W(ev) + Jets

Data Driven Ttbar Rejection

Maria Fiascaris University of Oxford

in collaboration with Alessandro Tricoli (RAL)

4th June 2008

ATLAS-UK SM Meeting

Outline

- Data Samples and Event Selection Cuts
- Effect of Missing Et cut on background contamination
- Overview of Method for ttbar background subtraction
- Results
- Technical Details
 - B-Tagging studies
 - B-Jet Veto studies
 - Fitting the Missing Et shape
- Conclusions and Outlook

Samples & Selection Cuts

• Samples (v. 12 Athena):

Signal (Alpgen)

Sample	Process	Npartons
6101-6106	W (e v) + Np	0-5
6280-6283	W (I ν) + bb Np	0-3

Note: samples 6101-6106 only include light and c jets

Background (Pythia)

Sample	Process
5802	JF17 (Filtered Dijets)
5568	ttbar
5144	$Z \rightarrow ee$

- Standard Cuts:
 - Electrons:
 - medium IsEM
 - outside cracks (1.37 < |eta| < 1.52)
 - pt > 25 GeV
 - no isolation cut yet
 - MissingEt Cut: 25 GeV
 - Jets:
 - Tower Cone 04
 - Pt > 20 GeV
 - Electron-Jet overlap Removal: DeltaR=0.4

Background & MET Cut

Apply a Missing Et Cut at 25 GeV

Signal events and background contamination (100* Nbkg / Nsig) with /without MET Cut:

Met Cut	Nev Wjets	Zee	QCD	ttbar	
None	(1.403±0.005)·10 ⁶	57.22±0.43	702.34±20.23	5.53±0.08	5
25 GeV	(1.110±0.004)·10 ⁶	1.28±0.04	29.19±4.20	6.05±0.06	ĵ
	•	·			1

ttbar fraction not reduced MET cut!

S-UK SM Meeting

Background vs Jet Multiplicity

From now on ignore QCD and Zee: already subtracted (see Alessandro Tricoli's talk) and focus on **data driven methods for ttbar background subtraction**.

NOTE: QCD background already subtracted implies a cut: **MET > 22.5 GeV** (because of the photon sample normalization range, refer to Alessandro's talk) ttbar fraction becomes important with high jet multiplicity (before MET cut):

Njets≥	Nev Wjets	100· N _{tt} /N _{wjets}
0	(1.403±0.005)·10 ⁶	5.53±0.05
1	(1.060±0.004)·10 ⁶	7.31±0.07
2	(3.304±0.014)·10 ⁵	22.97±0.23
3	(9.604±0.057)·10 ⁴	70.75±0.85
4	(2.689±0.024)·10 ⁴	190.81±3.08
5	(7.384±0.124)·10 ³	406.90±10.54

4th June 2008

ATLAS-UK SM Meeting

Data Driven Ttbar Subtraction

Similar method to QCD:

Do not apply the MET cut (with the exception of the 22.5GeV cut after QCD subtraction), but use the information on the MET shape of the signal vs MET shape of the background to estimate tt background.

METHOD:

- Apply All cuts BUT Missing Et (Full Sample, S0)
- Select a High Purity Ttbar Sample (ttbar Control Sample, tCS)
- Select a High Purity W+jets Sample (Signal Control Sample, wCS) (alternatively extract W+jets MET shape from Monte Carlo)
- 1) From tCS: Fit MET spectrum -> extract shape of ttbar
- 2) From wCS: Fit MET spectrum -> extract shape of signal (W+jets)
- 3) From S0: Simultaneous fit Signal (Wjets) + Bkg (ttbar) -> Find Normalization

Apply for each Multiplicity Bin (to calculate Cross-Section as a function of Jet Multiplicity)

Ttbar Control Sample Selection

W+jets Contamination to the Control Sample

Njets ≥ 2	Ttbar (%)	Wjets(%)	Wbbjets(%)
w_cmb >5	93.1	5.7	1.2
w_cmb >6	96.0	2.7	1.3

Njets ≥ 5			
w_cmb >5	98.0	1.6	0.4
w_cmb >6	98.8	1.1	0.6

How to select the control sample?

