Hadronic Production of Colored SUSY Particles with Electroweak NLO Contributions

Maike Trenkel

Wolfgang Hollik, Monika Kollar, Edoardo Mirabella

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

Theory Seminar at IPPP Durham October 9, 2008

Outline

• Introduction

supersymmetry production of colored SUSY particles

• **Production of Squarks and Gluinos**

classification of processes QCD and EW contributions

- *t*₁*t*₁^{*} and *ğ̃q* production at EW NLO
 handling singularities
 numerical results
- Summary

Supersymmetry (SUSY)

SUSY relates fermions and bosons!

- Q|boson >= |fermion > Q|fermion >= |boson >
- new partner particles for all SM particles: same quantum numbers but differ in spin by 1/2
- SUSY as an exact symmetry predicts m(SM) [!]/₌ m(SUSY)
 → SUSY must be broken if realized
- Minimal Supersymmetric Standard Model (MSSM):

SM particle		SUSY particle		
quarks leptons	$oldsymbol{q}_L, oldsymbol{q}_R \ \ell_L, \ell_R$	squarks sleptons	$egin{array}{l} ilde{q}_L, \ ilde{q}_R \ ilde{\ell}_L, \ ilde{\ell}_R \end{array}$	_
gluon W/Z boson photon	ϕ_{γ}^{g}	gluino wino/zino photino	$egin{array}{c} \tilde{g} \ ilde{W}, ilde{Z} \ ilde{\gamma} \end{array}$	neutralinos $\tilde{\chi}^0$
Higgs	H_1, H_2	higgsino	\tilde{H}_1, \tilde{H}_2	$ \int charginos \chi^{-}$

SUSY Breaking

SUSY as exact symmetry predicts $m(SM) \stackrel{!}{=} m(SUSY)$

- but no SUSY particle observed so far \rightarrow SUSY must be broken if realized in nature
 - General SUSY breaking mechanism introduces a large amount of new, free parameters (105)
 - Constrained SUSY models:

assumption of **specific SUSY breaking** mechanisms and universal boundary conditions at the GUT scale

- → e.g. minimalSUperGRAvity models, only 5 parameters [m_0 , $m_{1/2}$, A_0 , tan β , sgn(μ)]
- \rightarrow low-energy spectrum from renormalization group equations

Motivation for Supersymmetry

Supersymmetry is a possible and very attractive extension of the Standard Model:

- unique extension of the Poincaré group gravitation can be included at the Planck scale
- SUSY particles alter the running of gauge couplings
 unification of the coupling constants
- protective symmetry: Higgs mass below 1 TeV is possible
 → solution to the hierarchy problem
- provides Dark Matter candidate

(if additionnal symmetry R-parity is assumed: stable massive, neutral, weakly interacting particle)

Top-Squarks (Stops)

- SUSY partners of top-quarks
- same quantum numbers as $t_{L/R}$, but are scalar particles
- not yet observed, heavy particles
- large top-Yukawa coupling
 - \rightarrow **RGE's**: stops lighter than squarks of first generations
 - \rightarrow mixing: gauge eigenstates $\tilde{t}_{L/R} \rightarrow$ mass eigenstates $\tilde{t}_{1/2}$:

Top-Squarks (Stops)

- SUSY partners of top-quarks
- same quantum numbers as $t_{L/R}$, but are scalar particles
- not yet observed, heavy particles
- large top-Yukawa coupling
 - \rightarrow RGE's: stops lighter than squarks of first generations
 - \rightarrow mixing: gauge eigenstates $\tilde{t}_{L/R} \rightarrow$ mass eigenstates $\tilde{t}_{1/2}$:

$$\mathcal{L}_{\tilde{t}\tilde{t}} = -(\tilde{t}_{L}^{*}, \tilde{t}_{R}^{*}) \begin{pmatrix} m_{t}^{2} + A_{LL} & m_{t}B_{LR} \\ m_{t}B_{LR} & m_{t}^{2} + C_{RR} \end{pmatrix} \begin{pmatrix} \tilde{t}_{L} \\ \tilde{t}_{R} \end{pmatrix} = -(\tilde{t}_{1}^{*}, \tilde{t}_{2}^{*}) \begin{pmatrix} m_{\tilde{t}_{1}}^{2} & 0 \\ 0 & m_{\tilde{t}_{2}}^{2} \end{pmatrix} \begin{pmatrix} \tilde{t}_{1} \\ \tilde{t}_{2} \end{pmatrix}$$

