

2ν + 1
ζ2

− 2κ2

)
γ5.

• Solutions to the Dirac equation

ψ+(ζ) ∼ z
1
2+νe−κ2ζ2/2Lν

n(κ2ζ2),

ψ−(ζ) ∼ z
3
2+νe−κ2ζ2/2Lν+1

n (κ2ζ2).

• Eigenvalues

M2 = 4κ2(n + ν + 1).

Exploring QCD, Cambridge, August 20-24, 2007 Page 49
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• Baryon: twist-dimension 3 + L (ν = L + 1)

O3+L = ψD{!1 . . . D!qψD!q+1 . . . D!m}ψ, L =
m∑

i=1

#i.

• Define the zero point energy (identical as in the meson case) M2 →M2 − 4κ2:

M2 = 4κ2(n + L + 1).

Proton Regge Trajectory κ = 0.49GeV

Exploring QCD, Cambridge, August 20-24, 2007 Page 51
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

∫
dζ J(Q, ζ)|ψ+(ζ)|2,

F−(Q2) = g−

∫
dζ J(Q, ζ)|ψ−(ζ)|2,

where the effective charges g+ and g− are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ψ+(ζ) and ψ−(ζ) correspond

to nucleons with Jz = +1/2 and−1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

∫
dζ J(Q, ζ)|ψ+(ζ)|2,

Fn
1 (Q2) = −1

3

∫
dζ J(Q, ζ)

[
|ψ+(ζ)|2 − |ψ−(ζ)|2

]
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52
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• Scaling behavior for large Q2: Q4F p
1 (Q2)→ constant Proton τ = 3

0

0.4

0.8

1.2

0 10 20 30

Q2  (GeV2)

Q
4
F

p 1
 (

Q
2
) 

(G
e

V
4
)

9-2007

8757A2

SW model predictions for κ = 0.424 GeV. Data analysis from: M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 29
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Dirac Neutron Form Factor

(Valence Approximation)

Q4Fn
1 (Q2) [GeV4]

1 2 3 4 5 6
-0.35

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

Q2 [GeV2]

Prediction for Q4Fn
1 (Q2) for ΛQCD = 0.21 GeV in the hard wall approximation. Data analysis from

Diehl (2005).

CAQCD, Minneapolis, May 11-14, 2006 Page 29108

Truncated Space Confinement
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• Scaling behavior for large Q2: Q4Fn
1 (Q2)→ constant Neutron τ = 3

0

-0.1

-0.2

-0.3

-0.40 10 20 30
Q2  (GeV2)

Q4 F
n 1 (

Q2 ) 
(G

eV
4 )

9-2007
8757A1

SW model predictions for κ = 0.424 GeV. Data analysis from M. Diehl et al. Eur. Phys. J. C 39, 1 (2005).

Helmholtz Institut, Bonn, Oct 16, 2007 Page 30
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0 1 2 3 4 5 6
0

0.5

1

1.5

2

Untitled-1 1

Spacelike Pauli Form Factor

F2(Q2)

Q2(GeV2)

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j

Harmonic Oscillator 
Confinement

Normalized to anomalous 
moment

F p
2 (Q2)

κ = 0.49 GeV

G. de Teramond, sjb 

Preliminary
From overlap of L = 1 and L = 0 LFWFs
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AdS/CFT and Integrability

• L. Infeld, “On a new treatment of some 
eigenvalue problems”, Phys. Rev. 59, 737 (1941). 

• Generate  eigenvalues and eigenfunctions using 
Ladder Operators

• Apply to Covariant Light-Front Radial Dirac and 
Schrodinger Equations

111
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Algebraic Structure , Integrability and Stability Conditions (HW Model)

• If L2 > 0 the LF Hamiltonian, HLF , can be written as a bilinear form

HL
LF (ζ) = Π†

L(ζ)ΠL(ζ)

in terms of the operator

ΠL(ζ) = −i

(
d

dζ
−

L + 1
2

ζ

)
,

and its adjoint

Π†
L(ζ) = −i

(
d

dζ
+

L + 1
2

ζ

)
,

with commutation relations [
ΠL(ζ),Π†

L(ζ)
]

=
2L + 1

ζ2
.

• For L2 ≥ 0 the Hamiltonian is positive definite

〈φ
∣∣HL

LF

∣∣ φ〉 =
∫

dζ |ΠLφ(z)|2 ≥ 0

and thus M2 ≥ 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 18
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Ladder Construction of Orbital States

• Orbital excitations constructed by the L-th application of the raising operator

a†
L = −iΠL

on the ground state:

a†|L〉 = cL|L + 1〉.

• In the light-front ζ-representation

φL(ζ) = 〈ζ|L〉 = CL

√
ζ (−ζ)L

(
1
ζ

d

dζ

)L

J0(ζM)

= CL

√
ζJL (ζM) .

• The solutions φL are solutions of the light-front equation (L = 0,±1,±2, · · · )
[
− d2

dζ2
− 1− L2

4ζ2

]
φ(ζ) = M2φ(ζ),

• Mode spectrum from boundary conditions : φ (ζ = 1/ΛQCD) = 0.

• The effective wave equation in the two-dim transverse LF plane has the Casimir representation L2

corresponding to the SO(2) rotation group [The Casimir for SO(N) ∼ SN−1 is L(L + N − 2) ].

Exploring QCD, Cambridge, August 20-24, 2007 Page 20113
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Non-Conformal Extension of Algebraic Integrability (SW Model)

• Soft-wall model [Karch, Katz, Son and Stephanov (2006)] retain conformal AdS metrics but introduce

smooth cutoff which depends on the profile of a dilaton background field ϕ(z).

• Consider the generator (short-distance Coulombic and long-distance linear potential)

ΠL(ζ) = −i

(
d

dζ
−

L + 1
2

ζ
− κ2ζ

)
,

and its adjoint

Π†
L(ζ) = −i

(
d

dζ
+

L + 1
2

ζ
+ κ2ζ

)
,

with commutation relations
[
ΠL(ζ),Π†

L(ζ)
]

=
2L + 1

ζ2
− 2κ2.

• The LF Hamiltonian

HLF = Π†
LΠL + C

is positive definite 〈φ|HLF |φ〉 ≥ 0 for L2 ≥ 0, and C ≥ −4κ2.

• Orbital and radial excited states are constructed from the ladder operators from the L = 0 state.

Exploring QCD, Cambridge, August 20-24, 2007 Page 25
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• Predictions for hadronic spectra, light-front 
wavefunctions, interactions

• Deduce meson and baryon  wavefunctions, 
distribution amplitude, structure function  from 
holographic constraint

• Identification of Orbital Angular Momentum  
Casimir for SO(2):  LF Rotations

• Extension to massive quarks

Holographic Connection 
between LF and AdS/CFT

115
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New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental frame-independent description of 
hadrons at amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances

116
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Quark Interchange
(Spin exchange in atom-

atom scattering)

Gluon Exchange
(Van der Waal -- 

Landshoff)
dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

K+

p

u

s

d

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

sntot−2

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

sntot−2
M(t, u)interchange ∝ 1

ut2

M(s, t)gluonexchange ∝ sF (t)

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

MIT Bag Model (de Tar), large  NC,  (‘t Hooft), AdS/CFT
 all predict dominance of quark interchange:

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

s2

CIM: Blankenbecler, Gunion, sjb

K+

p

g

u

s

d

dσ
dt = |M(s,t)|2

s2
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AdS/CFT explains why  
quark interchange is 

dominant 
interaction at high 
momentum transfer 

in exclusive reactions

Non-linear Regge behavior:

αR(t)→ −1

z = ζ

κ4

β = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

ψ(x, b⊥)

118

dσ
dt = |M(s,t)|2

sntot−2

M(t, u)interchange ∝ 1
ut2

σ

|b⊥|

ψ(σ, b⊥)

A(σ, b⊥) =
1

2π

∫
dζeiσζÃ(b⊥, ζ)

Quark Interchange
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Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Why is quark-interchange dominant over gluon
exchange?

