

Trilepton Analysis Post CSC Status

J. Dragic Tina Potter

A. De Santo

SUSY/Exotics UK meeting 08/05/08

Outline of Post CSC Activity

RHUL Trilepton Note Ready:
"Trilepton SUSY Signatures at ATLAS"

[CERN-ATL-COM-PHYS-2008-xxx]

- ➤ New Significance Definition/Results

 [Glen Cowan and Eilam Gross (ATLAS Statistics Forum), private communication.]
- Data Driven Background Estimates under way

Significance Approximations

1.
$$\frac{S}{\sqrt{S+B}}$$

2.
$$\frac{S}{\sqrt{B}}$$

3.
$$\sqrt{2((S+B)ln(1+\frac{S}{B})-S)}$$

4. =3. + including stat errors on B

4. "what the expected significance would be if the statistical error on B would be the same as its (current) MC stat error."

[Glen Cowan and Eilam Gross (ATLAS Statistics Forum), private communication.]

Only for already established signals (S exists and is precisely known).

Holds if S << B and B is sufficiently large

Discovery significance if B is known precisely ≈ expression 2, in the limit S << B

Discovery significance that takes into account inflation of MC sample yields used to estimate Equiv-Lumi S and B (including +/-ve weights)

Significance Results

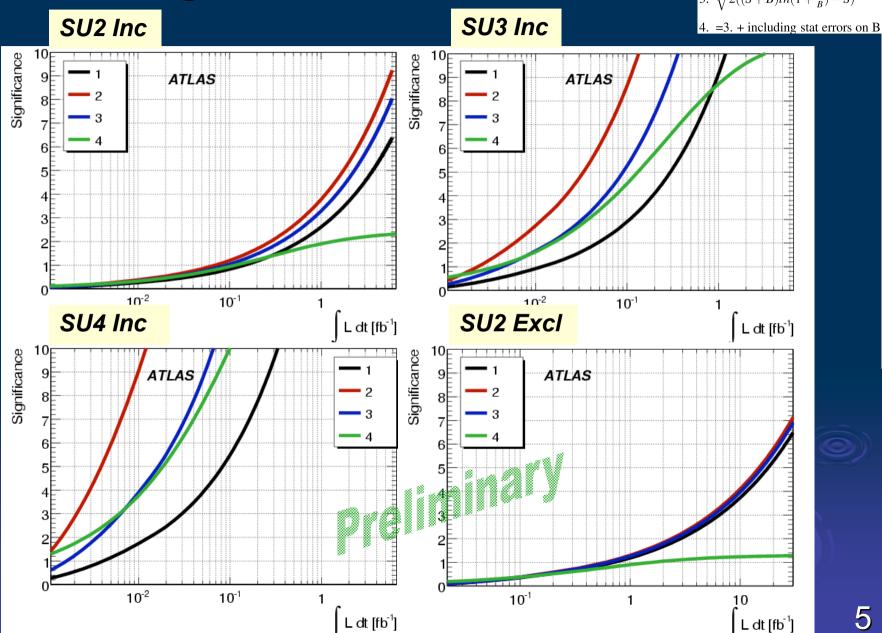
Inclusive Trilepton Search 1 fb⁻¹

Exclusive Trilepton Search (direct gaugino prod) 10 fb⁻¹

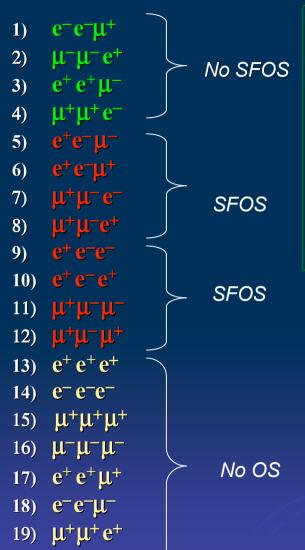
	Sample	# After Inc selection		# After Excl selection		Luminosity [fb ⁻¹]
		In Sample	For 1 fb $^{-1}$	In Sample	For 10fb^{-1}	
S	SU2 Signal	-	-	56	80.9	
	SU2 Bckgnd	-	-	0	0.0	6.92
	SU2 Inc	90	13.0	-	-	
	SU3 Inc	1617	94.3	-	-	17.14
	SU4 Inc	151	311.7	-	-	0.48
$B = \sum_{i} b_{i}$	$t\bar{t}$	+15-5	10.6	+21-4	179.7	0.95
	Zb	0	0.0	0	0.0	0.75
	ZW	4	1.3	61	204.4	2.98
	ZZ	0	0.0	14	11.0	12.67
	WW	0	0.0	0	0.0	1.22
	Ζγ	0	0.0	1	3.4	2.98

