SUSY-Breaking Parameters Fit and Models Comparison

Shehu S. AbdusSalam

DAMTP, University of Cambridge

IPPP Seminar, Durham University 30 October, 2008

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

< □ > < 同 >

Jac.

This talk is based on some work to be released and:

- SSA, arXiv:0809.0284 to appear in SUSY08 proceedings
- F.Feroz, B.C.Allanach, M.Hobson, SSA, R.Trotta, A.Weber JHEP 0810:064,2008
- SSA, J.P.Conlon, F.Quevedo, K.Suruliz JHEP 0712:036,2007
- J.P.Conlon, SSA, F.Quevedo, K.Suruliz JHEP 0701:032,2007

< □ > < 同 >

JOG CP

PhenoMSSM

< D >

P

Sac

Introduction

Supersymmetry-breaking Models Bayesian Inference PhenoMSSM Summary and Outlook Human Inherent Curiousity The Standard Models Very Little Known.. Opportunity for alot to be done

Sac

From Where.. & to Where?

Human Inherent Curiousity **The Standard Models** Very Little Known.. Opportunity for alot to be done

Standard Models of Particle Physics & Cosmology

- Universe = 4*D* space-time + matter + interactions
- Matter is fermions
- Interactions mediated by bosons
- Dark matter and interaction
- Higgs gives masses

Human Inherent Curiousity The Standard Models Very Little Known.. Opportunity for alot to be done

The Standard Models Must be Extended

Why 3 generations? < 5% of the Universe known Fermion masses hierarchy Interactions do not unify

Higgs radiative corrections

< 口 > < 同

Jac.

Human Inherent Curiousity The Standard Models Very Little Known.. Opportunity for alot to be done

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

∍

5990

Human Inherent Curiousity The Standard Models Very Little Known.. Opportunity for alot to be done

Supersymmetry is very important

- Theory meets experiment → phenomenology
- SUSY is very important on both ends... it connects
- It solves the hierarchy problem
- Provides a dark matter candidate
- Compatible with grand unifications

Sac

< <p>Image: Image: Imag

P

_ARGE volume scenario Dependance on fluxes nSUGRA/CMSSM SUSY & dark matter searhes at Colliders

SUSY-breaking models

- SUSY: superpartner to each SM particle
- No superpartner observed yet
- SUSY broken at higher energy
- Source of SUSY-breaking not understood
- Make models: two ways round..
 - From fundamental theory: LVS, mSUGRA, AMSB, GMSB, ...
 - Parametrise our ignorance: MSSM-124, CMSSM, ...
- Then scan parameters for phenomenology

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< n >

P

_ARGE volume scenario Dependance on fluxes nSUGRA/CMSSM SUSY & dark matter searhes at Colliders

SUSY-breaking models

- SUSY: superpartner to each SM particle
- No superpartner observed yet
- SUSY broken at higher energy
- Source of SUSY-breaking not understood
- Make models: two ways round..
 - From fundamental theory: LVS, mSUGRA, AMSB, GMSB, ...
 - Parametrise our ignorance: MSSM-124, CMSSM, ...
- Then scan parameters for phenomenology

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

< 口 > < 何

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

LARGE volume scenario

- Different structures on D3/D7-branes
- On D7 \rightarrow LVS, M:m:A = 1: $\frac{1}{\sqrt{3}}$: -1
- On D3 \rightarrow LV Split SUSY $M:m:A = \frac{1}{V}: 1: \mathcal{O}(1)$

Sac

< □ ▶

P

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

W₀ Scanning

Flux parameter, W_0 , affects the SUSY-breaking pattern

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

< 口 > < 同

Jac.

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

mSUGRA/CMSSM & other models

- Model SUSY broken in hidden sector
- Different mediation mechanisms
- Gravity, Anomaly (AMSB), Gauge (GMSB)
- mSUGRA/CMSSM most famous among the models
- Universality relations at GUT energy drastically reduce number of soft-breaking free parameters to:
- $m_0, M_{1/2}, A_0, \tan \beta, sign(\mu) \text{ or } m_0, M_{1/2}, A_0, B, \mu$
- Easier for phenomenological studies
- Used to provide bench mark points

< n <

P

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

mSUGRA/CMSSM & other models

- Model SUSY broken in hidden sector
- Different mediation mechanisms
- Gravity, Anomaly (AMSB), Gauge (GMSB)
- mSUGRA/CMSSM most famous among the models
- Universality relations at GUT energy drastically reduce number of soft-breaking free parameters to:
- $m_0, M_{1/2}, A_0, \tan \beta, sign(\mu) \text{ or } m_0, M_{1/2}, A_0, B, \mu$
- Easier for phenomenological studies
- Used to provide bench mark points

< ロ > < 何 >

→ Ξ →

SQC+

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

mSUGRA/CMSSM 2 parameters map ($\mu > 0$)

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

< <p>Image: Image: Imag

P

Jac.

