technicolor on the lattice

Luigi Del Debbio

luigi.del.debbio@ed.ac.uk

University of Edinburgh

Dynamical Electroweak Symmetry Breaking

- mechanism for EWSB \longrightarrow hierarchy problem: $\Lambda_{EW} \ll \Lambda_{UV}$
- elegant solution: dynamical EW symmetry breaking [weinberg, susskind] \hookrightarrow new strong interaction: $\Lambda_{\rm EW} \sim \Lambda_{\rm UV} e^{-g_c^2/g_{\rm UV}^2}$
- mechanism already realized in QCD
- EW sector strongly coupled at TeV scale $\simeq 4\pi v$
- new resonances $\mathcal{O}(1 \text{ TeV})$
- TC Goldstone bosons → longitudinal EW gauge dof

Problems with technicolor

- too much freedom: flavors, colors, representations?
- difficult to compute due to strong dynamics
- precision EW data: do not rule out DEWSB
- do rule out QCD–like behaviour
- but no large number N of degrees of freedom
 → large technicolor, Randall–Sundrum models
- flavor physics from TC: extended TC

Flavor physics

• ETC: mass term for the SM fermions, FCNC

$$\longrightarrow \quad \Delta \mathcal{L} \propto \frac{1}{M_{\rm ETC}^2} \mathcal{O}_{\rm ETC} \, \bar{\psi} \psi, \, \frac{1}{M_{\rm ETC}^2} \bar{\psi} \psi \, \bar{\psi} \psi$$

• running of \mathcal{O} : (near) conformal behaviour

$$\mathcal{O}_{\mathrm{ETC}} = \mathcal{O}_{\mathrm{TC}} \exp\left(\int_{\Lambda_{\mathrm{TC}}}^{M_{\mathrm{ETC}}} \frac{d\mu}{\mu} \gamma(\mu)\right)$$

Flavor physics

• QCD-like technicolor: $m \sim \Lambda_{\rm TC}^3/M_{\rm ETC}^2$

$$\Lambda_t \sim \Lambda_{\rm TC} \left(\frac{\Lambda_{\rm TC}}{m_t}\right)^{1/2} \sim 5 \; {\rm TeV}$$

• non QCD–like technicolor:
$$m \sim \Lambda_{\rm TC}^d / M_{\rm ETC}^{d-1}$$

$$\Lambda_t \sim \Lambda_{\rm TC} \left(\frac{\Lambda_{\rm TC}}{m_t}\right)^{1/(d-1)}$$

- technicolor + ladder: $d = 2, \gamma = 1$; smaller values of d
- conformal technicolor [luty 04]

DEWSB @ LHC

- collider phenomenology via effective theories
- effective lagrangian for the low–lying states
 LHC observables in terms of the LEC [giudice et al, sannino et al]
- Iattice simulations provide first principle calculations

 → phase structure of the theory, spectrum, LEC
- light dynamical fermions play a key role for non QCD–like behaviour
- understand the effect of systematic errors in lattice results

Progress with dynamical fermions

Numerical studies can now access the chiral regime of QCD, at large volumes and small lattice spacing using Wilson fermions.

New scope for lattice QFT

- simulations with light, dynamical fermions w/out compromising the robustness of the formulation
- Iattice simulations: quantitative tool for NP QFT
- dynamics should be different from QCD + we don't know the answer!!

SU(N) gauge theories with fermions in higher–dimensional reps

- definition and implementation
- large-*N* limit with fundamental fermions [Idd et al 07]
- technicolor theories [catterall et al, svetitsky et al]
- planar orientifold equivalence [armoni et al 03ff]
- Iattice SUSY

Lattice formulation

$$S(U,\psi,\bar{\psi}) = S_g(U) + a^4 \sum_{x,y} \bar{\psi}(x) D(x,y) \psi(y)$$

$$Z = \int dU \, \exp\left[-S_g(U)\right] \, (\det D)^{n_f}$$

Higher representations

Wilson–Dirac operator:

$$D = \frac{1}{2} \sum_{\mu} \left[\gamma_{\mu} \left(\nabla_{\mu} + \nabla^{*}_{\mu} \right) - a \nabla^{*}_{\mu} \nabla_{\mu} \right] + m \,,$$

i.e.