$$\begin{pmatrix} \tilde{t}_1 \\ \tilde{t}_2 \end{pmatrix} = \begin{pmatrix} \cos \theta_t & \sin \theta_t \\ -\sin \theta_t & \cos \theta_t \end{pmatrix} \begin{pmatrix} \tilde{t}_L \\ \tilde{t}_R \end{pmatrix}, \qquad \begin{aligned} A_{LL} &= \left(\frac{1}{2} - \frac{2}{3} \sin^2 \theta_W \right) m_Z^2 \cos 2\beta + m_{\tilde{Q}_3}^2 \\ B_{LR} &= A_t - \mu \cot \beta \\ C_{RR} &= \frac{2}{3} \sin^2 \theta_W m_Z^2 \cos 2\beta + m_{\tilde{U}_3}^2 \end{aligned}$$

$$m_{\tilde{t}_{1,2}}^2 = m_t^2 + \frac{1}{2} \left(A_{LL} + C_{RR} \mp \sqrt{(A_{LL} - C_{RR})^2 + 4m_t^2 B_{LR}^2} \right)$$

 $\rightarrow \tilde{t}_1$ lightest squark in many SUSY models!

Colored SUSY Particles at LHC

Why studying production of colored SUSY particles at the LHC?

 pair production of gluinos and squarks proceeds via strong interaction 10³ \rightarrow large cross sections $\sigma_{tot}[pb]: pp \rightarrow \tilde{g}\tilde{g}, \tilde{q}\tilde{q}, \tilde{t}_1\tilde{t}_1, \tilde{\chi}_2^0\tilde{\chi}_1^+, \tilde{\nu}\tilde{\nu}, \tilde{\chi}_2^0\tilde{g}, \tilde{\chi}_2^0\tilde{q}$ 10^{2} 10 • large top-Yukawa coupling: top-squark \tilde{t}_1 candidate for √S = 14 TeV $\tilde{\chi}_{2}^{0}\tilde{\chi}_{1}^{1}$ lightest squark NLO LO 10 \rightarrow high production rate m [GeV] 10

100

- cross section depend essentially on final state masses
 - → bounds on cross section allow for lower mass bounds without specifying all other SUSY parameters

350

450

500

Experimental Searches

Experimental Searches

stop mass limits @ CDF Run II: [0707.2567 hep-ex] $m_{\tilde{t}_1} > 132 \text{ GeV for } m(\tilde{\chi}_1^0) = 48 \text{ GeV}$ QCD corr's included; $BR(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0) = 100\%$

Gluino & squark mass limits:

at D0 Run II [0712.3805 hep-ex] $m_{\tilde{q} \approx \tilde{g}} > 390 \text{ GeV}; m_{\tilde{g}} > 308 \text{ GeV}$ $A_0 = 0 \text{ GeV}, \tan \beta = 3, \mu < 0; L=2.1 \text{ fb}^{-1}$

Experimental Searches

stop mass limits @ CDF Run II: [0707.2567 hep-ex] $m_{\tilde{t}_1} > 132 \text{ GeV for } m(\tilde{\chi}_1^0) = 48 \text{ GeV}$ QCD corr's included; $BR(\tilde{t}_1 \rightarrow c\tilde{\chi}_1^0) = 100\%$

Gluino & squark mass limits:

at D0 Run II [0712.3805 hep-ex] $m_{\tilde{q} \approx \tilde{g}} > 390 \text{ GeV}; m_{\tilde{g}} > 308 \text{ GeV}$ $A_0 = 0 \text{ GeV}, \tan \beta = 3, \mu < 0; L=2.1 \text{ fb}^{-1}$

at ALEPH & OPAL [0804.2477 hep-ph] $m_{\tilde{g}} > 51~\text{GeV}$ model-independent; from thrust data

- → **until now: agreement** between data and SM expectations
- → comparison of exp. limits & theor. cross sections: restrictions on SUSY parameter space

Outline

- Introduction
- Production of Squarks and Gluinos
- $\tilde{t}_1 \tilde{t}_1^*$ and $\tilde{g}\tilde{q}$ production at EW NLO
- Summary

Overview: Squark & Gluino Production @ LO

Squark and gluino production at LO is well known since many years [Kane & Leveille '82, Harrison & Llewellyn Smith '83, Reya & Roy '85, Dawson, Eichten, Quigg '85, Baer & Tata '85] • $\mathcal{O}(\alpha_s^2)$: - $\tilde{g}\tilde{g}$ production Jog Cleans 22222 000000 $\tilde{g}\tilde{q}$ production 0000 - $\tilde{q}\tilde{q}^*$, $\tilde{b}_i\tilde{b}_i^*$, $\tilde{t}_i\tilde{t}_i^*$ production Jogo Color $(\tilde{q} \neq \tilde{t})$ June

- stops & sbottoms: L-R mixing cannot be neglected; exp. distinguishable
- top-squark pair production is diagonal at LO

Maike Trenkel: Hadronic Production of Colored SUSY Particles with EW NLO Contributions

Tree-level Electroweak Contributions

 $\tilde{t}\tilde{t}^*$ and $\tilde{q}\tilde{q}^*$ production is also possible by tree-level EW contributions!