- high rejection power against signal (W+jets)
- should not bias MET distribution

We use **B-tagging**:

I cut: Njets ≥ 2, b-tagging weight > xx

Control Sample

Control Sample: Distortion in MET

Check that B-tagging cut does not distort the MET shape:

Control Sample: w_cmb > 6, Njets \geq 2

Total Sample: no btag (all cuts but MET), Njets ≥ 0

Comparing shape (normalized to 1) between control sample and full sample

Ratio Control Sample/ Total Sample after normalization

Signal Control Sample

Use an Anti B-tagging Cut to select a pure W+jets control sample:

Provide the second second

	B-Jet Veto	Nev Wjets	$100 \cdot N_{tt} / N_{Wjets}$		For the inclusive sample (N _{iets} ≥0)
	None	(1.403±0.005)·10 ⁶	5.53±0.05	>	Purity could be a problem, especially at
	w _{cmb} >4	(1.358±0.005)·10 ⁶	1.10±0.02		high jet multiplicity
Be	fore B-Jet V	/eto			After B-Jet Veto (w _{cmb} >4)
events / 2.5 GeV / 1fb ⁻¹	10^{5}	Trigger + EleID C	uts, NJets>=0		Fig 10 ⁵ Trigger + EleID Cuts, NJets>=0 H All Wjets tt Wobjets
	0 8	50 100 T	150 200	250	
	Transverse Missing Energy [GeV]			gy [GeV]	I ransverse Missing Energy [GeV]

Fitting & Normalizing

Results

Number of predicted ttbar events in the MET range 22.5-250 GeV Computed in 3 steps:

1) Prediction 1:

Assume a pure ttbar Control Sample (no W+jets contamination) and take the W+jets shape from MC

2) Prediction 2:

Include W+jets and Wbb+Jets contamination in the ttbar Control Sample

3) Prediction 3:

All of above plus extract W+jets shape from the Signal Control Sample (including contamination of the ttbar)

Jet Multi.	Ntt (true)	Pred1 Error (%)	Pred2 Error (%)	Pred3 Error (%)	Error on prediction
Njets ≥0	(6.848±0.026)·10 ⁴	4.06	6.56	4.93	# Predicted Ev - True Ev
Njets ≥1	(6.837±0.026)·10 ⁴	2.94	5.75	8.33	divided by # True Ev
Njets ≥2	(6.692±0.026)·10 ⁴	3.11	6.16	10.71	, ,
Njets ≥3	(5.976±0.024)·10 ⁴	4.55	6.18	11.92	
Njets ≥4	(4.489±0.021)·10 ⁴	5.47	6.79	12.49	
B-Tag cut for ttbar CS: $w_{cmb} > 6$ Bjet Veto cut for signal CS: $w_{cmb} > 4$		Ef Sa	fect of tt Control Imple Contaminati	on Effect of Sample C	Signal Control Contamination

B-Tagging studies for Control Sample Selection

- The Selection of the Control Sample is crucial for this study! Important to study how we can improve
- There are several **B-Tagging Algorithms** available, I have selected the 2 most used:
 - **IP2D**: uses only the transverse impact parameter
 - CMB (combined): a combination of transverse and impact parameter and secondary vertex information
- Advantages/Disadvantages:
 - CMB: better performance (preferred one if well understood)
 - IP2D: more robust, considered more reliable with real data
- Which one to use? Studies on their performance for the ttbar/signal control sample selection on-going... (see next slide)

B-Tagging Algorithms Performance

Look at the **efficiency** and **purity** of the ttbar Control Sample using **IP2D** and **CMB** and different cuts on the b-tagging weight:

Njets \geq 2, w > x

- **CMB** is more efficient (good at high NJets)
- IP2D give higher purity (important!)

However we are looking at two different regions for CMB and IP2D -> it is not a proper comparison!

B-Jet Veto Studies

Compare **efficiency** and **purity** of the Signal Control Sample for **IP2D** and **CMB** and different cuts on the b-tagging weight:

- IP2D is more efficient
- **CMB** give higher purity

Reject Events with: Njets ≥ 0 , w > x

Opposite than before -> we are applying a b-jet veto!

Control Samples: Purity vs NJets

Ttbar Control Sample: purity is above 95% even at low multiplicity (where ttbar fraction is small) Signal Control Sample: very low purity at high multiplicity

Fitting MET shape

Parametrization for MET spectra not easy. Investigated the following parametrization (using RooFit):

- Polynomial * Exponential (like QCD) : does not describe the peak
- Polynomial (0-50 GeV) + Expo (>50GeV): works but very unstable (problem: glue two PDFs)
- Gauss convoluted with Expo (0-70/80 GeV)
 + Expo (> 70/80 GeV) boundary free parameter:

Looks ok but for some multiplicity bins it fails: continuity of function

Conclusions and Outlook

- Described a data-driven method for ttbar background subtraction in multiplicity bins:
 - it works -> relative error on number of ttbar events is ~5-7% (if we extract the Signal Shape from MC), can go up to 11-12% using a Signal Control Sample
- Having shown the method is applicable, we need to **optimize** it:
 - continue studies on B-tagging, B-jet veto to find the optimal cut for the Control Sample selection (optimize per multiplicity bin)
 - B-jet veto for Signal Control Sample: purity is an issue, need to investigate more cuts
 - could improve the fitting procedure
- Still a lot of work, but it looks promising!

B-Tagging Algorithms

Combined Algorithm

IP2D

b jets

c jets light jets

25

weight IP2D

30

20