Example: M(K+p→ K+p) ∝ 1
ut2

Exchange of common u quark

MQIM =
∫

d2k⊥dx ψ†
Cψ†

D∆ψAψB

Holographic model (Classical level):

Hadrons enter 5th dimension of AdS5

Quarks travel freely within cavity as long as
separation z < z0 = 1

ΛQCD

LFWFs obey conformal symmetry producing
quark counting rules.
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• AdS/CFT:  Duality between string theory in  Anti-de 
Sitter Space and  Conformal Field Theory

• New Way to Implement Conformal Symmetry

• Holographic Model: Conformal Symmetry at Short 
Distances, Confinement at large distances

• Remarkable predictions for hadronic spectra, 
wavefunctions, interactions

• AdS/CFT provides novel insights into the quark 
structure of hadrons

New Perspectives on QCD 
Phenomena from AdS/CFT
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ψ(x,k⊥)
HQCD
LF |ψ>=M2|ψ>

Dirac’s Front Form: Fixed τ= t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n∑

i=1
xi = 1Remarkable new insights from AdS/CFT,              

the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ
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Some Applications of Light-Front Wavefunctions

• Exact formulae for form factors, quark and gluon distributions; 
vanishing anomalous gravitational moment; edm connection to 
anm

• Deeply Virtual Compton Scattering, generalized parton 
distributions, angular momentum sum rules

• Exclusive weak decay amplitudes

• Single spin asymmetries: Role of ISI and FSI

• Factorization theorems, DGLAP, BFKL, ERBL Evolution

• Quark interchange amplitude

• Relation of spin, momentum, and other distributions to  physics of 
the hadron itself.
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FIGURE 10. The matrix element in the integrand of the parton distribution (8), i.e., the handbag diagram of Fig. 8 viewed in
coordinate space (rescattering is not shown). The position of the struck quark differs by x− in the two wave functions (whereas
x+ = x⊥ = 0).

The rhs. of this equation is essentially given by the F2 structure function. Thus we can study the A-dependence of the

parton distribution in coordinate space, defined as

qA(x−,Q2) ≡
∫ 1

0

dxB

xB
FD2 (xB,Q

2)RAF2(xB,Q
2)sin

(

1
2
mxBx

−)

(11)

where RAF2(xB,Q
2) is the experimentally measured ratio of nuclear to deuterium structure functions sketched in Fig. 9.

The corresponding ratio in coordinate space, defined as

RA(x−,Q2) ≡
qA(x−,Q2)

qD(x−,Q2)
(12)

can then be formed using data on structure functions and is shown in Fig. 11a.
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FIGURE 11. (a) The coordinate space ratio RA(x−,Q2) (12) obtained by Fourier transforming data on FA2 (xB,Q
2) structure

functions for A = He, C and Ca. (b) The momentum space ratio R̃C(xB,w,Q2 = 5 GeV2) for Carbon, obtained by Fourier
transforming a modified coordinate space distribution in which all nuclear effects are eliminated for x− < w.

Within the ca. 1% error bars [9] the ratio RA(x−,Q2) is consistent with having no A-dependence for x− <∼ 5 fm. At
longer distances x− > 5 (i.e., t = −z > 2.5 fm since x+ = 0) shadowing sets in. Thus viewed from coordinate space
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P. Hoyer

Increases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

σ = 1
2x−P+

x−

Space-time picture of  DVCSIncreases PQCD leading twist prediction for
Fπ(Q2) by factor 16/9

φasymptotic ∝ x(1− x)

Normalized to fπ

σ = 1
2x−P+

Measure x- distribution from DVCS: 
Take Fourier transform of skewness, 
the longitudinal momentum transfer 
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dξei12ξσÃ(ξ,#b⊥)

ψΛ(xi,#k⊥i, λI)

Λ

125



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008

Diffractive Dissociation of Pion  
into Quark Jets

Measure Light-Front Wavefunction of Pion

Minimal momentum transfer to nucleus
Nucleus left Intact!

E791 Ashery et al.

126

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2
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E791 FNAL Diffractive DiJet 

Two-gluon exchange measures the second derivative of the pion
light-front wavefunction

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

q̄

N

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

q̄

M ∝ ∂2

∂2k⊥
ψπ(x, k⊥)

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

 Gunion, Frankfurt, Mueller, Strikman, sjb
Frankfurt, Miller, Strikman
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Key Ingredients in  E791 Experiment

Small color-dipole moment pion not absorbed; 
interacts with each nucleon coherently 

QCD COLOR Transparency

q

q̄

g

π
q

q̄

g

π

q

q̄

g

π
N

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

q̄

Target left intact

Brodsky Mueller
Frankfurt Miller Strikman

Diffraction, Rapidity gap

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q

MA = A MN

dσ
dt (πA → qq̄A′) = A2 dσ

dt (πN → qq̄N ′) F2
A(t)

M ∝ i s α2
s bπ

⊥ bN
⊥

σ ∝ α4
s (bπ

⊥)2 (bN
⊥)2

M ∝ b⊥

M ∝ s

q
128

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)

A

A′

σ = x− = ct − x3

x+ = ct + x3

x1

x2

log10 Q2(GeV2)
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Color Transparency

• Fundamental test of gauge theory in hadron physics

• Small color dipole moments interact weakly in nuclei

• Complete coherence at high energies

• Clear Demonstration of CT from Diffractive Di-Jets

Bertsch, Gunion, Goldhaber, sjb
A. H. Mueller,  sjb

129



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008

D. Ashery / Progress in Particle and Nuclear Physics 56 (2006) 279–339 301

Table 1

The exponent in σ ∝ Aα , experimental results for coherent dissociation and the color-transparency (CT) predictions [69]

kt bin (GeV/c) α #αstat #αsys #α α(CT)

1.25–1.5 1.64 ±0.05 +0.04–0.11 +0.06–0.12 1.25

1.5–2.0 1.52 ±0.09 ±0.08 ±0.12 1.45

2.0–2.5 1.55 ±0.11 ±0.12 ±0.16 1.60

Fig. 14. q2t distributions of dijets with 1.5 ≤ kt ≤ 2.0 GeV/c for the platinum and carbon targets. The lines are fits of the

MC simulations to the data: coherent nuclear dissociation (dotted line), coherent nucleon/incoherent nuclear dissociation

(dashed line), background (dashed–dotted line) and total fit (solid line).

note also that in their more recent work [70] the authors carried out more detailed calculations

and predicted a value α = 1.54.

This process was calculated also by Nikolaev et al. [74] who include higher twist corrections.

They calculate the α dependence and their results are very similar to those shown in Table 1 as
derived from [69].

In summary of this section we may conclude that color transparency was well demonstrated

in vector meson electroproduction and in diffractive dissociation of the pion to dijets. It was not

unambiguously verified for the proton. It is important to understand the experimental results for

the proton: why (e, e′ p) experiments show no sign of CT and why (p, 2p) experiments show a

rise and fall of transparency, strongly deviating from Glauber calculations and at the same time

not reproducing the expected CT signature. It can be expected that if the effect exists in the qq̄

system it should also exist for the qqq system. One could argue that the probability to find a qq̄ at

short distances is higher than that to find a qqq in short distances. If we interpret these systems as

the valence components of their respective LCWFs, this may indicate that the contribution of the

valence component to the total LCWF may be different for mesons and baryons. The difficulties

encountered in understanding the anomalous spin effects in pp scattering [25,26] leave this as an

open question. For observation of CT with protons there might also be the problem of choosing

the sensitive process: reaction, momentum transfer etc. that would select a proton in a PLC

state and the observable that would identify it as such. It may be that diffractive dissociation

of protons or perhaps baryon photoproduction would show this effect. Following the example

Nuclear coherence Nuclear coherence

F2
A(q2⊥) ∼ e−

1
3R2

Aq2⊥

∆Pz =
M2

final−M2
initial

2ELab

LIoffe = 1
∆Pz

∼ 2Elab
M2

qq̄

For Eπ
Lab = 500GeV,

M2
qq̄ < 50GeV2

LIoffe > 4fm ∼ RA
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E791 Collaboration, E. Aitala et al., Phys. Rev. Lett. 86, 4773 (2001)

A-Dependence results: σ ∝ Aα

kt range (GeV/c) α α (CT)

1.25 < kt < 1.5 1.64 +0.06 -0.12 1.25

1.5 < kt < 2.0 1.52 ± 0.12 1.45

2.0 < kt < 2.5 1.55 ± 0.16 1.60

α (Incoh.) = 0.70 ± 0.1

131

Measure pion LFWF in diffractive dijet production 
Confirmation of color transparency 

Mueller, sjb; Bertsch et al; 
Frankfurt, Miller, Strikman

Conventional Glauber Theory Ruled 
Out ! 

Factor of 7

Ashery E791 
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D. Ashery, Tel Aviv University

THE kt DEPENDENCE OF DI-JETS YIELD

dσ

dk2
t

∝
∣∣∣∣αs(k

2
t )G(x, k2

t )
∣∣∣∣
2

∣∣∣∣∣∣∣

∂2

∂k2
t

ψ(u, kt)

∣∣∣∣∣∣∣

2

With ψ ∼ φ
k2
t
, weak φ(k2

t ) and αs(k2
t ) dependences and G(x, k2

t ) ∼ k1/2
t : dσ

dkt
∼ k−6

t

For low kt:

Gaussian: ψ ∼ e−βk2
t (Jakob and Kroll)

Coulomb: ψ(p) =
(

1
1+p2/p2

a

)2
(Pauli)

High Transverse 
momentum  dependence 

consistent with PQCD, 
ERBL Evolution
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Two Componentsdσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Fixed t/s or cos θcm

ntot = nA + nB + nC + nD

ν = L

dσ
dkT
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ζ ↔ z

M =
∫
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Gaussian
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Gaussian
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M =
∫
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E791 Diffractive Di-Jet transverse momentum distribution

Gaussian component similar 
to AdS/CFT HO LFWF
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310 D. Ashery / Progress in Particle and Nuclear Physics 56 (2006) 279–339

Fig. 22. The u distribution of diffractive dijets from the platinum target for 1.25 ≤ kt ≤ 1.5 GeV/c (left) and for

1.5 ≤ kt ≤ 2.5 GeV/c (right). The solid line is a fit to a combination of the asymptotic and CZ distribution amplitudes.