• $\mathcal{O}(\alpha^2)$: EW tree-level contributions to $\tilde{t}\tilde{t}^*$ production [Bozzi, Fuks, Herrmann, Klasen '07]

• $\mathcal{O}(\alpha^2 + \alpha_s \alpha)$: EW tree-level contributions to $\tilde{q}\tilde{q}^*$ production

 γ, Z + $\tilde{\chi}^0$

[Bornhauser, Drees, Dreiner, Kim '07]

Tree-level Electroweak Contributions II

New production channel for $\tilde{q}\tilde{q}^*$, $\tilde{t}\tilde{t}^*$, and $\tilde{q}\tilde{g}$ production:

• $\mathcal{O}(\alpha_{s}\alpha)$: photon induced processes

[Hollik, Kollar, MT '07], [Hollik, Mirabella '08] [Hollik, Mirabella, MT '08]

- not present at LO at the hadronic level
- MRST 2004 QED: inclusion of NLO QED effects in the evolution of PDFs
 - \rightarrow non-zero photon distribution
 - → non-zero hadronic contributions

Higher Order Corrections – Squark Production

Important higher order effects due to QCD corrections:

Higher Order Corrections – Squark Production II

Known from SM processes: also **EW corrections** can be important!

Overview: Squark and Gluino Production @ LHC

	$\mathcal{O}(lpha_{ extsf{s}}^{ extsf{2}})$	$\mathcal{O}(lpha_{ extsf{s}}^{ extsf{3}})$	$\mathcal{O}(lpha^2)$	$\mathcal{O}(lpha_{ extsf{s}}lpha)$	$\mathcal{O}(lpha_{ extsf{s}}lpha)$	$\mathcal{O}(lpha_{ extsf{s}}^{ extsf{2}} lpha)$
<i>ğ</i> ĝ	+	+	_	_	_	+
ĝq	+	+	_	-	+	+
ĩtĩ*	+	+	+	-	+	+
ą̃ą∗	+	+	+	+	+	+
	Japan Berrie	see see see see	><	×		see entre t

Outline

- Introduction
- **Production of Squarks and Gluinos**
- $\tilde{t}_1 \tilde{t}_1^*$ and $\tilde{g}\tilde{q}$ production at EW NLO
- Summary

EW NLO Corrections: Singularities

- UV singularities (self energies, vertices) from loop integrals
 - → renormalization of quarks & squarks
 (see talk by Edoardo)
 [no renorm. of gluon, gluino, and α_s at this order;
 stop prod. is diagonal → no renorm. of mixing angle required]
- IR (soft) singularities from $m_{\gamma} = m_g = 0$
 - \rightarrow real photon and gluon bremsstrahlung

[technical: mass regularization + phase space slicing]

- collinear singularities from $m_q = 0$
 - \rightarrow real photon bremsstrahlung
 - $\rightarrow\,$ factorization and redefinition of PDFs

How to obtain a IR-finite cross section for $q\bar{q} \rightarrow \tilde{t}\tilde{t}^*$

Real (Anti-)Quark Radiation at $\mathcal{O}(\alpha_s^2 \alpha)$

- **non-zero interference** of **EW** and **QCD** diagrams!
 - \rightarrow many channels & diagrams, some examples for $u\bar{u} \rightarrow \tilde{g}\tilde{u}_L\bar{u}$:

→ IR soft and collinear finite [$\tilde{t}\tilde{t}^*$: contribution finite & negligible; $\tilde{q}\tilde{q}^*$ collinear singular]

Real (Anti-)Quark Radiation at $\mathcal{O}(\alpha_s^2 \alpha)$

- **non-zero interference** of **EW** and **QCD** diagrams!
 - \rightarrow many channels & diagrams, some examples for $u\bar{u} \rightarrow \tilde{g}\tilde{u}_L\bar{u}$:

- → IR soft and collinear finite [$\tilde{t}\tilde{t}^*$: contribution finite & negligible; $\tilde{q}\tilde{q}^*$ collinear singular]
- \rightarrow on-shell internal particles: insert widths to regularize propagators
- \rightarrow in order to **avoid double counting**: subtract possible **resonances**

Numerical Results: Absolute EW Contributions

• Interplay of the production channels? Invariant mass distributions:

- $\rightarrow \tilde{t}_1 \tilde{t}_1^*$: γg corrections are of the same size and change the total EW corrections substantially!
- $\rightarrow \tilde{g}\tilde{q}$: γq corrections do not depend on helicity state; contribute only moderate.