$$\sum_{y} D(x, y)\psi(y) = -\frac{1}{2a} \Big\{ \sum_{\mu} \Big[(1 - \gamma_{\mu}) U^{R}(x, \mu)\psi(x + \mu) + (1 + \gamma_{\mu}) U^{R}(x - \mu, \mu)^{\dagger}\psi(x - \mu) \Big] - (8 + 2am)\psi(x) \Big\},\$$

$$\kappa = 1/(8 + 2am)$$

Link variables:

$$U(x,\mu) = \exp\left[iA^a_{\mu}(x)T^a_f\right], \quad N \times N \text{ matrix}$$
$$U^R(x,\mu) = \exp\left[iA^a_{\mu}(x,\mu)T^a_R\right], \quad d_R \times d_R \text{ matrix}$$

HMC for higher representations

[ldd, patella, pica 08]

Including the fermionic determinant:

$$Z = \int \mathcal{D}U \mathcal{D}\phi \mathcal{D}\phi^* \exp[-S_G - \|Q^{-1}\phi\|^2]$$
$$= \int \mathcal{D}\Pi \mathcal{D}U \mathcal{D}\phi \mathcal{D}\phi^* \exp[-\frac{1}{2}(\Pi,\Pi) - S_G - \|Q^{-1}\phi\|^2], \quad Q = \gamma_5 D$$

Molecular dynamics evolution:

$$\frac{d}{dt}\Pi(x,\mu) = -\frac{\delta\mathcal{H}}{\delta U(x,\mu)} = \sum_{k} F_k(x,\mu)$$
$$\frac{d}{dt}U(x,\mu) = \Pi(x,\mu)U(x,\mu)$$

performed numerically through discrete leapfrog integration w. time-step $d\tau$

Total trajectory length $\tau = N d\tau$ – $\cot \propto N \langle N_{iter} \rangle$

Metropolis acceptance test at the end of the evolution – acceptance rate

Forces in the molecular dynamics (1)

$$\mathcal{H}_G = S_G = \beta \sum_{\mu < \nu} \left(1 - \frac{1}{N} \operatorname{Re} \operatorname{tr} \mathcal{P}_{\mu\nu} \right)$$
$$\mathcal{H}_F = S_F = \sum_x \phi^{\dagger}(x) \left[Q^2 \right]^{-1} \phi(x)$$

The forces are defined as:

$$\delta U(x,\mu) = \delta \omega(x,\mu)U(x,\mu)$$

$$\delta S_G = (\delta \omega, F_G)$$

$$\delta S_F = (\delta \omega, F_F)$$

The fermionic force is obtained from:

$$\delta S_F = -2 \operatorname{Re} \left[\xi^{\dagger} \delta(Q) \eta \right]$$
$$\eta = (Q^2)^{-1} \phi$$
$$\xi = Q \eta$$

Forces in the molecular dynamics (2)

$$\delta S_F = \sum_{x,\mu,a} \delta \omega^a(x,\mu) \operatorname{Retr}_{s,c} \left[i T^a_R U^R(x,\mu) \gamma_5 (1-\gamma_\mu) \times \left\{ \eta(x+\mu) \otimes \xi(x)^{\dagger} + \xi(x+\mu) \otimes \eta(x)^{\dagger} \right\} \right]$$

Introducing the projectors:

$$P_R^a(F) = -\frac{1}{T_f} \operatorname{Re} \operatorname{tr}_c \left[i T_R^a F \right] \,,$$

one obtains a compact expression:

$$\begin{split} F_F^a(x,\mu) &= P_R^a \left(U^R(x,\mu) \operatorname{tr}_{\mathrm{s}} \left[\gamma_5 (1-\gamma_\mu) \times \left\{ \eta(x+\mu) \otimes \xi(x)^{\dagger} + \xi(x+\mu) \otimes \eta(x)^{\dagger} \right\} \right] \right) \end{split}$$