The dashed line shows the contribution from the asymptotic function and the dotted line that of the CZ function.

They were identified through the e−bq2t dependence of their yield (q2t is the square of the trans-

verse momentum transferred to the nucleus and b = 〈R2〉
3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:

∣∣∣∣

∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣
2

= |φ(u, k2) − φ(u, k1)|2. (48)
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verse momentum transferred to the nucleus and b = 〈R2〉
3
where R is the nuclear radius).

For measurement of the wave function the most forward events (q2t < 0.015 GeV/c2) from
the platinum target were used, see Fig. 14. For these events, the value of u was computed from

the measured longitudinal momenta of the jets. The analysis was carried out in two windows of

transverse momentum kt : 1.25 GeV/c ≤ kt ≤ 1.5 GeV/c and 1.5 GeV/c ≤ kt ≤ 2.5 GeV/c.

The resulting u distributions are shown in Fig. 22. In order to get a measure of the correspondence

between the experimental results and the calculated distribution amplitudes, the results were fit

with a linear combination of squares of the two distribution amplitudes after smearing, as shown

on the right side of Fig. 21. This assumes an incoherent combination of the two distribution

amplitudes and that the evolution of the Chernyak–Zhitnitsky function is slow (as stated in [32]).

The results for the higher kt window show that the asymptotic distribution amplitude describes

the data very well. Hence, for kt > 1.5 GeV/c, which translates to Q2 ∼ 10 (GeV/c)2, the
pQCD approach that led to construction of the asymptotic distribution amplitude is reasonable.

The distribution in the lower window is consistent with a significant contribution from the

Chernyak–Zhitnitsky distribution amplitude or may indicate contributions due to other non-

perturbative effects.

The quantity measured in this experiment, the distribution of longitudinal momentumwithin a

kt window, is not exactly the distribution amplitude. The latter is an integral over kt with a lower

limit of zero, covering the low Q2 non-perturbative region (Eq. (4)). The results can be regarded

instead as representing the square of the light-conewave function averaged over kt in the window:

ψ2
qq̄(u, 〈kt 〉). With the measured kt -dependence described in Section 3.3.4 the average values are

〈kt 〉 = 1.34 GeV/c and 1.75 GeV/c for the low and high kt windows, respectively:ψ
2
qq̄(u, 1.34)

and ψ2
qq̄(u, 1.75) were measured. Alternatively, the results for each window can be related to the

difference of distribution amplitudes:

∣∣∣∣

∫ k2

k1

ψ(u, kt )d
2kt

∣∣∣∣
2

= |φ(u, k2) − φ(u, k1)|2. (48)

x
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shown in Fig. 1. The corresponding predictions for !R and

!MS using the CSRs at NLO are also shown. Note that for

low Q2 the couplings, although frozen, are large. Thus the

NLO and higher-order terms in the CSRs are large, and in-

verting them perturbatively to NLO does not give accurate

results at low scales. In addition, higher-twist contributions

to !V and !R , which are not reflected in the CSR relating

them, may be expected to be important for low Q2 "35#.
It is clear that exclusive processes such as the pion and

photon to pion transition form factors can provide a valuable

window for determining the magnitude and the shape of the

effective charges at quite low momentum transfers. In par-

ticular, we can check consistency with the !V prediction

from lattice gauge theory. A complimentary method for de-

termining !V at low momentum is to use the angular anisot-

ropy of e!e"→QQ̄ at the heavy quark thresholds "36#. It
should be emphasized that the parametrization $18% is just an
approximate form. The actual behavior of !V(Q

2) at low Q2

is one of the key uncertainties in QCD phenomenology. In

this paper we shall use exclusive observables to deduce in-

formation on this quantity.

IV. APPLICATIONS

As we have emphasized, exclusive processes are sensitive

to the magnitude and shape of the QCD couplings at quite

low momentum transfer: QV
*2!e"3Q2!Q2/20 and

QR
*2!Q2/50 "37#. The fact that the data for exclusive pro-

cesses such as form factors, two photon processes such as

&&→'!'", and photoproduction at fixed (c .m . are consis-
tent with the nominal scaling of the leading-twist QCD pre-

dictions $dimensional counting% at momentum transfers Q up

to the order of a few GeV can be immediately understood if

the effective charges !V and !R are slowly varying at low

momentum. The scaling of the exclusive amplitude then fol-

lows that of the subprocess amplitude TH with effectively

fixed coupling. Note also that the Sudakov effect of the end-

point region is the exponential of a double log series if the

coupling is frozen, and thus is strong.

In Fig. 2, we compare the recent CLEO data "38# for the
photon to pion transition form factor with the prediction

Q2F&'$Q2%#2 f '" 1"
5

3

!V$e"3/2Q %

' # . $19%

The flat scaling of the Q2F&'(Q
2) data from Q2#2 to

Q2#8 GeV2 provides an important confirmation of the ap-

plicability of leading twist QCD to this process. The magni-

tude of Q2F&'(Q
2) is remarkably consistent with the pre-

dicted form assuming the asymptotic distribution amplitude

and including the LO QCD radiative correction with

!V(e
"3/2Q)/'!0.12. Radyushkin "39#, Ong "40# and Kroll

"41# have also noted that the scaling and normalization of the
photon-to-pion transition form factor tends to favor the

asymptotic form for the pion distribution amplitude and rules

out broader distributions such as the two-humped form sug-

gested by QCD sum rules "42#. One cannot obtain a unique
solution for the non-perturbative wave function from the F'&
data alone. However, we have the constraint that

1

3
$ 1

1"x
% &1"

5

3

!V$Q*%

' '!0.8 $20%

"assuming the renormalization scale we have chosen in Eq.
$13% is approximately correct#. Thus one could allow for

some broadening of the distribution amplitude with a corre-

sponding increase in the value of !V at low scales.

In Fig. 3 we compare the existing measurements of the

space-like pion form factor F'(Q
2) "43,44# $obtained from

the extrapolation of &*p→'!n data to the pion pole% with
the QCD prediction $10%, again assuming the asymptotic
form of the pion distribution amplitude. The scaling of the

FIG. 1. The coupling function !V(Q
2) as given in Eq. $18%.

Also shown are the corresponding predictions for !MS̄ and !R fol-

lowing from the NLO commensurate scale relations "Eqs. $2% and
$9%#.

FIG. 2. The &→'0 transition form factor. The solid line is the

full prediction including the QCD correction "Eq. $19%#; the dotted
line is the LO prediction Q2F&'(Q

2)#2 f ' .

FIG. 3. The space-like pion form factor.
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where !M(x ,Q̃) is the process-independent meson distribu-

tion amplitude, which encodes the non-perturbative dynam-

ics of the bound valence Fock state up to the resolution scale

Q̃ , and

TH"x ,y ,Q2#!
16$CF%s"&#

"1"x #"1"y #Q2 '1#O"%s#( "6#

is the leading-twist perturbatively-calculable subprocess am-

plitude )*q(x) q̄ (1"x)→q(y) q̄ (1"y), obtained by re-

placing the incident and final mesons by valence quarks col-

linear up to the resolution scale Q̃ . The contributions from

non-valence Fock states and the correction from neglecting

the transverse momentum in the subprocess amplitude from

the non-perturbative region are higher twist, i.e., power-law

suppressed. The transverse momenta in the perturbative do-

main lead to the evolution of the distribution amplitude and

to NLO corrections in %s . The contribution from the end-

point regions of integration, x*1 and y*1, are power-law
and Sudakov suppressed and thus can only contribute correc-

tions at higher order in 1/Q '4(.
The distribution amplitude !(x ,Q̃) is boost and gauge

invariant and evolves in lnQ̃ through an evolution equation

'4(. It can be computed from the integral over transverse

momenta of the renormalized hadron valence wave function

in the light-cone gauge at fixed light-cone time '4(:

!"x ,Q̃ #!! d2k!!+" Q̃2"
k!!
2

x"1"x #
#,"Q̃ #"x ,k!!#. "7#

The physical pion form factor must be independent of the

separation scale Q̃ . The natural variable in which to make
this separation is the light-cone energy, or equivalently the

invariant mass M2!k!!
2 /x(1"x), of the off-shell partonic

system '20,4(. Any residual dependence on the choice of Q̃
for the distribution amplitude will be compensated by a cor-
responding dependence of the NLO correction in TH . How-
ever, the NLO prediction for the pion form factor depends
strongly on the form of the pion distribution amplitude as
well as the choice of renormalization scale & and scheme.
It is straightforward to obtain the commensurate scale re-

lation between F$ and %V following the procedure outlined
above. The appropriate BLM scale for F$ is determined
from the explicit calculations of the NLO corrections given
by Dittes and Radyushkin '21( and Field et al. '22(. These
may be written in the form 'A(&)n f#B(&)(%s /$ , where A
is independent of the separation scale Q̃ . The n f dependence
allows one to uniquely identify the dependence on -0, which
is then absorbed into the running coupling by a shift to the

BLM scale Q*!e3A(&)& . An important check of self-

consistency is that the resulting value for Q* is independent
of the choice of the starting scale & .
Combining this result with the BLM scale-fixed expres-

sion for %V , and eliminating the intermediate coupling, we

find

F$"Q2#!!
0

1

dx!$"x #!
0

1

dy!$"y #
16$CF%V"QV#

"1"x #"1"y #Q2" 1#CV

%V"QV#

$ #
!"4!