1.	$_S$		
	$\sqrt{S+B}$		

3.
$$\sqrt{2((S+B)ln(1+\frac{S}{B})-S)}$$


Significance	SU2 Inc	SU3 Inc	SU4 Inc	SU2 Excl
1	2.6	9.1	17.3	3.7
2	3.8	27.3	90.3	4.1
3	3.3	16.6	38.9	3.9
4	1.9	8.7	17.9	1.2

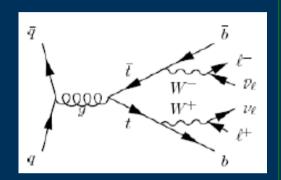
Significance Results 2.5/1


2.
$$\frac{S}{\sqrt{B}}$$

$$3. \sqrt{2((S+B)ln(1+\frac{S}{B})-S)}$$

Data Driven Bckg Estimation Ttbar o 3 leps

Idea Giacomo Polesello -> count combinations of lepton flavour and sign in 3-lepton events

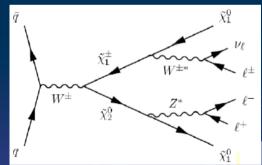


20) μ⁻μ⁻e⁻

From ttbar expect

I⁺ from W⁺ from t decay
I⁻ from W - from tbar decay
+ I^{+/-} from a b decay

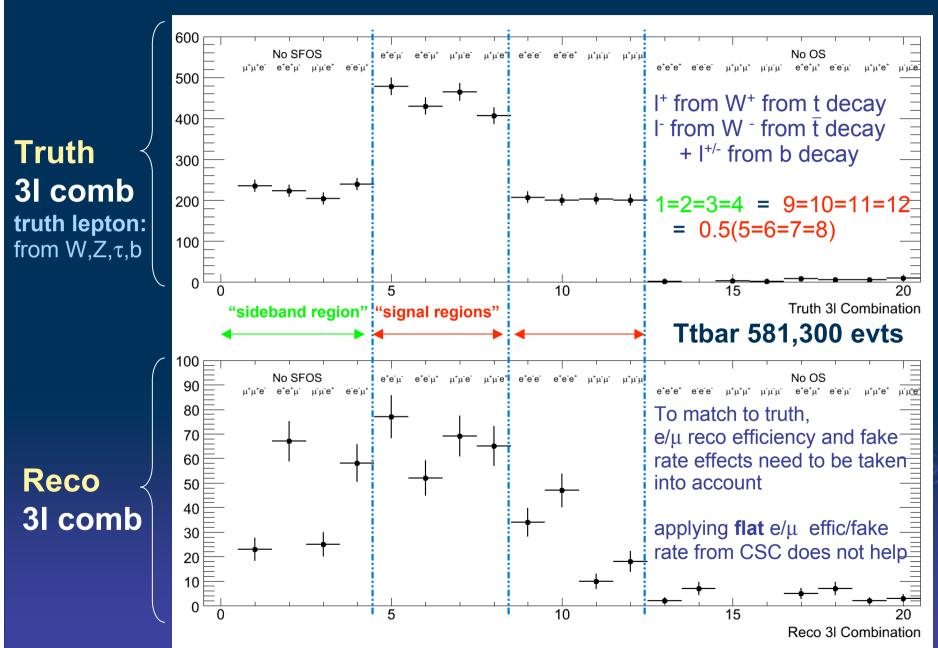
Require at least an OS pair


1=2=3=4=9=10=11=12=0.5(5=6=7=8)

since 5,6,7,8 have twice as many OS combination pairs than the others.

