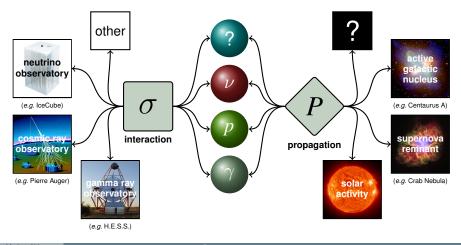


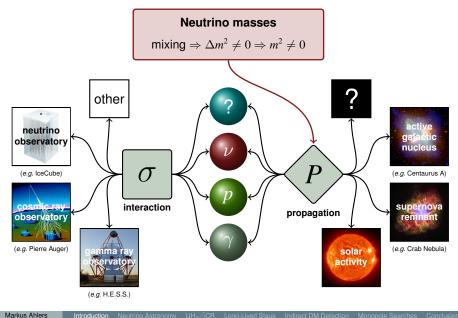
Probing Exotic Physics with Neutrino Telescopes

Markus Ahlers

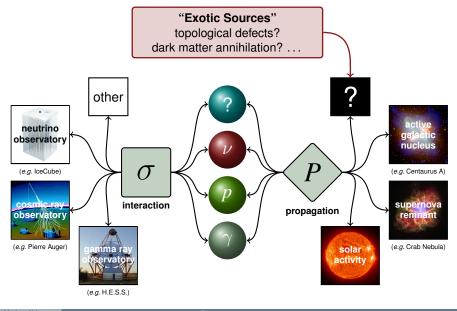

Rudolf Peierls Centre for Theoretical Physics, Oxford

IPPP Seminar Durham, December 11, 2008

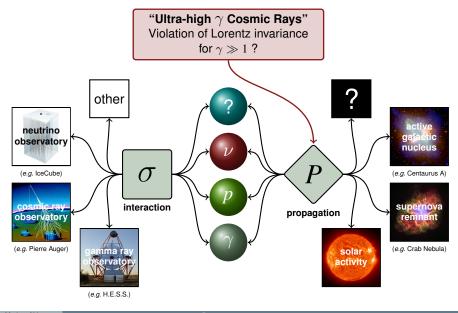
 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH \sqrt{sCR}
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions


 December 11, 2008
 0
 0000
 00000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

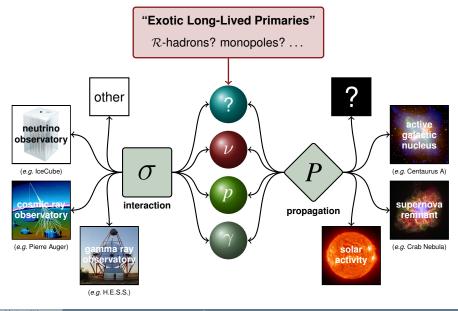
A sketch of "standard" astroparticle physics.


 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH \sigma CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

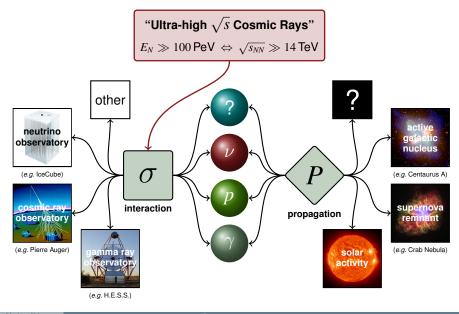
 December 11, 2008
 0
 0000
 00000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t


 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH \sqrt{s}CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

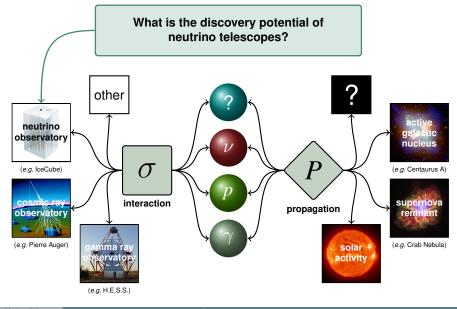
 December 11, 2008
 0
 0000
 00000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</


 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH_\5CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 00000
 0000
 0000
 0


 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH\sigma's R
 Indirect DM Detection
 Monopole Searches
 Conclusions

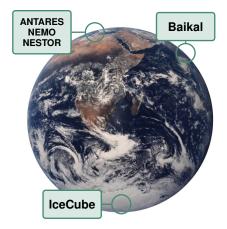
 December 11, 2008
 0
 0000
 00000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0


 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH\sigma's R
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 00000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH_\5CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 00000
 0000
 0000
 0



 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH_\5CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 00000
 0000
 0000
 0

Neutrino Telescopes

Neutrino telescopes are gigantic "**muon chambers**" observing the Cherenkov light of secondary charged particles created in neutrino-nucleon interactions.