0

1

dx!$"x #!
0

1

dy!$"y #V"QV
2 #" 1#CV

%V"QV#

$ # , "8#

where CV!"1.91 is the same coefficient one would obtain
in a conformally invariant theory with -!0, and

QV
2.(1"x)(1"y)Q2. In this analysis we have assumed

that the pion distribution amplitude has the asymptotic form

!$!!3 f $x(1"x), where the pion decay constant is f $$93
MeV. In this simplified case the distribution amplitude does

not evolve, and there is no dependence on the separation

scale Q̃ . This commensurate scale relation between F$(Q
2)

and /%V(QV)0 represents a general connection between the
form factor of a bound-state system and the irreducible ker-

nel that describes the scattering of its constituents.

Alternatively, we can express the pion form factor in

terms of other effective charges such as the coupling %R(!s)
that defines the QCD radiative corrections to the e#e"→X

cross section: R(s).31eq
2'1#%R(!s)/$( . The CSR be-

tween %V and %R is

%V"QV#!%R"QR#" 1"
25

12

%R

$
#••• # , "9#

where the ratio of commensurate scales to this order is

QR /QV!e23/12"223$0.614.
If we expand the QCD coupling about a fixed point in

NLO '10(: %s(QV)$%s(Q0)'1"„-0%s(Q0)/2$…ln(QV /Q0)(,
then the integral over the effective charge in Eq. "8# can be
performed explicitly. Thus, assuming the asymptotic distri-

bution amplitude, the pion form factor at NLO is

Q2F$"Q2#!16$ f$
2%V"Q*#" 1"1.91

%V"Q*#

$ # , "10#

where Q*!e"3/2Q . In this approximation lnQ*2

!/ln(1"x)(1"y)Q20, in agreement with the explicit calcula-
tion. A striking feature of this result is that the physical scale

controlling the meson form factor in the %V scheme is very

low: e"3/2Q$0.22Q , reflecting the characteristic momentum
transfer experienced by the spectator valence quark in

lepton-meson elastic scattering.

We may also determine the renormalization scale of %V

for more general forms of the coupling by direct integration

over x and y in Eq. "8#, assuming a specific analytic form for
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missing-mass spectra. The multiple-pion simulation was
used to determine the location of the cut on the experimen-
tal missing-mass spectrum such that the contamina-
tion from multiple-pion events was less than 0.4%.
This allowed the missing-mass cut to be placed
!10–50 MeV=c2 above the actual kinematic threshold
for two-pion production. The simulation was able to re-
produce the shapes of the measured W, Q2, and jtj distri-
butions versus the missing mass reasonably well for all
targets and Q2 settings. Representative missing-mass
spectra for 12C"e; e0!# are shown together with the Plane
Wave Impulse Approximation (PWIA) simulation in Fig. 1
for all Q2 settings. The agreement between the missing-
mass spectra obtained from data and simulation improves
with increasing Q2. The discrepancy seen at Q2 $
1:1 "GeV=c#2 can be attributed to the reaction mechanisms
missing from the simulations such as final-state interac-
tions between the knocked-out neutron and the residual
nucleons (nN-FSI) and short range correlations.

In order to extract the nuclear transparency from the
experimental yields, the cross section for the bound proton
must be corrected for the effects of Fermi motion, Pauli
blocking, the off-shell properties of the proton, and the
acceptances of the spectrometers. In order to account for
these effects, the nuclear transparency was formed using
the experimental charge normalized yield, !Y, divided by
the charge normalized Monte Carlo equivalent yield, !YMC.
For a given target, with nucleon number, A, the nuclear
transparency was defined as

 T $ " !Y= !YMC#A=" !Y= !YMC#H; (1)

where the denominator is the ratio of the yields from the 1H
target. As the Monte Carlo simulation does not include
final-state interactions between the pion and the residual
nucleons, the nuclear transparency is a measure of these
final-state interactions, and the reduction of these interac-
tions is a signature of CT.

Traditional nuclear physics calculations based on the
Glauber multiple scattering mechanism [19] are expected
to be energy-independent ( because the !-nucleon cross
section is constant for the energies in this experiment). To
investigate the energy dependence, the extracted nuclear
transparency is shown as a function of Q2 in Fig. 2. The
point-to-point (Q2 dependent) systematic uncertainty is
2.4–3.2%, dominated by uncertainty in the spectral func-
tion (1%) and the iteration procedure (1%). There is an
additional normalization systematic uncertainty of 1.1%
(not shown in the figure) with pion absorption correction
(0.5%), and target thickness (1%) being the main sources.
The Q2 dependent model uncertainty is 7.6%, 5.7%, 3.5%,
3.8%, and 3.8% for Q2 $ 1:1, 2.1, 3.0, 3.9, and
4:7 "GeV=c#2, respectively. This uncertainty was deter-
mined from the change in Q2 dependence of the trans-
parency when using two different spectral functions and
two different Fermi distributions in the simulation, and the

Q2 dependent uncertainty from reactions mechanisms not
included in the simulation (estimated by quantifying the
difference in shape of the missing-mass spectra from data
and simulation) added in quadrature. The Q2 dependent
model uncertainty is shown as a dark band in the bottom
right panel of Fig. 2. There is an additional 7.0% normal-
ization type model uncertainty, independent of Q2, not
shown in the figure. The observed Q2 dependence of the
transparency deviates from the calculations without CT of
Larson et al. and Cosyn et al. [20,21], and are in better
agreement with the CT calculations of the same authors.
Larson et al. use a semiclassical Glauber multiple scatter-
ing approximation, while Cosyn et al. use a relativistic
version of Glauber multiple scattering theory. Both groups
incorporate CT using the quantum diffusion model of
Ref. [22] with the same parameters " $ 1 fm=c and M2

h $
0:7 GeV2.

In addition to the Q2 dependence, the dependence of the
nuclear transparency on A is important in the search of CT
effects and is examined by fitting the transparency as a
function of A at fixed Q2 to the form T $ A#%1. The
parameter # is found to be !0:76 in fits to the pion-nucleus
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FIG. 2 (color online). Nuclear transparency, T, vs Q2 for 2H
and 12C (left, top panel), 27Al (right, top), 63Cu (left, bottom),
and 197Au (right, bottom). The inner error bars are the statistical
uncertainties, and the outer error bars are the statistical and
point-to-point systematic uncertainties added in quadrature.
The dark band in the bottom right panel is the Q2 dependent
model uncertainty, and is the same for all nuclei. The solid and
dashed lines are Glauber and Glauber plus CT calculations,
respectively [20]. Similarly, the dot-dash and dotted lines are
Glauber and Glauber plus CT calculations, respectively [21].
These calculations also include the effect of short range corre-
lations (SRC).
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produce the shapes of the measured W, Q2, and jtj distri-
butions versus the missing mass reasonably well for all
targets and Q2 settings. Representative missing-mass
spectra for 12C"e; e0!# are shown together with the Plane
Wave Impulse Approximation (PWIA) simulation in Fig. 1
for all Q2 settings. The agreement between the missing-
mass spectra obtained from data and simulation improves
with increasing Q2. The discrepancy seen at Q2 $
1:1 "GeV=c#2 can be attributed to the reaction mechanisms
missing from the simulations such as final-state interac-
tions between the knocked-out neutron and the residual
nucleons (nN-FSI) and short range correlations.

In order to extract the nuclear transparency from the
experimental yields, the cross section for the bound proton
must be corrected for the effects of Fermi motion, Pauli
blocking, the off-shell properties of the proton, and the
acceptances of the spectrometers. In order to account for
these effects, the nuclear transparency was formed using
the experimental charge normalized yield, !Y, divided by
the charge normalized Monte Carlo equivalent yield, !YMC.
For a given target, with nucleon number, A, the nuclear
transparency was defined as

 T $ " !Y= !YMC#A=" !Y= !YMC#H; (1)

where the denominator is the ratio of the yields from the 1H
target. As the Monte Carlo simulation does not include
final-state interactions between the pion and the residual
nucleons, the nuclear transparency is a measure of these
final-state interactions, and the reduction of these interac-
tions is a signature of CT.