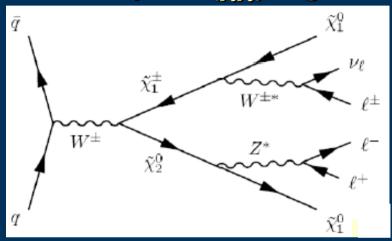
From signal expect

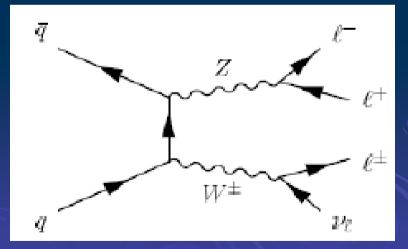
I⁺I⁻ from Z I^{+/-} from W^{+/-}


Require at least a SFOS pair

1=2=3=4 = 0
5=7=9=11 < 6=8=10=12
since
$$\sigma(pp->ZW^-)$$
 < $\sigma(pp->ZW^+)$

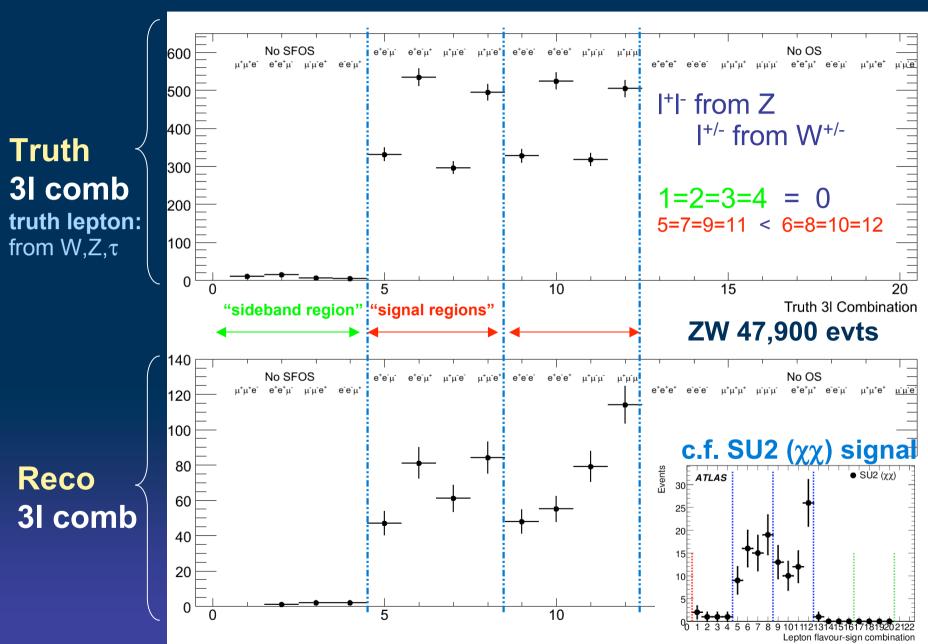
Can we use 1-4 to predict 5-12?


Background Estimation: Preliminary Ttbar



Comment

Trilepton ($\chi\chi$) signal


At first we will use a ZW sample, which is cleaner, should mimic our signal well, and has much better statistics

"signal-like" ZW

Background Estimation: Preliminary "signal-like" ZW

Trilepton Status Summary

- Preliminary results with New Discovery significance calculation [Glen Cowan and Eilam Gross (ATLAS Statistics Forum), private commun.]
 - show that SU2 channel significance is degraded significantly, if the statistical error on B would be the same as its (current) background MC stat error
 - Discovery significances for SU3 and SU4 analyses are reduced, but still look promising!!
- Obv. to trust any discovery significance, must be able to determine B precisely
 - Achievable with sufficient statistics (eg data driven methods).
- To establish the lepton flavour-sign sideband method, Reco efficiencies and Fake Rates must be well understood within our 3-lep environment
- Work ongoing