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

The Large Hadron Collider (LHC)

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

Jac.

∍

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

The night before LHC...

- Bottom-up approach very important
- Need model independent guide for the colliders
- Probe, in maximal manner, of parameter space
- Important... but missing..
- Computationally expensive
- Problem solvable with advanced sampling technique
- Multinest implements Nested Sampling
- Bayesian inference.. in action!

< ロ > < 同

LARGE volume scenario Dependance on fluxes mSUGRA/CMSSM SUSY & dark matter searhes at Colliders

The night before LHC...

- Bottom-up approach very important
- Need model independent guide for the colliders
- Probe, in maximal manner, of parameter space
- Important... but missing..
- Computationally expensive
- Problem solvable with advanced sampling technique
- Multinest implements Nested Sampling
- Bayesian inference.. in action!

< □ > < 同 >

Bayes Theorem and Nested Sampling

Bayes theorem and nested sampling

- Nested sampling prioratise getting the Bayesian evidence
- prior \times likelihood = evidence, Z \times posterior, $P(\theta|D, H)$.

 $P(\theta|D,H) = P(D|\theta,H)P(\theta,H)/P(D,H)$

Model evidence in light data, is the n-dimensional integral

$$Z = P(D, H) = \int P(D|\theta, H)P(\theta, H) d\theta.$$

- The algorithm converts this nd to 1d integration!
- Use this to explore a **phenoMSSM**

< 口 > < 同 >

→ Ξ →

Bayes Theorem and Nested Sampling

Bayes theorem and nested sampling

- Nested sampling prioratise getting the Bayesian evidence
- prior \times likelihood = evidence, Z \times posterior, $P(\theta|D, H)$.

$$P(\theta|D,H) = P(D|\theta,H)P(\theta,H)/P(D,H)$$

• Model evidence in light data, is the **n**-dimensional integral

$$Z = P(D, H) = \int P(D|\theta, H)P(\theta, H) \, d\theta.$$

- The algorithm converts this nd to 1d integration!
- Use this to explore a **phenoMSSM**

< 口 > < 同 >

→ Ξ →

Parameters and prior Dbservables and constraints Likelihood and Posterior Some results

Phenomenological MSSM

- Most natural and model independent approach
- Scan over all regions of parameter space at weak-scale
- Most general: covers all scenarios for SUSY breaking
- Blind to hidden sector physics, mediation mechanisms and renormalisation group runnings
- Provide more realistic bench mark points
- Guiding map for colliders and DM searches
- Make better SUSY (MSSM) predictions

< ロ > < 同

Parameters and prior Dbservables and constraints Likelihood and Posterior Some results

Phenomenological MSSM

- Most natural and model independent approach
- Scan over all regions of parameter space at weak-scale
- Most general: covers all scenarios for SUSY breaking
- Blind to hidden sector physics, mediation mechanisms and renormalisation group runnings
- Provide more realistic bench mark points
- Guiding map for colliders and DM searches
- Make better SUSY (MSSM) predictions

< ロ > < 同

Parameters and prior Observables and constraints Likelihood and Posterior Some results

24 parameters, θ , and prior, $\pi(\theta)$

- phenoMSSM = MSSM124 extra{CP-violating, FCNC}
- Real soft SUSY-breaking terms, diagonal sfermion masses and trilinear couplings, degenerate 1st/2nd generation
- $\tan \beta$, $m_{H_1}^2$ and $m_{H_2}^2$ from the Higgs sector
- Gaugino mass terms M_{1,2,3}; 10 sfermion masses.
- Trilinear couplings A_t , A_b , A_{τ} , and $A_{\mu} = A_e$
- Most important SM parameters: masses m_t, m_b, M_τ, electroweak and strong parameters G_F, m_Z, α_{em}, and α_s
- **phenoMSSM** prior: $\pi(\theta) = P(\theta|H) = \pi(\theta_1) \pi(\theta_2) \dots \pi(\theta_{24})$

< □ > < 同 >

Parameters and prior Observables and constraints Likelihood and Posterior Some results