Traditional nuclear physics calculations based on the
Glauber multiple scattering mechanism [19] are expected
to be energy-independent ( because the !-nucleon cross
section is constant for the energies in this experiment). To
investigate the energy dependence, the extracted nuclear
transparency is shown as a function of Q2 in Fig. 2. The
point-to-point (Q2 dependent) systematic uncertainty is
2.4–3.2%, dominated by uncertainty in the spectral func-
tion (1%) and the iteration procedure (1%). There is an
additional normalization systematic uncertainty of 1.1%
(not shown in the figure) with pion absorption correction
(0.5%), and target thickness (1%) being the main sources.
The Q2 dependent model uncertainty is 7.6%, 5.7%, 3.5%,
3.8%, and 3.8% for Q2 $ 1:1, 2.1, 3.0, 3.9, and
4:7 "GeV=c#2, respectively. This uncertainty was deter-
mined from the change in Q2 dependence of the trans-
parency when using two different spectral functions and
two different Fermi distributions in the simulation, and the

Q2 dependent uncertainty from reactions mechanisms not
included in the simulation (estimated by quantifying the
difference in shape of the missing-mass spectra from data
and simulation) added in quadrature. The Q2 dependent
model uncertainty is shown as a dark band in the bottom
right panel of Fig. 2. There is an additional 7.0% normal-
ization type model uncertainty, independent of Q2, not
shown in the figure. The observed Q2 dependence of the
transparency deviates from the calculations without CT of
Larson et al. and Cosyn et al. [20,21], and are in better
agreement with the CT calculations of the same authors.
Larson et al. use a semiclassical Glauber multiple scatter-
ing approximation, while Cosyn et al. use a relativistic
version of Glauber multiple scattering theory. Both groups
incorporate CT using the quantum diffusion model of
Ref. [22] with the same parameters " $ 1 fm=c and M2

h $
0:7 GeV2.

In addition to the Q2 dependence, the dependence of the
nuclear transparency on A is important in the search of CT
effects and is examined by fitting the transparency as a
function of A at fixed Q2 to the form T $ A#%1. The
parameter # is found to be !0:76 in fits to the pion-nucleus
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FIG. 2 (color online). Nuclear transparency, T, vs Q2 for 2H
and 12C (left, top panel), 27Al (right, top), 63Cu (left, bottom),
and 197Au (right, bottom). The inner error bars are the statistical
uncertainties, and the outer error bars are the statistical and
point-to-point systematic uncertainties added in quadrature.
The dark band in the bottom right panel is the Q2 dependent
model uncertainty, and is the same for all nuclei. The solid and
dashed lines are Glauber and Glauber plus CT calculations,
respectively [20]. Similarly, the dot-dash and dotted lines are
Glauber and Glauber plus CT calculations, respectively [21].
These calculations also include the effect of short range corre-
lations (SRC).

PRL 99, 242502 (2007) P H Y S I C A L R E V I E W L E T T E R S week ending
14 DECEMBER 2007

242502-4

Measurement of Nuclear Transparency for the A!e; e0!"# Reaction

B. Clasie,1 X. Qian,2 J. Arrington,3 R. Asaturyan,4 F. Benmokhtar,5 W. Boeglin,6 P. Bosted,7 A. Bruell,7 M. E. Christy,8

E. Chudakov,7 W. Cosyn,9 M. M. Dalton,10 A. Daniel,11 D. Day,12 D. Dutta,13,2 L. El Fassi,3 R. Ent,7 H. C. Fenker,7

J. Ferrer,14 N. Fomin,12 H. Gao,1,2 K. Garrow,15 D. Gaskell,7 C. Gray,10 T. Horn,5,7 G. M. Huber,16 M. K. Jones,7

N. Kalantarians,11 C. E. Keppel,7,8 K. Kramer,2 A. Larson,17 Y. Li,11 Y. Liang,18 A. F. Lung,7 S. Malace,8 P. Markowitz,6

A. Matsumura,19 D. G. Meekins,7 T. Mertens,20 G. A. Miller,17 T. Miyoshi,11 H. Mkrtchyan,4 R. Monson,21

T. Navasardyan,4 G. Niculescu,14 I. Niculescu,14 Y. Okayasu,19 A. K. Opper,18 C. Perdrisat,22 V. Punjabi,23 A. W. Rauf,24

V. M. Rodriquez,11 D. Rohe,20 J. Ryckebusch,9 J. Seely,1 E. Segbefia,8 G. R. Smith,7 M. Strikman,25 M. Sumihama,19

V. Tadevosyan,4 L. Tang,7,8 V. Tvaskis,7,8 A. Villano,26 W. F. Vulcan,7 F. R. Wesselmann,23 S. A. Wood,7

L. Yuan,8 and X. C. Zheng3

1Laboratory for Nuclear Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
2Triangle Universities Nuclear Laboratory, Duke University, Durham, North Carolina, USA

3Argonne National Laboratory, Argonne, Illinois, USA
4Yerevan Physics Institute, Yerevan, Armenia

5University of Maryland, College Park, Maryland, USA
6Florida International University, Miami, Florida, USA

7Thomas Jefferson National Laboratory, Newport News, Virginia, USA
8Hampton University, Hampton, Virginia, USA

9Ghent University, Ghent, Belgium
10University of the Witwatersrand, Johannesburg, South Africa

11University of Houston, Houston, Texas, USA
12University of Virginia, Charlottesville, Virginia, USA

13Mississippi State University, Mississippi State, Mississippi, USA
14James Madison University, Harrisonburg, Virginia, USA

15TRIUMF, Vancouver, British Columbia, Canada
16University of Regina, Regina, Saskatchewan, Canada
17University of Washington, Seattle, Washington, USA

18Ohio University, Athens, Ohio, USA
19Tohoku University, Sendai, Japan

20Basel University, Basel, Switzerland
21Central Michigan University, Mount Pleasant, Michigan, USA

22College of William and Mary, Williamsburg, Virginia, USA
23Norfolk State University, Norfolk, Virginia, USA

24University of Manitoba, Winnipeg, Manitoba, Canada
25Pennsylvania State University, University Park, Pennsylvania, USA

26Rensselaer Polytechnic Institute, Troy, New York, USA
(Received 10 July 2007; revised manuscript received 23 September 2007; published 14 December 2007)

We have measured the nuclear transparency of the A!e; e0!"# process in 2H, 12C, 27Al, 63Cu, and 197Au
targets. These measurements were performed at the Jefferson Laboratory over a four momentum transfer
squared range Q2 $ 1:1 to 4:7 !GeV=c#2. The nuclear transparency was extracted as the super-ratio of
("A="H) from data to a model of pion-electroproduction from nuclei without !-N final-state interactions.
The Q2 and atomic number dependence of the nuclear transparency both show deviations from traditional
nuclear physics expectations and are consistent with calculations that include the quantum chromody-
namical phenomenon of color transparency.

DOI: 10.1103/PhysRevLett.99.242502 PACS numbers: 25.30.Rw, 24.85.+p

In the context of perturbative Quantum Chromo
Dynamics (QCD), Brodsky and Mueller [1] predicted
that at sufficiently high momentum transfers, the
quark-gluon wave packets of hadrons can be produced
as a ‘‘color neutral‘‘ object of a reduced transverse size.
If this compact size is maintained for some distance in
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nomenon of color transparency (CT). Nuclear transpar-
ency, defined as the ratio of the cross section per nucleon
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
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($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
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s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
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($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .
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s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11

Protons less absorbed  
in nuclear co!isions than pions!

137



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008

p

u u

d

Baryon can be made directly within hard subprocess

nactive =  6

g g

Oberwölz

φp(x1, x2, x3) ∝ Λ2
QCD

α(Q2) " 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pp→ pX) = F (xT ,θCM)
p8
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T

138

Collision can produce 3 
collinear quarks 

Coalescence 
within hard 
subprocess

Bjorken
Blankenbecler, Gunion, sjb

Berger, sjb 
Hoyer, et al: Semi-Exclusive

neff = 8

neff = 2nactive -  4

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

Small color-singlet
Color Transparent

Minimal same-side energy

d

138



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008

Proton production dominated by 
color-transparent direct high neff subprocesses

Review of hard scattering and jet analysis Michael J. Tannenbaum

derived from Eq. 3.2, for peripheral and central collisions, by taking the ratio of Ed3!/dp3 at a

given xT for
√
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Figure 6: Power-law exponent n(xT ) for "0 and h spectra in central and peripheral Au+Au collisions at
√
sNN = 130 and 200 GeV [44].

value of n = 6.3 as in p-p collisions, for both Au+Au peripheral and central collisions, while the

non-identified charged hadrons xT -scale with n = 6.3 for peripheral collisions only. Notably, the

(h+ +h−)/2 in Au+Au central collisions exhibit a significantly larger value of n(xT ,
√
s), indicat-

ing different physics, which will be discussed below. The xT scaling establishes that high-pT "0

production in peripheral and central Au+Au collisions and (h+ + h−)/2 production in peripheral

Au+Au collisions follow pQCD as in p-p collisions, with parton distributions and fragmentation

functions that scale with xT , at least within the experimental sensitivity of the data. The fact that

the fragmentation functions scale for "0 in Au+Au central collisions indicates that the effective

energy loss must scale, i.e. S(pT )/pT = is constant, which is consistent with the parallel spectra

on Fig. 4e and the constant value of RAA as noted in the discussion above.

