RPV SUSY Studies

A brief summary of studies into R-Parity violating SUSY models at ATLAS for both Neutralino and Stau LSPs

ATLAS UK SUSY/Exotics Meeting 8th May 2008

Alan Phillips

University of Cambridge

R-Parity Violating (RPV) SUSY

- With R-Parity Violation (RPV), SUSY models are no longer constrained by the effects of the conserved global symmetry.
 - SUSY particles can decay into purely SM particles
 - LSP is no longer stable, meaning a Stau LSP is possible
- RPV Couplings:
 - λ_{iik} violate Lepton Number (LLE type coupling)*
 - $\lambda'_{iik} \underline{violate \ Lepton \ Number}$ (LQD type coupling)*
 - λ''_{iik} violate Baryon Number (UDD type coupling)*
 - I have focused on the λ'_{221} coupling in my studies
- Combinations of the above couplings are limited by proton decay limits

* L and Q are lepton and quark components of SU(2) doublet superfields, and E,D and U are SU(2) singlet superfields

R-Parity Violating (RPV) SUSY Point "<u>AP2</u>" - Neutralino LSP

Figure showing Tau Multiplicity for AP2 Events (Neutralino LSP)

	Mass (GeV)	channel	BR	channel	BR
$\widetilde{\chi}_{1}^{0}$	157.897	$\nu_{\mu} \operatorname{s} \overline{\mathrm{d}}$	0.290	$\overline{\nu}_{\mu} \overline{\mathrm{s}} \mathrm{d}$	0.290
		$\mu^- c \overline{d}$	0.210	$\mu^+ \overline{c} d$	0.210
$\tilde{\tau}_1^-$	164.568	$\widetilde{\chi}_1^0 \tau^-$	1.000		

Neutralino LSP – 3-body decays e.g

R-Parity Violating (RPV) SUSY Point "<u>AP1</u>" - Stau LSP

4

RPV SUSY Samples

- Define RPV SUSY points using SoftSUSY, for a λ'_{221} coupling
 - **AP1** Stau LSP (m₀=80 GeV, m_{1/2}=400 GeV, tan β =20, μ =+, A₀=0, λ'_{221} =0.01)
 - **AP2** Neutralino LSP (m₀=110 GeV, m_{1/2}=390 GeV, tan β =20, μ =+, A₀=0, λ'_{221} =0.01)
- Generation: Herwig (modified for 4-Body Stau Decays) + Jimmy
- Full Sim: Athena v12.0.6.5 (using Ganga AthenaMC)
- Recon: Athena v12.0.6.5 (using Ganga AthenaMC)
- Ntuples made using EventView: ~ 24k events each for AP1 and AP2

Particle Definitions:

Staco, pT > 10 GeV.		
Isolation: etcone20 < 10 GeV + 0.3×ET, ΔR > 0.4 nearest Jet		
pT > 10 GeV		
Isolation: etcone20 < 10 GeV, ΔR > 0.4 nearest Jet		
Cone4 Jets		
Require Ntrack = 1 or 3; and charge = 1		
taurec Likelihood > 4		
tau1p3p discNN > 0.5 (0.85) 1-prong (3-prong)		

Tau Reconstruction Performance in Stau LSP Events (AP1)

As mentioned, a high tau multiplicity is expected for RPV SUSY points with a Stau LSP – unfortunately, taus are often v.soft (particularly for small NLSP-LSP Δ M).

Also, the high multiplicity environment makes reconstruction difficult (overlap with jets etc...)

Tau Reco Performance... continued

Efficiency for recon./identifying for <u>ALL</u> taus in RPV SUSY events

Efficiency for recon./identifying <u>only</u> <u>those taus originating</u> <u>from Stau decays</u>

Higher pT taus from Stau decays are boosted with other decay products – merge in with jets, lowering efficiency Low Tau identification efficiency – inclusive tau signature v.difficult

Mass Reconstruction in Neutralino LSP Events (AP2)

	Event Selection Cuts	
SumET:	SumET > 1000 GeV	Sum
Jets:	N_jet≥6 (with pT> 20 GeV, eta <2.5);	
	Jet[0] pT > 200 GeV;	Jet
	Jet[1] pT > 100 GeV	Lept
Muons:	N_mu≥1 (isolated with pT>20 GeV)	
Z-Veto:	Exclude if 86 GeV < M _{µµ} < 96 GeV	
W-Veto:	Exclude if Μ_τ(μ,ETmiss) < 90 GeV	£

	AP1	AP2
Total	24125	24000
Sum FT Selection	19813	20055
Sumer Selection	(82.1%)	(83.6 %)
Ict Selection	15720	16092
Jet Selection	(65.2%)	(67%)
Lepton Solartion	5694	5399
Lepton Selection	(23.6%)	(22.5%)
7 Vata	5559	5294
Z veto	(23%)	(22.1%)
W Voto	3220	3246
vv veto	(1 3.3%)	(1 3.5%)
$\mathcal{L} = 5fb^{-1}$	2.54e+03	2.57e + 03

	J4	J5	J6	$t\overline{t}$ lep.	$W \rightarrow \mu \nu + 5j$	$Z \rightarrow \mu \mu + 5j$
Total	368650	239000	387050	435624	9750	11200
SumET Selection	1392	50381	386293	6779	499	605
	(0.378%)	(21.1%)	(99.8 %)	(1 .56%)	(5.12 %)	(5.4%)
Jet Selection	558	12169	53822	2311	167	239
	(0.151%)	(5.09%)	(13.9%)	(0.53 1%)	(1.71%)	(2.13%)
Lepton Selection	0	4	11	295	88	175
	(0%)	(0.00167%)	(0.00284%)	(0.0677%)	(0.903%)	(1 .56%)
Z Veto	0	4	11	291	87	85
	(0%)	(0.00167%)	(0.00284%)	(0.0668%)	(0.892%)	(0.759%)
W Veto	0	0	1	67	20	42
	(0%)	(0%)	(0.000258%)	(0.0154%)	(0.205%)	(0.375%)
$\mathcal{L} = 5 f b^{-1}$	<9.61e+03 (90% C.L.)	<601 (90% C.L.)	4.65	371	188	31.5

Event Selection Cut Flow. Final numbers weighted for a luminosity of 5 fb-1. Top Right: RPV SUSY Points. Bottom: Selected BG Samples. ttbar (and possibly QCD dijets) probably largest background.

Mass Reconstruction in Neutralino LSP Events (AP2)

The aim of this analysis is to reconstruct the mass of the neutralino LSP by making invariant mass combinations of muons & $2 \times jets$.

μjj mass Combination Cuts:

Muon Seed:	pT > 20 GeV & isolated
Reco Cone:	ΔR < 2.0 around seed muon
Jet-1:	20 GeV < pT < 250 GeV
Jet-2:	20 GeV < pT < 150 GeV
	(ignoring 2 hardest jets in event

Above: eta-phi map showing position of objects in a given event. The green circle shows a reconstruction cone around a seed muon.

Left: Invariant mass plot for muon-jet-jet combinations satisfying the above list of cuts for all events passing event selection criteria. The RPV SUSY contribution is shown in purple. Dominant BG is SUSY combinatoric BG. Numbers weighted for a luminosity of 5 fb-1.

Mass Reconstruction in Neutralino LSP Events (AP2)

Left: Estimation of combinatoric background (SUSY sample only – no SM included here yet). BG estimate made by looking at combinations of muons from one event and jets from a <u>different event</u> (that also passes Event Selection). Right: After subtraction of BG estimate.

True Neutralino mass shown in pink. Numbers weighted for a luminosity of 5 fb-1.