Eigenvalues of the Dirac operator

[ldd et al 05]

- continuum theory: $\{\gamma_5, D\} = 0$
 - \implies the massive Dirac operator is protected from small e.v.
- Wilson fermions break chiral symmetry \implies no protection for $D_m = D_w + m_0$
- for particular gauge fields: exceptionally small e.v.
 instabilities / more expensive computations
- observed very smooth runs: can NOT be a property of the algorithm distribution of the spectral gap is a property of D_m
- scaling as $a \to 0$ $m \to 0$ $V \to \infty$
- analytical control: PQChPt/RMT, $O(a^2)$ effects, finite volume [sharpe 06]

Gap distribution

- integration instabilities / reversibility
- ergodicity problem: HMC stuck in a sector with $\eta \neq 0$
- sampling of observables: $p(\mu)/\mu^2$

difficult regime for simulations:

$$egin{array}{c} m
ightarrow 0 \ a,V \,\,\, {
m fixed} \end{array}$$

 \hookrightarrow is there a safe regime?

Numerical results in QCD

Small lattice 32×24^3 , 4 bare masses [Idd et al 05]

- stability is related to the width of the distribution
- $\langle \mu \rangle$ shifts linearly with m
- width independent of the mass
- scaling with a and V: $\sigma \propto aV^{-1/2}$

Tests of the algorithm (1)

SU(3) fund repr $16^3 \times 16, \beta = 5.6, \kappa = 0.15750$

SU(2) 2S/adjoint repr $4^3 \times 8, \beta = 2.0, \kappa = 0.12500$

Tests of the algorithm (2)

Tests of the algorithm (3)

Minimal Walking Technicolor

• arguments in favour of (near) conformal behaviour for $n_f = 2$ [sannino et al 05ff]

- candidate for minimal walking technicolor model
- lattice simulations can provide NP input catterall et al 07, shamir et al 08]
 - phase structure in bare parameter space
 - spectroscopy
 - NP study of near–conformal behaviour

Perturbation theory

[ldd, frandsen, panagopoulos, sannino 08]

Perturbative computations can be easily generalized:

- vertices with fermions and gluons involve generators T_B^a
- vertices with 3 and 4 gluons involve generators T_F^a
- at one–loop replace Casimir operators as necessary
- at two–loop the structure of each diagram needs to be inspected
- numerical integral are independent of the color structure

$$am_{c}(g_{0}) = g_{0}^{2}\Sigma^{(1)} + g_{0}^{4}\Sigma^{(2)}$$

$$\Sigma^{(1)} = 2C_{2}(R) [c_{1} + c_{2}]$$

$$\Sigma^{(2)} = C_{2}(R)Nd_{1} + 2C_{2}(R)T_{R}n_{f}d_{2} + C_{2}(R)C_{2}(F)d_{3} + C_{2}(r)^{2}d_{4}$$

$$Z_A = 1 - \frac{g_0^2}{16\pi^2} C_2(R) \times 15.7$$

Chiral symmetry

For a generic N the 2-index representations are complex:

 $\operatorname{SU}(n_f) \times \operatorname{SU}(n_f) \longrightarrow \operatorname{SU}(n_f)$

 \implies usual pattern of chiral symmetry breaking

SU(2) is a special case: is the adjoint representation

chiral symmetry breaking pattern for $n_f = 2$:

 $SU(4) \longrightarrow SO(4)$

Goldstone bosons are coupled to EW gauge bosons:

 $F_{\rm PS} = v \approx 250 \; {\rm GeV}$

 \hookrightarrow used to set the scale

Conformal fixed point?