The deviation of (h+ +h−)/2 from xT scaling in central Au+Au collisions is indicative of and

consistent with the strong non-scaling modification of particle composition of identified charged-

hadrons observed in Au+Au collisions compared to that of p-p collisions in the range 2.0 ≤ pT ≤
4.5 GeV/c, where particle production is the result of jet-fragmentation. As shown in Fig. 7-(left)

the p/"+ and p̄/"− ratios as a function of pT increase dramatically to values ∼1 as a function
of centrality in Au+Au collisions at RHIC [45] which was totally unexpected and is still not fully

understood. Interestingly, the p and p̄ in this pT range appear to follow the Ncoll scaling expected

for point-like processes (Fig 7-(right)), while the "0 are suppressed, yet this effect is called the

‘baryon anomaly’, possibly because of the non-xT scaling. An elegant explanation of this effect as

due to coalescence of quarks from a thermal distribution [46, 47, 48], which would be prima facie

evidence of a Quark Gluon Plasma, is not in agreement with the jet correlations observed in both

same and away-side particles associated with both meson and baryon triggers [49] (see discussion

of Fig. 24 below).

4.2 Direct photon production

Direct photon production is one of the best reactions to study QCD in hadron collisions, since
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Hadron Dynamics at the 
Amplitude Level

• LFWFS are the universal hadronic amplitudes which 
underlie structure functions, GPDs, exclusive processes, 
distribution amplitudes, direct subprocesses, 
hadronization.

• Relation of spin, momentum, and other distributions to  
physics of the hadron itself.

• Connections between observables, orbital angular 
momentum

• Role of FSI and ISIs--Sivers effect
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Single Spin Asymmetry In the Drell Yan Process
!Sp ·!p×!qγ∗
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver’s Effect]Proportional

to the Proton Anomalous Moment and αs.
Opposite Sign to DIS! No Factorization

Collins; 
Hwang, Schmidt. 

sjb

Predict Opposite Sign SSA in DY !
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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 DY               correlation at leading twist from double ISI

the differential cross section is written as
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These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-
inclusive DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions 
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2

Drell-Yan planar correlations

Double ISI

Hard gluon radiation

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!

Boer, Hwang, sjb
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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PQCD Factorization (Lam Tung):
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c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

Problem for factorization when both ISI and FSI occur

g
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FIG. 8: The exchange of two extra gluons, as in this graph,
will tend to give non-factorization in unpolarized cross sec-
tions.

FIG. 9: In a conventional perturbative QCD calculation for
an unpolarized partonic cross section, non-factorization by
the mechanisms discussed in this paper would first appear in
graphs of this order.

culations. Normally one performs calculations with on-
shell massless quarks and gluons, and extracts collinear
divergences that are grouped with parton densities and
fragmentation functions; any remaining divergences can-
cel between graphs. Non-factorization in the hadronic
cross section corresponds to uncanceled divergences in
quark-gluon calculations. The lowest order in which the
mechanisms we have discussed could possible give an un-
canceled divergence in unpolarized partonic cross sec-
tions is NNNLO, as in Fig. 9. The region for the un-
canceled divergence is where the lower gluon is collinear
to the lower incoming quark, and two of the exchanged
gluons are soft. This graph is at least one order beyond
all standard perturbative QCD calculations.

Because our calculations directly concern cross sec-
tions that use transverse-momentum-dependent parton
densities, a certain amount of care is needed in inter-
preting the results. The natural direction for the Wilson
lines is light-like, as from Eq. (3.8). However light-like
Wilson lines give divergences in transverse-momentum-
dependent densities [7]. These are due to rapidity di-
vergences [20] in integrals over gluon momentum; they
cancel [7] in conventional parton densities only because
of an integral over all transverse momentum in integrated

parton densities. The solution adopted by Collins, Soper
and Sterman [7] (CSS) was to define parton densities
without Wilson lines but in a non-light-like axial gauge.
The gauge-fixing vector introduces a cut-off on gluon ra-
pidity, and then an evolution equation with respect to
the cut-off was derived. The non-perturbative functions
involved in this CSS evolution equation have been mea-
sured (e.g., [21]) in fits to DY cross sections, and would
be an essential ingredient in testing non-factorization.

However, there are some unsatisfactory features of the
use of axial gauges, which are made particularly evident
in polarized cross sections. This includes complications
concerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
non-light-like Wilson line. This again obeys an equation
of the CSS form. It is also possible to use a subtractive
formalism [20, 23] with light-like Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.

To test the predicted non-factorization, we simply need
predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in
DIS and DY and to fragmentation functions in e+e− and
SIDIS [24]. Probing the SSA would be particularly inter-
esting, and such measurements are underway at RHIC
[25, 26]. The same physics is probed in the transverse
shape of jets, and would be worth investigating.

Our counterexample applies in a kinematic region
where the normal intuitive ideas of the parton model
appear quite appropriate, even with a generalization to
kT -factorization. Therefore it forces us to question un-
der what conditions factorization is actually valid and to
what extent it has actually been demonstrated. It cannot
be assumed that naive extensions of apparently estab-
lished results are applicable beyond the cases to which
the actual proofs explicitly apply.

For hadron-hadron collisions, factorization has been
proved [5, 6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present pa-
per. But these papers do not go beyond this, to the pro-
duction of hadrons. Because factorization is important to
all aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT

hadrons. Given our counterexample to kT -factorization,
a proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron-pair has
itself large transverse momentum or when the pair’s out-
of-plane transverse momentum is integrated over a wide
range.

In fact, Nayak, Qiu and Sterman [27] have recently
given strong arguments that collinear factorization does
indeed hold in such a situations. The graphs examined
are similar to ours. They apply Ward identities to prove
an eikonalization generalizing our specific calculations.
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Factorization is violated in production of high-transverse-momentum particles in
hadron-hadron collisions

John Collins∗

Physics Department, Penn State University, 104 Davey Laboratory, University Park PA 16802, U.S.A.

Jian-Wei Qiu†

Department of Physics and Astronomy, Iowa State University, Ames IA 50011, U.S.A. and
High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439, U.S.A.

(Dated: 15 May 2007)

We show that hard-scattering factorization is violated in the production of high-pT hadrons in
hadron-hadron collisions, in the case that the hadrons are back-to-back, so that kT factorization
is to be used. The explicit counterexample that we construct is for the single-spin asymmetry
with one beam transversely polarized. The Sivers function needed here has particular sensitivity
to the Wilson lines in the parton densities. We use a greatly simplified model theory to make the
breakdown of factorization easy to check explicitly. But the counterexample implies that standard
arguments for factorization fail not just for the single-spin asymmetry but for the unpolarized cross
section for back-to-back hadron production in QCD in hadron-hadron collisions. This is unlike
corresponding cases in e+e− annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the
result endangers factorization for more general hadroproduction processes.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 13.87.-a, 13.88.+e

I. INTRODUCTION

The great importance of hard-scattering factorization
in high-energy phenomenology hardly needs emphasis.
Essential to its application and predictiveness is the uni-
versality of parton densities (and fragmentation func-
tions, etc) between different reactions. However, as can
be seen from [1, 2, 3, 4], process-dependent Wilson lines
appear to be needed in the inclusive production of two
high-transverse-momentum particles in hadron-hadron
collisions, i.e., in the process

H1 + H2 → H3 + H4 + X. (1.1)

In this paper we will show that this situation definitively
leads to a breakdown of factorization.

The standard expectation is that the cross section is
a convolution of a hard scattering coefficient dσ̂, par-
ton densities, fragmentation functions and a possible soft
function:

E3E4

dσ

d3p3d3p4

=
∑

∫

dσ̂i+j→k+l+X fi/1 fj/2 d3/k d4/l

+ power-suppressed correction.
(1.2)

Here the sum and integral are over the flavors and mo-
menta of the partons of the hard scattering, fi/H denotes
a parton density, and dH/i a fragmentation function.