Relative Corrections $\delta = \Delta \sigma^{NLO} / \sigma^{LO}$

→ **EW corrections** grow **up to** ~ **10**% for large values of $p_T \& M_{\tilde{t}_1 \tilde{t}_1^*}$ (large double log's from W,Z exchange, not cancelled by real radiation)

Relative Corrections $\delta = \Delta \sigma^{NLO} / \sigma^{LO}$

→ for $\tilde{g}\tilde{d}_L + \tilde{g}\tilde{u}_L$ production EW NLO corrections grow **up to 10%** → corrections negligible for right-handed squarks

Total Cross Sections for SPS1a'

final state	$\sigma^{LO} \mathcal{O}(lpha_s^2)$	$\Delta \sigma^{NLO} \mathcal{O}(lpha_s^2 lpha)$	$\sigma^{\gamma g/\gamma q} \mathcal{O}(lpha_{s} lpha)$	$\delta = \frac{\sigma^{\text{NLO}} - \sigma^{\text{LO}}}{\sigma^{\text{LO}}}$
$\tilde{t}_1 \tilde{t}_1^*$	1830 fb	−15.0 fb	34.1 fb	1.0 %
<i>ỹ ũ_R ỹ đ_R</i>	5690 fb 3210 fb	12.6 fb 1.97 fb	4.32 fb 0.73 fb	0.3% 0.1%
${ ilde g} { ilde u}_L \ { ilde g} { ilde d}_L$	5340 fb 2880 fb	_119 fb _78.3 fb	3.98 fb 0.64 fb	-2.2% -2.7%
<i>ğ</i> q̃	17120 fb	−183 fb	9.67 fb	-1.0%

 $[\mu_F = \mu_R = 1 \text{ TeV}, \text{MRST 2004 QED}, m_t = 170.9 \text{ GeV};$ $m(\tilde{t}_1) = 360 \text{ GeV}, m(\tilde{u}_R) = 543 \text{ GeV}, m(\tilde{d}_R) = 539 \text{ GeV},$ $m(\tilde{u}_L) = 561 \text{ GeV}, m(\tilde{d}_L) = 566 \text{ GeV}, m(\tilde{g}) = 609 \text{ GeV}]$

- $\tilde{t}_1 \tilde{t}_1^*$ production at $\mathcal{O}(\alpha^2)$: $\sigma^{EW,LO} = 1.11$ fb
- *g̃q̃* processes: production of anti-squarks and of squarks of 2nd generation included (differing only in required PDF)

Summary

- Exciting times ahead: SUSY will be probed at the LHC
 Squarks and gluinos will be produced at a very high rate
- QCD corrections already well known, missing EW NLO corrections: for *t̃t**, *q̃q** & *g̃q* completed, for *g̃g* publication in preparation
- EW corrections to the total cross section are small, but important in the high-p_T & high-M_{inv} range
- PDF's include QED and QCD contributions at NLO
 - → non-zero photon PDF opens **new production channel**
 - \rightarrow need to include QCD corrections for consistent picture and for reduced scale dependence

Backup

Numerical Results: Input Parameters

- SPA convention: SUSY parameters defined in DR scheme here: (s)particles renormalized on-shell
 - \rightarrow need consistent set of on-shell input parameters
 - \rightarrow translation $\overline{DR} \rightarrow OS$ required:

$$m_{\overline{\rm DR}}^2 + \delta m_{\overline{\rm DR}}^2 = m_{\rm OS}^2 + \delta m_{\rm OS}^2$$

 SU(2) invariance: soft-breaking parameter m_Q identical for up- and down-type squarks

 \rightarrow fourth squark is dependent, receives mass corrections

$$(m_{\tilde{d}_L}^2)^{110 \text{ op}} = (m_{\tilde{d}_L}^2)^{\text{dep.}} + \delta m_{\tilde{d}_L}^2 - \Re \Sigma_{\tilde{d}_{LL}}(m_{\tilde{d}_L}^2)$$