- scale invariance is broken by m AND 1/L
- HOW to identify the conformal fixed point
- deviations from QCD spectrum
- scaling behaviour of field correlators
- difficult because of the presence of two relevant operators
- Schrödinger functional/twisted BC allow m = 0

List of runs

eta	V	κ	-m	$\langle P \rangle$	au
2.00	8×4^3	0.12500	0.0	0.5093(14)	2.9(0.4)
	8×4^3	0.14286	0.5	0.5163(16)	3.1(0.5)
	8×4^3	0.15385	0.75	0.5235(18)	3.1(0.5)
	8×4^3	0.16667	1.0	0.5373(20)	6.0(1.2)
	8×4^3	0.18182	1.25	0.5742(37)	12.0(3.6)
	8×4^3	0.18382	1.28	0.5850(50)	22.3(9.3)
	8×4^3	0.18587	1.31	0.6013(55)	48.3(23.3)
	8×4^3	0.18657	1.32	0.6159(58)	40.7(16.3)
	16×8^3	0.18587	1.31	0.5951(4)	5.8(3.6)
	$16 imes 8^3$	0.18657	1.32	0.6040(6)	9.0(9.6)
	16×8^3	0.18692	1.325	0.6107(5)	4.2(2.6)
	16×8^3	0.18727	1.33	0.6168(7)	2.6(1.8)
	$16 imes 8^3$	0.18748	1.333	0.6250(4)	13.1(5.9)
	$16 imes 8^3$	0.18769	1.336	0.6296(7)	15.6(10.9)
	16×8^3	0.18797	1.34	0.6347(6)	13.6(11.5)

Two-point functions

1. Correlators of fermion bilinears:

$$f_{\Gamma_1\Gamma_2}(t) = \sum_{\vec{x}} \langle (\bar{u}\Gamma_1 d)^{\dagger}(\vec{x}, t) (\bar{u}\Gamma_2 d)(\vec{0}, 0) \rangle$$

are computed by performing the Wick contractions:

$$f_{\Gamma_1\Gamma_2}(t) = -\sum_{\vec{x}} \langle \operatorname{tr} \left[\Gamma_1' G(x,0) \Gamma_2' G(x,0)^{\dagger} \right] \rangle$$

2. Asymptotic behaviour at large Euclidean times:

$$f_{\Gamma_1\Gamma_2}(t) = A_{\Gamma_1\Gamma_2}e^{-mt} + \dots$$

$$m_{\text{eff}}(t) = -\log\frac{f_{\Gamma_1\Gamma_2}(t)}{f_{\Gamma_1\Gamma_2}(t-1)} \longrightarrow m$$

3. The quark mass is obtained from:

$$m_{\rm pcac}(t) = \left[\frac{1}{2} \left(\partial_0 + \partial_0^*\right) f_{\rm AP}(t)\right] / f_{\rm PP}(t) \longrightarrow m_{\rm pcac}$$

Effective mass

data from 16×8^3 lattice; $\kappa = 0.18727$, $aM_{\rm PS} = 0.838(29)$

Eigenvalue distributions

Small eigenvalues of Q lead to instabilities – cfr QCD studies [Idd et al 05]

data from 16×8^3 lattice – by comparing with data from 8×4^3 : $\sigma \approx 1/\sqrt{V}$

Comparison with previous results

Chiral limit (1)

data from 16×8^3 lattice

Chiral limit (2)

data from 16×8^3 lattice

Chiral limit (3)

data from 16×8^3 lattice

Decay constant

Vector Mass (1)

Vector Mass (2)

Axial Mass

Conclusions

- generalization of the Dirac operator to higher-dim representations
- quenched large–N: spectrum, comparison with string theory
- \longrightarrow continuum limit, scalar meson under study
- simulations with dynamical quarks [catterall et al., shamir et al., ldd et al.]
- even/odd preconditioning, RHMC: arbitrary N and n_f

- agreement with spectrum observed by Svetitsky et al.
- spectroscopy \longrightarrow scalar
- first preliminary results → larger volumes, scaling to control systematics
- $M_V \approx 750 \text{ GeV}...$
- NP walking behaviour: Schrödinger functional [appelquist et al], Wilson loop [lin et al]