It is noteworthy that the classic published proofs for
factorization in hadron-hadron scattering [5, 6] only con-
cerned the Drell-Yan process. There are a number of

∗Electronic address: collins@phys.psu.edu
†Electronic address: jwq@iastate.edu

difficult issues in the proof that are highly non-trivial
to extend to other reactions in hadron-hadron collisions,
even though Eq. (1.2) is a standard expectation.

We will examine the case that the produced hadrons
are almost back-to-back. Then the appropriate factoriza-
tion property is kT -factorization, which entails [7] the use
of transverse-momentum dependent (TMD) parton den-
sities and fragmentation functions. However, the issues
raised by our counterexample to factorization are suffi-
ciently general that they create a need to examine very
carefully the arguments for factorization in hadropro-
duction of hadrons even in situations where ordinary
collinear factorization with integrated densities is appro-
priate. In the case of kT -factorization with TMD den-
sities, the factorization formula needs the insertion of a
soft factor S, not shown in Eq. (1.2).

The problems concern gluon exchanges between differ-
ent kinds of collinear line, as in Fig. 7 below. To obtain
factorization, the gluon attachments must be converted
to Wilson lines in gauge-invariant definitions of the par-
ton densities and fragmentation functions. This relies [6]
on the use of Ward identities applied to approximations
to the amplitudes. But the approximations are only valid
after certain contour deformations on the loop momenta.

Bacchetta, Bomhof, Mulders and Pijlman [1, 2, 3, 4]
argued that because of the complicated combination of
initial- and final-state interactions, the Wilson lines must
be modified. What is not so clear is the interpretation of
their result. So in the present paper we present an argu-
ment to make fully explicit the failure of factorization.

Since the issue is one of factorization in general, and
not just specifically in QCD, we clarify the issue by ex-
amining a particular process in a model field theory. The
process is a transverse single-spin asymmetry of the kind
controlled by a Sivers function. This is a case where prob-

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.
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Fig. 4. Fraction r of events with a large rapidity gap, 

qmax < 1.5, as a function of Q2 A for two ranges of XDA. No 
acceptance corrections have been applied. 

small compared to WDA and is typically smaller than 

10 GeV. The events span the range of  WDA from 60 

to 270 GeV. For  WDA > 150 GeV these events are 

well separated from the rest of  the sample. In this 

region, acceptance corrections have little dependence 

on W and the contr ibut ion of  these events to the deep 

inelastic cross section is, within errors, constant with 

WDA, as expected for a diffractive type of  interaction 

(see fig. 3b). At smaller values of  WDA, the acceptance 

for these events decreases since the final state hadronic 

system is boosted in the forward direction. 

In fig. 3c we present the dis tr ibut ion of  Mx for 

events with r/max< 1.5 and WOA > 150 GeV. The dis- 

t r ibution is not corrected for detector or acceptance ef- 

fects. Although this acceptance could be model  depen- 

dent, the three models  we have checked [ 13,14,16 ] 

predict  a flat acceptance with Mx for Mx > 4 GeV. 

We observe a spectrum which, given our resolution, 

the uncertainty about the acceptance and the large sta- 

tistical errors, is compat ible  with a 1/MZx dependence,  

shown as the solid curve. 

The fraction of  events with a large rapidi ty gap, pre- 

sented as a function of  Q~A in fig. 4 for two selected 

bins of  XOA, is, within errors, independent  of  Q2. The 

Q2 dependence is little affected by acceptance correc- 

tions. In QCD terminology, leading twist contribu- 

tions to structure functions show little (at most loga- 

r i thmic)  dependence on Q2 at fixed x, whereas higher 

twist terms fall as a power of  Q2. Since the proton 

structure function determined for our DIS data  sam- 

ple shows a leading twist behavior  [29], the produc- 

t ion mechanism responsible for the large rapidity gap 

events is also likely to be a leading twist effect. The 

decrease with x is partly due to acceptance, since for 

larger values of x the final hadronic state is boosted 

in the direction of  the proton so that such events will 

not be identified as having a large rapidi ty  gap in our 

detector. 

8. Discussion and conclusions 

In a sample of  deep inelastic neutral current scatter- 

ing events, we have observed a class of  events with a 

large rapidi ty gap in the final hadronic state. The flat 

rapidi ty  distr ibution,  the lack of  W dependence and 

the shape of  the Mx distr ibution are suggestive of  a 

diffractive interaction between a highly virtual pho- 

ton and the proton, mediated by the exchange of  the 

pomeron [5 ]. The fact that the percentage of  events 

with a large rapidity gap shows only a weak depen- 

dence on Q2 points to a leading twist contribution to 

the proton structure function. 

For  the hypothesis that events with a large rapidi ty 

gap are produced by a diffractive mechanism, one 

expects such events to be accompanied by a quasi- 

elastically scattered proton. For  this type of  pro- 

cess the gap between the maximum rapidity of  the 

calorimeter  and the rapidi ty of  the scattered proton is 

about three units. The selection criteria, in part icular 

the requirement of  a rapidi ty gap in the detector of  

at least 2.8 units, l imit  the acceptance for diffractive- 

like events. Since we have made no corrections for 

acceptance, the 5.4% for DIS events with a large 

rapidity gap should be considered a lower l imit  for 

diffractively produced events. 
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Inclusive Diffraction at HERA

F.-P. Schillinga∗ (on behalf of the H1 and ZEUS collaborations) †

aDESY, Notkestr. 85, D-22603 Hamburg, Germany

New precision measurements of inclusive diffractive deep-inelastic ep scattering interactions, performed by the
H1 and ZEUS collaborations at the HERA collider, are discussed. A new set of diffractive parton distributions,
determined from recent high precision H1 data, is presented.

1. INTRODUCTION

One of the biggest challenges in our under-
standing of QCD is the nature of colour sin-
glet exchange or diffractive interactions. The
electron-proton collider HERA is an ideal place to
study hard diffractive processes in deep-inelastic
ep scattering (DIS). In such interactions, the
point-like virtual photon probes the structure of
colour singlet exchange, similarly to inclusive DIS
probing proton structure.

2

!

Figure 1: Illustration of
a diffractive DIS event.

At HERA,
around 10% of
low x events
are diffractive
[1]. Experimen-
tally, such events
are identified by
either tagging
the elastically
scattered pro-
ton in Roman
pot spectrometers
60− 100 m down-
stream from the
interaction point
or by asking for

a large rapidity gap without particle production
between the central hadronic system and the
proton beam direction.

A diagram of diffractive DIS is shown in Fig. 1.
A virtual photon coupling to the beam electron

∗e-mail address: fpschill@mail.desy.de
†Talk presented at 31st Intl. Conference on High Energy
Physics ICHEP 2002, Amsterdam

interacts diffractively with the proton through
the exchange of a colour singlet and produces a
hadronic system X with mass MX in the final
state. If the 4-momenta of the incoming (out-
going) electron and proton are labeled l (l′) and
p (p′) respectively, the following kinematic vari-
ables can be defined: Q2 = −q2 = −(l − l′)2, the
photon virtuality; β = Q2/q.(p − p′), the longi-
tudinal momentum fraction of the struck quark
relative to the diffractive exchange; xIP = q.(p −
p′)/q.p, the fractional proton momentum taken
by the diffractive exchange and t = (p− p′)2, the
4-momentum squared transferred at the proton
vertex. Bjorken-x is given by x = xIP β. For the
measurements presented here typical values of xIP

are < 0.05. y = Q2/sx denotes the inelasticity,
where s is the ep CMS energy.

A diffractive reduced cross section σD(4)
r can be

defined via

d4σep→eXp

dxIP dt dβ dQ2
=

4πα2

βQ4

(

1 − y +
y2

2

)

σD(4)
r (xIP , t, β, Q2) , (1)

which is related to the diffractive structure func-
tions FD

2 and the longitudinal FD
L by

σD
r = FD

2 −
y2

2(1 − y + y2

2 )
FD

L . (2)

Except at the highest y, σD
r = FD

2 to a very good
approximation. If the outgoing proton is not de-
tected, the measurements are integrated over t:

σD(3)
r =

∫

dt σD(4)
r .

10% to 15% 
of DIS events 

are 
diffractive !

Remarkable observation at HERA
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Diffractive Deep Inelastic Lepton-Proton 
Scattering

DDIS

149



                       

Diffractive Structure Function F2
D  

de Roeck
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p

Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron

151
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

152

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 

153
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate 
T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

154
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Physics of Rescattering

• Sivers Asymmetry and Diffractive DIS: New 
Insights into Final State Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability 
Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon

155
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• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are not probability 
distributions

• Nuclear Shadowing, Antishadowing-  Not in Target WF

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY                   distribution at leading twist from double ISI-- not given 
by PQCD factorization -- breakdown of factorization!

• Wilson Line Effects not 1 even in LCG

• Must correct hard subprocesses for initial and final-state soft gluon 
attachments

• Corrections to Handbag Approximation in DVCS!