• Within the **SPS1a**' scenario, the physical masses are

$$egin{aligned} m_{ ilde{u}_R} &= 543 \; {
m GeV}, \quad m_{ ilde{u}_L} &= 561 \; {
m GeV}, \quad m_{ ilde{d}_R} &= 539 \; {
m GeV}, \ m_{ ilde{d}_L} &= 566 \; {
m GeV}, \quad m_{ ilde{g}} &= 609 \; {
m GeV}, \quad m_{ ilde{t}_1} &= 360 \; {
m GeV}. \end{aligned}$$

SUSY Parameter Dependence

 $\tilde{t}_1 \tilde{t}_1^*$ prod.:

• Relative corrections δ with respect to total born cross section ($gg + q\bar{q}$),

stop mass $m(\tilde{t}_1)$ varied around SPS 1a' value, all other parameters fixed

- moderate contributions, at percent level
- thresholds & resonances in H^0 diagrams b/t b/t b/t f^1 $g_{q_i}^{g}$ \tilde{q}_i^{g} \tilde{q}_i^{g}
- thresholds in top-squark wave function renormalization

 $\tilde{t}\tilde{t}^*$

SUSY Parameter Dependence II

 $\tilde{g}\tilde{q}$ prod.:

ĝq

$\tilde{t}\tilde{t}^*$ prod.: Real Quark Radiation at $\mathcal{O}(\alpha_s^2\alpha)$

EW diagrams:

QCD diagrams:

Experimental Searches – prospects

good prospects for LHC!

[Buchmüller et al. '08]

from combination of experimental, phenomenological, and cosmological information:

• 95% C. L. area in the $(m_{1/2}, m_0)$ plane of CMSSM lies largely within the region that can be explored with 1fb⁻¹ at 14 TeV

Cross Sections at Hadron Colliders

Distinguish hadron level and parton level :

$$\sigma_{P_1P_2 \to \tilde{q}\tilde{q}^*}(P_1, P_2) = \sum_{i,j=g,q,\bar{q}} \int dx_1 \, dx_2 \, f_i(x_1) \, f_j(x_2) \, \hat{\sigma}_{ij \to \tilde{q}\tilde{q}^*}(P_1, P_2)$$

$$p_{1,2} = x_{1,2} \, P_{1,2}$$

 $f_{g,q,\bar{q}}(x)$: parton density function (PDF)

 \rightarrow probability to find a gluon g or (anti-)quark q with momentum fraction x (process independent)

Factorization $f_i(\mathbf{x}) \rightarrow f_i(\mathbf{x}, \mu_F)$

 μ_F : factorization scale

Soft Singularities in Detail

The soft-photon parts factorize in universal factors and the LO cross section:

$$d\hat{\sigma}_{\text{soft},\gamma}^{q\bar{q}}(\hat{s}) = \frac{\alpha}{\pi} \left(e_q^2 \,\delta_{\text{soft}}^{in} + e_t^2 \,\delta_{\text{soft}}^{fin} + 2e_q e_t \,\delta_{\text{soft}}^{int} \right) d\hat{\sigma}_0^{q\bar{q}}(\hat{s})$$
$$d\hat{\sigma}_{\text{soft},\gamma}^{gg}(\hat{s}) = \frac{\alpha}{\pi} \,e_t^2 \,\delta_{\text{soft}}^{fin} \,d\hat{\sigma}_0^{gg}(\hat{s})$$

the $q\bar{q}$ soft-gluon part needs special color matrix arrangement:

$$d\hat{\sigma}_{soft,g}^{q\bar{q}}(\hat{s}) = \frac{\alpha_s}{\pi} \,\delta_{soft}^{int} \left[T_{ij}^a T_{ji}^b T_{lm}^a T_{ml}^b \right] \cdot \overline{\sum} \left(2\widetilde{\mathcal{M}}_{0,g}^{q\bar{q}} * \widetilde{\mathcal{M}}_{0,\gamma}^{q\bar{q}} + 2\widetilde{\mathcal{M}}_{0,g}^{q\bar{q}} * \widetilde{\mathcal{M}}_{0,Z}^{q\bar{q}} \right) \frac{d\hat{t}}{16\pi\hat{s}^2}$$