24 parameters, θ , and prior, $\pi(\theta)$

- phenoMSSM = MSSM124 extra{CP-violating, FCNC}
- Real soft SUSY-breaking terms, diagonal sfermion masses and trilinear couplings, degenerate 1st/2nd generation
- $\tan \beta$, $m_{H_1}^2$ and $m_{H_2}^2$ from the Higgs sector
- Gaugino mass terms $M_{1,2,3}$; 10 sfermion masses.
- Trilinear couplings A_t , A_b , A_{τ} , and $A_{\mu} = A_e$
- Most important SM parameters: masses m_t, m_b, M_τ, electroweak and strong parameters G_F, m_Z, α_{em}, and α_s
- phenoMSSM prior: $\pi(\theta) = P(\theta|H) = \pi(\theta_1) \pi(\theta_2) \dots \pi(\theta_{24})$

ma @

Parameters and prior Observables and constraints Likelihood and Posterior Some results

Observables (Data), D_i : { μ_i , σ_i }

Observable, D _i	Mean value(μ_i)	Uncertainty(σ_i)
m_W	80.398 GeV	0.0025 GeV
Γ _Z	2.4952 GeV	0.0023 GeV
$\sin^2 \theta_{eff}^{lep}$	0.23149	0.000173
$\delta \pmb{a}_{\mu} imes 10^{10}$	29.5	8.8
$\textit{Br}(b ightarrow \texttt{s}\gamma) imes \texttt{10}^4$	3.55	0.72
$\textit{Br}(\textit{B} ightarrow \mu^+ \mu^-)$	$5.8 imes10^{-8}$	upper limit
$R_{\Delta M_{B_s}}$	0.85	0.11
$R_{Br(B_u o au u)}$	1.2589	0.4758
Δ_{0-}	0.0375	0.0289
$\Omega_{CDM} h^2$	0.1143	0.02

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

= √Q(~

Parameters and prior Observables and constraints Likelihood and Posterior Some results

HEP and MultiNest Softwares

phenoMSSM predictions, *O_i*, are computed using:

- SOFTSUSY-2.0.17, B. C. Allanach arXiv:hep-ph/0104145
- micrOMEGAs-2.1, arXiv:0803.2360
- superISO-2.0, F. Mahmoudi arXiv:0710.2067
- susyPOPE, A. Webber, private

MultiNest sampler, F.Feroz and M.P.Hobson arXiv:0704.3704

JOG CP

Parameters and prior Observables and constraints Likelihood and Posterior Some results

Likelihood and posterior maps

Likelihood: predicted values (non)deviation from observed

For each prediction, O_i , of data, D_i compute $L_i = P(D_i|\theta, H) = (2\pi\sigma_i^2)^{-1/2} \exp \left[-(O_i - \mu_i)^2/2\sigma_i^2\right]$

Then **phenoMSSM** posterior, $P(\theta|D_i, H) = p_i = \frac{1}{Z} L_i \pi_i$

Z for models comparison and p_i for parameters map and fit to data

< n >

Parameters and prior Observables and constraints Likelihood and Posterior Some results

Likelihood and posterior maps

Likelihood: predicted values (non)deviation from observed

For each prediction, O_i , of data, D_i compute $L_i = P(D_i|\theta, H) = (2\pi\sigma_i^2)^{-1/2} \exp\left[-(O_i - \mu_i)^2/2\sigma_i^2\right]$

Then **phenoMSSM** posterior, $P(\theta|D_i, H) = p_i = \frac{1}{7}L_i\pi_i$

Z for models comparison and p_i for parameters map and fit to data

< ロ > < 同

Parameters and prior Observables and constraints Likelihood and Posterior Some results

Likelihood and posterior maps

Likelihood: predicted values (non)deviation from observed

For each prediction, O_i , of data, D_i compute $L_i = P(D_i|\theta, H) = (2\pi\sigma_i^2)^{-1/2} \exp\left[-(O_i - \mu_i)^2/2\sigma_i^2\right]$

Then **phenoMSSM** posterior, $P(\theta|D_i, H) = p_i = \frac{1}{Z} L_i \pi_i$

Z for models comparison and p_i for parameters map and fit to data

< □ > < 同 >

Parameters and prior Observables and constraints Likelihood and Posterior Some results

Likelihood and posterior maps

Likelihood: predicted values (non)deviation from observed

For each prediction, O_i , of data, D_i compute $L_i = P(D_i|\theta, H) = (2\pi\sigma_i^2)^{-1/2} \exp\left[-(O_i - \mu_i)^2/2\sigma_i^2\right]$

Then **phenoMSSM** posterior, $P(\theta|D_i, H) = p_i = \frac{1}{Z} L_i \pi_i$

Z for models comparison and p_i for parameters map and fit to data

< ロ > < 同

Parameters and prior Observables and constraints Likelihood and Posterior Some results

Super Run Codes...

