

# Associated top Higgs search: with ttH $(H \rightarrow bb)$

Chris Collins-Tooth, 17 June 2008





### Introduction



- Putting the channel in context;
  - Steps to the channel:
    - ttbar, extra jets, b-tagging
  - Standard Semi-Leptonic trigger
    - High-Pt isolated lepton, missing Et, Jets
  - Attractive due to high  $BR(H \rightarrow bb)$
  - Extremely sensitive to b-tagging  $(\varepsilon_b)^4$ .
  - There are many ways to combine objects in the event
    - $\rightarrow$  Large tails on mass reconstruction.
  - Mistagging, energy scales crucial.





- V. Low mass Higgs channel (<130 GeV)  $\sigma_{120}$ =99.6 fb
- Main backgrounds:
  - ttbb (QCD  $\sigma$ =2300 fb, EW  $\sigma$ =255 fb);
  - ttjj  $\sigma_{tt}$ =833,000fb  $\sigma_{ttjj}$ =110,000 fb
  - CSC note has 3 analyses at MH=120 GeV:
    - cuts-based S/ $\sqrt{B}$ =1.82 (stat)
    - pairing likelihood S/\sqrt{B=1.95} (stat)
    - constrained fit (cutting at  $\mathcal{L}$ sb=-4.2) S/ $\sqrt{B}$ =2.18 (stat)
    - Peak significance with no M<sub>H</sub> window, cutting at £sb=-4.4 Constrained fit S/√B=2.78(stat) i.e. Reducing mass window does not help when systematic errors not considered.
  - Common preselection applied to all analyses
    - Trigger e25i, e60, mu20i, 1 Isolated high pt lepton,
    - 6 jets, 4 jets with b-weight>0





### Problems 🛞

- Low signal efficiency "passing cuts", no truth (~2%)
- Low mass resolution of signal (combinatoric BG)
- Physics BGs peak in same place as signal: were statistically limited for CSC analysis.
- Pile-Up:
  - Lowers b-jet multiplicity. (10% fewer events having 4 b-jets, applies to background too!)
  - Broadens overall jet multplicity (more events with >8 and <4 jets.
  - Worsens mass resolution.

### Most important detector systematics:

- b-tag eff. systematic
- Jet energy scale systematic
- Jet energy resolution systematic
- Light jet rejection systematic

|                      | Cut-based | Likelihood | Constrained fit |
|----------------------|-----------|------------|-----------------|
| JES                  | 5%        | 14%        | 8%              |
| Jet resolution       | 7%        | 5.5%       | 14%             |
| b-tagging efficiency | 20%       | 20%        | 20%             |
| Light jet rejection  | 5%        | 3%         | 10%             |
| All contribution     | 22%       | 25%        | 28%             |

- Not all systematics included: BG norm.
  - For ttbar, the theoretical uncertainties associated with the NLO+NLL calculation are around 12%
  - With only 100pb<sup>-1</sup> of data a direct measurement of the cross section for the semi-leptonic final state using *b*-tagging could be performed with a much smaller error.
  - To reap benefit from 'clever' analyses, needs TOTAL  $\Delta$ B/B <5%

|                    | Impact<br>uncertaintie<br>Using                        | of systematic<br>es on significance<br>S/( $\sqrt{B}+\Delta B^2$ ) |
|--------------------|--------------------------------------------------------|--------------------------------------------------------------------|
| total significance | 2.2<br>1.8<br>1.6<br>1.4<br>1.2<br>1.0.8<br>0.6<br>0.6 | ATLAS                                                              |
|                    | 0.2<br>0 0.05 0.1 0.15                                 | 0.2 0.25 0.3 0.35 0.4 0.45 0.5<br>Δ B/B                            |

Syst uncert. On BG

Markers at est. syst. uncert. On BG from detector systs (22,25,28%) for 3 analyses



## **Combinatoric Background**

- Almost 40% of hadronic W's have components not matched to ttH jets (ISR/FSR).
- Higgs b-Jets are very often wrongly included in top-quark reconstruction, even if the correct b-jets for the top-quarks are tagged as b-jets
- Even when b-tagging perfect, sizeable exchange of Higgs b-jets with top-quarks



#### Truth composition of reconstructed particles

#### When jets matched to b partons are b-tagged and relate to either a top-quark or the Higgs





## Shape Analysis

- Must develop methods to measure background from data (& relative ttjj/ttbb cont.).
- Higgs boson candidate mass spectrum depends weakly on b-tagging working point for individual samples.
- BUT relative contribution made up by ttbb/ttjj depends on the strength of the btag cut applied.



- Use MC ttjj/ttbb fraction & data to normalise at loose working pt. (b-tag weight>0, where there is <1%signal)
- Use MC jet flavour composition and ratio of b,c,light efficiencies at 'medium' & 'loose' working points to assess predictive performance of shape and norm. at medium point.
- Allows extrapolation to 'tight' (>5.5) working point, where there is a higher proportion of signal.
- Further correction possible in 'tight' distribution by looking at signal depleted region of mass spectrum.



# CSC Note missed:

- Fully hadronic, fully leptonic final states.
  - Samples produced, some analysis done, statistically limited.. Could use Atlfast-II.
- Neural Net (people looking now)
  - Possibly other methods to improve combinatorics as well? – Hadronic W? Assoc. b-jets to top/Higgs?
- Only rudimentary shape analysis so far.
  - Need to measure backgrounds from data.
- Use newer generators:
  - Spin correlations now in MC@NLO v3.31



### Where do we go from here?

- We'd like to keep our Physics group going, many people in the group feel that the group should be in charge of the development of a common analysis and that should continue with more or less the same organization we had for the CSC effort.
- Others think that at least up to the first fb-1 we should act as a sub-group of the Top Working group.
- Everybody shares the feeling that we are soon moving towards a concrete interaction with the Top group during early data taking.
- First stage may be in deciding the contents of the D1PD??
- Undoubtedly, we should share a common procedure and algorithms for reconstructing the tops