$$\begin{array}{ll} \text{with} \qquad \delta_{\text{soft}}^{in} = \left[\ln\frac{4(\Delta E)^2}{\hat{s}} - \ln\frac{\lambda^2}{\hat{s}}\right] \left[\ln\frac{\hat{s}}{m_q^2} - 1\right] - \frac{1}{2}\ln^2\frac{\hat{s}}{m_q^2} + \ln\frac{\hat{s}}{m_q^2} - \frac{\pi^2}{3} , \\ \\ \delta_{\text{soft}}^{fin} = \left[\ln\frac{4(\Delta E)^2}{\hat{s}} - \ln\frac{\lambda^2}{\hat{s}}\right] \left[\frac{\hat{s} - 2m_{\tilde{t}_i}^2}{\hat{s}\beta} \ln\left(\frac{1+\beta}{1-\beta}\right) - 1\right] + \frac{1}{\beta}\ln\left(\frac{1+\beta}{1-\beta}\right) \\ \\ - \frac{\hat{s} - 2m_{\tilde{t}_i}^2}{\hat{s}\beta} \left[2\text{Li}_2\left(\frac{2\beta}{1+\beta}\right) + \frac{1}{2}\ln^2\left(\frac{1+\beta}{1-\beta}\right)\right] , \qquad \beta = \sqrt{1 - \frac{4m_{\tilde{t}_i}}{\hat{s}}} , \\ \\ \delta_{\text{soft}}^{int} = \left[\ln\frac{4(\Delta E)^2}{\hat{s}} - \ln\frac{\lambda^2}{\hat{s}}\right]\ln\left(\frac{1-\beta\cos\theta}{1+\beta\cos\theta}\right) - \text{Li}_2\left(1 - \frac{1-\beta}{1-\beta\cos\theta}\right) \\ \\ - \text{Li}_2\left(1 - \frac{1+\beta}{1-\beta\cos\theta}\right) + \text{Li}_2\left(1 - \frac{1-\beta}{1+\beta\cos\theta}\right) + \text{Li}_2\left(1 - \frac{1+\beta}{1+\beta\cos\theta}\right) + \text{Li}_2\left(1 - \frac{1+\beta}{1+\beta\cos\theta}\right) . \\ \end{array}$$

~

Collinear Singularities in Detail

• Approx. of partonic cross section in the collinear cones ($p_{\gamma} = (1 - z)p_a$):

$$d\hat{\sigma}_{coll}(\hat{s}) = \frac{\alpha}{\pi} e_q^2 \int_0^{1-\delta_s} dz \ d\hat{\sigma}_0^{q\bar{q}}(\hat{s}) \ \kappa_{coll}(z), \qquad \kappa_{coll}(z) = \frac{1}{2} P_{qq}(z) \left[\ln\left(\frac{\tilde{s}}{m_q^2} \frac{\delta_\theta}{2}\right) - 1 \right] + \frac{1}{2}(1-z),$$

redefinition of PDFs at NLO QED:

$$f_{a/A}(\mathbf{x}) \to f_{a/A}(\mathbf{x},\mu_F) + f_{a/A}(\mathbf{x},\mu_F) \frac{\alpha}{\pi} e_q^2 \kappa_{soft}^{PDF} + \frac{\alpha}{\pi} e_q^2 \int_{\mathbf{x}}^{1-\delta_s} \frac{dz}{z} f_{a/A}\left(\frac{\mathbf{x}}{z},\mu_F\right) \kappa_{coll}^{PDF}(\mathbf{z})$$

with

$$\kappa_{soft}^{PDF} = -1 + \ln \delta_{s} + \ln^{2} \delta_{s} - \ln \left(\frac{\mu_{F}^{2}}{m_{q}^{2}}\right) \left[\frac{3}{4} + \ln \delta_{s}\right] + \frac{1}{4} \lambda_{sc} \left[9 + \frac{2\pi^{2}}{3} + 3\ln \delta_{s} - 2\ln^{2} \delta_{s}\right],$$

$$\kappa_{coll}^{PDF}(z) = \frac{1}{2} P_{qq}(z) \left[\ln \left(\frac{m_{q}^{2} (1 - z)^{2}}{\mu_{F}^{2}}\right) + 1\right] - \frac{1}{2} \lambda_{sc} \left[P_{qq}(z) \ln \frac{1 - z}{z} - \frac{3}{2} \frac{1}{1 - z} + 2z + 3\right].$$

- at hadronic level: mass singularities in $\kappa_{coll} + \kappa_{coll}^{PDF}$ cancel
- κ_{soft}^{PDF} cancels remaining mass singularities owing to soft photons

 \sim [Baur, Keller, Wackeroth '99], [Diener, Dittmaier, Hollik '04]