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

ъ

Jac.

∍

Parameters and prior Observables and constraints Likelihood and Posterior Some results

phenoMSSM Higgs masses

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

Some results

Neutralino-chargino mass

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

< □ ▶

5900

Parameters and prior Observables and constraints Likelihood and Posterior Some results

Gluino-neutralino mass ratio

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

< 口 > < 同

500

Back ups

Summary and Outlook

- First phenomenological SUSY parameters global fit
- Weak-scale parameters scan, independent of SUSY-breaking models
- Cleaner guide for SUSY and DM search experiments
- Do phenoMSSM SUSY and DM phenomenology
- Use phenoMSSM for better MSSM predictions
- Neutrino masses, CP-violating and FCNC sources
- Underconstrained..? LHC data on the way
- Generic techniques; can be applied to other problems

< □ > < 同 >

Back ups

Summary and Outlook

- First phenomenological SUSY parameters global fit
- Weak-scale parameters scan, independent of SUSY-breaking models
- Cleaner guide for SUSY and DM search experiments
- Do phenoMSSM SUSY and DM phenomenology
- Use phenoMSSM for better MSSM predictions
- Neutrino masses, CP-violating and FCNC sources
- Underconstrained..? LHC data on the way
- Generic techniques; can be applied to other problems

< 口 > < 同 >

SQ (P

Back ups

Summary and Outlook

- First phenomenological SUSY parameters global fit
- Weak-scale parameters scan, independent of SUSY-breaking models
- Cleaner guide for SUSY and DM search experiments
- Do phenoMSSM SUSY and DM phenomenology
- Use phenoMSSM for better MSSM predictions
- Neutrino masses, CP-violating and FCNC sources
- Underconstrained..? LHC data on the way
- Generic techniques; can be applied to other problems

< 口 > < 同 >

-∢ ⊒ ▶

SQC.

Back ups

Thanks for Listening!

Thanks for Listening!

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

< 口 > < 同 >

=

3

Sac

∍

Back ups

LHC will change the world

Back ups

Gluino, squark and neutralino masses

Back ups

The 24 input parameters

Shehu S. AbdusSalam

SUSY-Breaking Parameters Fit and Models Comparison

5900

Back ups

Sparticle masses

Shehu S. AbdusSalam SUSY-Breaking Parameters Fit and Models Comparison

5990

∍

Back ups

24 parameters, θ

Bino, Wino and Gluino masses M_1, M_2, M_3 1st/2nd generation L_1 slepton masses $m_{\tilde{e}_{\ell}} = m_{\tilde{\mu}_{\ell}}$ $m_{\widetilde{ au}_l}$ 3rd generation L_l slepton mass 1st/2nd generation E_R sleptons masses $m_{{\widetilde e}_{{\scriptscriptstyle \! P}}}=m_{{\widetilde \mu}_{{\scriptscriptstyle \! P}}}$ 3rd generation E_R slepton mass $m_{\tilde{\tau}_{P}}$ $m_{\tilde{u}_l} = m_{\tilde{d}_l} =$ 1st/2nd generation Q_l squark masses $m_{\tilde{c}_{\ell}} = m_{\tilde{s}_{\ell}}$ 3rd generation Q_l squark masses $m_{\tilde{t}_{l}} = m_{\tilde{b}_{l}}$ 1st/2nd generation U_R squark masses $m_{\tilde{u}_R} = m_{\tilde{c}_R}$ $m_{\tilde{t}_R}$ 3rd generation U_R squark mass 1st/2nd generation D_R squark masses $m_{\tilde{d}_{P}} = m_{\tilde{s}_{R}}$ $m_{\tilde{b}_R}$ 3rd generation D_R squark mass

Introduction PhenoMSSM Summary and Outlook

Back ups

24 parameters, θ

_

$A_{t,b, au}$	top, b- and $ au$ - quark trilinear couplings
${m A}_{m e}={m A}_{\mu}$	μ and e trilinear couplings
$m_{H_{1,2}}$	up- and down-type Higgs doublet masses
$\tan \beta$	scalar doublets vev s ratio
m_t	top quark pole mass
$m_b(m_b)^{\overline{MS}}$	b-quark mass
$1/lpha_{em}(m_Z)^{\overline{MS}}$	electromagnetic coupling constant
$\alpha_s(m_Z)^{\overline{MS}}$	strong coupling constant

< 🗆 > < 🗗 >

∃ ► ∢ ъ 5990

∍