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2

Hoyer, Marchal, Peigne, Sannino, sjb

Physics of Rescattering
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Light-Front QCD Phenomenology

• Hidden color, Intrinsic glue, sea, Color Transparency

• Near Conformal Behavior of LFWFs at Short 
Distances; PQCD constraints

• Vanishing anomalous gravitomagnetic moment

• Relation between edm and anomalous magnetic 
moment

• Cluster Decomposition Theorem for relativistic 
systems

• OPE: DGLAP, ERBL evolution; invariant mass scheme

157
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“Dangling Gluons”
• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are 
not probability distributions

• Nuclear Shadowing, Antishadowing

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY               correlation at leading twist from double ISI-- 
not given by standard PQCD factorization 

• Wilson Line Effects persist even in LCG

• Must correct hard subprocesses for initial and final-state 
soft gluon attachments  --  Ji gauge link, Kovchegov gauge

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2

Hoyer, Marchal, Peigne, Sannino, sjb
Bodwin, Lepage, sjb
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|p,Sz>=∑
n=3

ψn(xi, !k⊥i,λi)|n;k⊥i,λi>|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

|p,Sz>=∑
n=3

Ψn(xi,!k⊥i,λi)|n;!k⊥i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,!k⊥i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

!k⊥i =!0⊥.

sum over states with n=3, 4, ...constituents

Fixed LF time

159

Intrinsic heavy quarks    
s̄(x) != s(x)

φM(x, Q0) ∝
√

x(1− x)

ψM(x, k2
⊥)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep→ eπ+n

Pπ/p " 30%

Violation of Gottfried sum rule

ū(x) #= d̄(x)

Does not produce (C = −) J/ψ,Υ

Produces (C = −) J/ψ,Υ

Same IC mechanism explains A2/3

Mueller: BFKL DYNAMICS    

159



                       

160

Light Antiquark Flavor Asymmetry
• Naïve Assumption 

from gluon splitting:

 E866/NuSea (Drell-Yan)
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|uudcc̄> Fluctuation in Proton
QCD: Probability ∼Λ

2
QCD

M2
Q

|e+e−!+!− > Fluctuation in Positronium
QED: Probability ∼(meα)4

M4
!

Distribution peaks at equal rapidity (velocity)
Therefore heavy particles carry the largest mo-

mentum fractions

cc̄ in Color Octet

High x charm!

OPE derivation - M.Polyakov et al.

Hoyer, Peterson, Sakai, sjb

161

< xF >= 0.33

Minimize LF energy denominator

x̂i = m⊥i∑n
j m⊥j

m⊥i =
√

m2
i + k2

⊥i

Same velocity; heavy constituents carry high-
est momentum fraction

Q2 = 1 GeV2

τ = t + z/c

< p|G
3
µν

m2
Q

|p > vs. < p|F
4
µν

m4
#

|p >

+κ4ζ2

dσ
dxF

(pp → HX)[fb]

fb

πq → γ∗q

161
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Intrinsic Heavy-Quark Fock States

• Rigorous prediction of QCD, OPE

• Color - Octet + Color - Octet Fock State! 

• Probability

• Large Effect at high x

• Greatly increases kinematics of colliders  such as Higgs production 
(Kopeliovich, Schmidt, Soffer, sjb)

• Severely underestimated in conventional parameterizations of 
heavy quark distributions (Pumplin, Tung)

• Many empirical tests  

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

Pcc̄/p " 1%

Q

Q̄

b⊥ = O(1/MQ)

σ(DDIS)
σ(DIS) "

Λ2
QCD

M2
Q

PQQ̄ ∝
1

M2
Q

PQQ̄QQ̄ ∼ α2
sPQQ̄

Pcc̄/p # 1%

Q

Q̄

b⊥ = O(1/MQ)

Hoyer, Peterson, Sakai, sjb
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c

Hoyer, Peterson, SJB

Measure c(x) in Deep Inelastic 
Lepton-Proton Scattering

163
163



 
AdS/QCD  Stan Brodsky 

 SLAC & IPPP
Rutherford

May 30, 2008

J. J. Aubert et al. [European Muon Collaboration], “Pro-
duction Of Charmed Particles In 250-Gev Mu+ - Iron In-
teractions,” Nucl. Phys. B 213, 31 (1983).

First Evidence for 
Intrinsic Charm

Measurement of Charm 
Structure  Function 

DGLAP / Photon-Gluon Fusion: factor of 30 too sma!

164

factor of 30 !
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• EMC data: c(x, Q2) > 30×DGLAP
Q2 = 75 GeV2, x = 0.42

• High xF pp→ J/ψX

• High xF pp→ J/ψJ/ψX

• High xF pp→ ΛcX

• High xF pp→ ΛbX

• High xF pp→ Ξ(ccd)X (SELEX)

165
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Novel Heavy Flavor Physics

• LFWFS -- remarkable model from AdS/CFT

• AdS/CFT:  Hadron Spectra and Dynamics, Counting Rules

• Intrinsic Charm and Bottom: rigorous prediction of QCD

• B decays: Many Novel QCD Effects

• Exclusive Channels: QCD at Amplitude Level

• Test B-analyses in other hard exclusive reactions, such as two-
photon reactions

• Initial and Final State QCD Interactions -- Breakdown of 
QCD Factorization in Heavy Quark Hadroproduction!

• Renormalization scale not arbitrary

166
166
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String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 3

+1 space 
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances
+ Confinement at large 

distance

Counting rules for Hard 
Exclusive Scattering
Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

QCD at the Amplitude Level

167
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• AdS/CFT:  Duality between string theory in  Anti-de 
Sitter Space and  Conformal Field Theory

• New Way to Implement Conformal Symmetry

• Holographic Model: Conformal Symmetry at Short 
Distances, Confinement at large distances

• Remarkable predictions for hadronic spectra, 
wavefunctions, interactions

• AdS/CFT provides novel insights into the quark 
structure of hadrons

New Perspectives on QCD 
Phenomena from AdS/CFT

168
168
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Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

Outlook

• Only one scaleΛQCD determines hadronic spectrum (slightly different for mesons and baryons).

• Ratio of Nucleon to Delta trajectories determined by zeroes of Bessel functions.

• String modes dual to baryons extrapolate to three fermion fields at zero separation in the AdS

boundary.

• Only dimension 3, 9
2 and 4 states qq, qqq, and gg appear in the duality at the classical level!

• Non-zero orbital angular momentum and higher Fock-states require introduction of quantum

fluctuations.

• Simple description of space and time-like structure of hadronic form factors.

• Dominance of quark-interchange in hard exclusive processes emerges naturally from the

classical duality of the holographic model. Modified by gluonic quantum fluctuations.

• Covariant version of the bag model with confinement and conformal symmetry.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 29
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A Few References: Bottom-up-Approach

• Derivation of dimensional counting rules of hard exclusive glueball scattering in AdS/CFT:

Polchinski and Strassler, hep-th/0109174.

• Deep inelastic scattering in AdS/CFT:

Polchinski and Strassler, hep-th/0209211.

• Unified description of the soft and hard pomeron in AdS/CFT:

Brower, Polchinski, Strassler and Tan, hep-th/0603115.

• Hadron couplings and form factors in AdS/CFT:

Hong, Yoon and Strassler, hep-th/0409118.

• Low lying meson spectra, chiral symmetry breaking and hadron couplings in AdS/QCD (Emphasis on

axial and vector currents)

Erlich, Katz, Son and Stephanov, hep-ph/0501128,

Da Rold and Pomarol, hep-ph/0501218, hep-ph/0510268.
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• Gluonium spectrum (top-bottom):
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Karch and Katz, hep-th/0205236; Karch, Katz and Weiner, hep-th/0211107; Kruczenski, Mateos,

Myers and Winters, hep-th/0311270; Sakai and Sonnenschein, hep-th/0305049; Babington, Erd-

menger, Evans, Guralnik and Kirsch, hep-th/0312263; Nuñez, Paredes and Ramallo, hep-th/0311201;

Hong, Yoon and Strassler, hep-th/0312071; hep-th/0409118; Kruczenski, Pando Zayas, Sonnen-
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• Other aspects of high energy scattering in warped spaces:

Giddings, hep-th/0203004; Andreev and Siegel, hep-th/0410131; Siopsis, hep-th/0503245.

• Strongly coupled quark-gluon plasma (η/s = 1/4π):

Policastro, Son and Starinets, hep-th/0104066; Kang and Nastase, hep-th/0410173 . . .
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• Counting rules, low lying meson and baryon spectra and form factors in AdS/CFT, holographic light

front representation and mapping of string amplitudes to light-front wavefunctions, integrability and

stability of AdS/CFT equations (Emphasis on hadronic quark constituents)

Brodsky and GdT, hep-th/0310227, hep-th/0409074, hep-th/0501022, hep-ph/0602252, 0707.3859

[hep-ph], 0709.2072 [hep-ph].
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