Sensitivity for contained events

$$\frac{M_{\text{det}}}{m_p} \times (2\pi) \times (EF) \times \sigma_{\nu N} \big|_{E_{\nu} \sim 1 \text{ PeV}} \sim 1 \text{ yr}^{-1}$$

$$\Rightarrow M_{\text{det}} \sim 1 \text{ Gton and } V_{\text{det}} \sim 1 \text{ km}^3$$

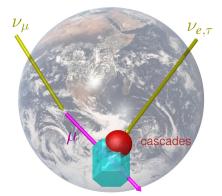
Realization:

Observation of Cherenkov light in km³-volumes of deep ocean water (Mediterranean), fresh water (Lake Baikal) or ice (Antarctic).

Markus Ahlers December 11, 2008 Neutrino Astronomy

Long-Lived Stau

0000


DM Detection

Monopole Sea

Conclus

Neutrino Telescopes

Neutrino telescopes are gigantic "**muon chambers**" observing the Cherenkov light of secondary charged particles created in neutrino-nucleon interactions.

Sensitivity for contained events

$$\frac{M_{\text{det}}}{m_p} \times (2\pi) \times (EF) \times \sigma_{\nu N} \big|_{E_{\nu} \sim 1 \text{ PeV}} \sim 1 \text{ yr}^{-1}$$

$$\Rightarrow M_{\text{det}} \sim 1 \text{ Gton and } V_{\text{det}} \sim 1 \text{ km}^3$$

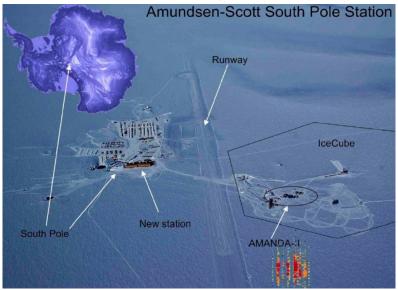
Realization:

Observation of Cherenkov light in km³-volumes of deep ocean water (Mediterranean), fresh water (Lake Baikal) or ice (Antarctic).

Markus Ahlers December 11, 2008 Neutrino Astronomy

onomy UH√:

Long-Lived Stat


0000

DM Detection

Monopole Sea

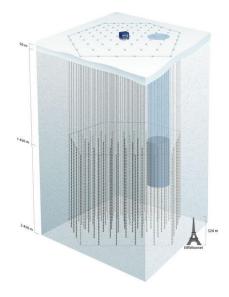
Conclus

IceCube Neutrino Observatory

[from Dawn Williams]

Markus Ahlers	Neutrino Astronomy	
December 11, 2008	0000	

g-Lived Staus


0000

0

IceCube in Depth

The IceCube observatory at the south pole is currently the largest neutrino telescope.

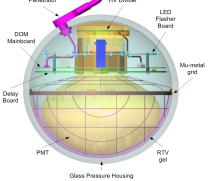
- up to 80 strings placed at a distance of 125m on a triangular grid
- 60 digital optical modules (DOMs) per string distributed along 1 km below a depth of ~ 1.5 km; each DOM is an autonomous unit with optical waveform recording and digitization
- 80 pairs of surface detectors (IceTop) for air shower detection
- embedded predecessor experiment AMANDA (blue cylinder)
- current status: more than 40 stations (sring & tanks) deployed
- ➔ final instrumented volume: V ~ 1km³

00000

0000

etection N

0

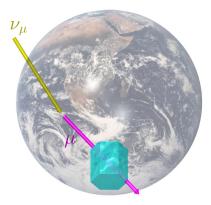

IceCube in Depth

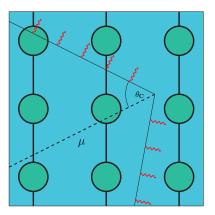
The IceCube observatory at the south pole is currently the largest neutrino telescope.

- up to 80 strings placed at a distance of 125m on a triangular grid
- 60 digital optical modules (DOMs) per string distributed along 1 km below a depth of ~ 1.5 km; each DOM is an autonomous unit with optical waveform recording and digitization
- 80 pairs of surface detectors (IceTop) for air shower detection
- embedded predecessor experiment AMANDA (blue cylinder)
- current status: more than 40 stations (sring & tanks) deployed

➔ final instrumented volume: V ~ 1km³

Sketch of a DOM




 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH \s1CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 00000
 00000
 00000
 00000
 0

Detection of ν_{μ} by up-going muon tracks:

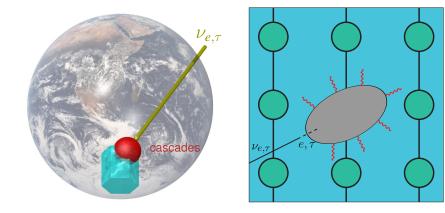
- ✓ good angular resolution: $\Delta \theta \simeq 0.8^{\circ} 2^{\circ}$
- **X** energy resolution: $\Delta \log_{10} E_{\mu} \simeq 0.25 0.5$
- ✓ increased *effective* detection volume

Markus Ahlers December 11, 2008 roduction Neutrino Astronomy

nomy UH√s

Long-Lived Sta

US INDIFECT D

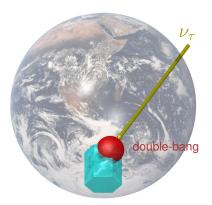

direct DM Detec

Detection Mo

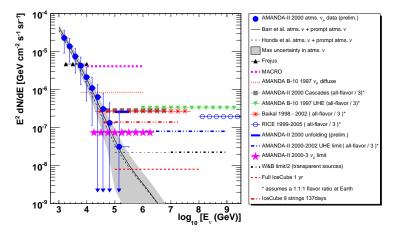
earcnes C

Detection of ν_e and ν_{τ} by electromagnetic and hadronic cascades:

- × poor angular resolution
- energy resolution: $\Delta \log_{10} E_{\nu} \simeq 0.1 0.2$
- ✓ full 4π sky coverage below 1 PeV

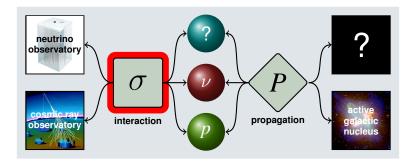


 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH \sqrt{CR}
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions


 December 11, 2008
 0
 0000
 00000
 00000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 <

Detection of high-energy ν_{τ} ($E_{\nu} > 1 \text{PeV}$) by "double bang"

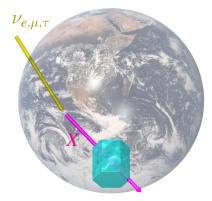
- ✓ also partial signals: "lollipop", "popillol", etc.
- ✓ good energy and angular resolution
- low background



Upper limit on the diffuse ν_{μ} -flux from E^{-2} -sources for the 2000-2003 AMANDA-II data and expected sensitivity for IceCube. [ICRC, IceCube Collaboration'07]

Markus Ahlers	Neutrino Astronomy			
December 11, 2008	0000			

Exotic Interactions: Ultra-High \sqrt{s} Cosmic Rays



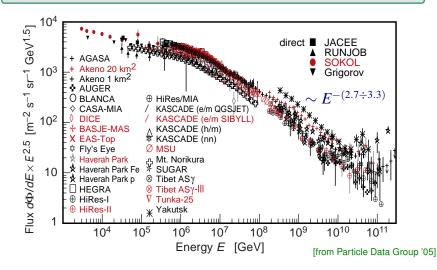
Markus Ahlers		UH√₅CR		
December 11, 2008		00000		

Exotic Signals?

Cosmic rays or neutrinos ($E \gtrsim 1$ PeV) may produce new long-lived charged particles (*X*) in interactions with nucleons in the atmosphere or the Earth's interior.

[Albuquerque/Burdman/Chacko '03,MA/Illana/Masip/Meloni '07,Ando/Beacom/Profumo/Rainwater'07]

$$\# \text{events} \sim \int \mathrm{d}t \, \mathrm{d}\Omega \left(\frac{\sigma^{\text{new}}}{\sigma^{\text{SM}}} \right) \times A_{\text{eff}}(\Omega) \times F$$

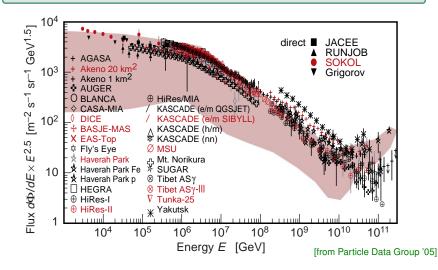

- production of exotics *X* is **suppressed** by the mass scale: $\sigma^{\text{new}} \propto m_X^{-2}$
- average energy loss range increases with mass: $R_X/R_\mu \sim m_X/m_\mu$
- effective area **increases**: $A_{\rm eff} \propto R_X^2(E_0,E) \propto m_X^2$
- What is the flux *F* of particles?

 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UHt \screwed R
 Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 00000
 0000
 0000
 0

The Cosmic Leg

The all-particle spectrum (as $E^{2.5} \times F$) of cosmic rays.



Markus Ahlers December 11, 2008

UH_\/_sCB

The Cosmic Leg

The all-particle spectrum (as $E^{2.5} \times F$) of cosmic rays.

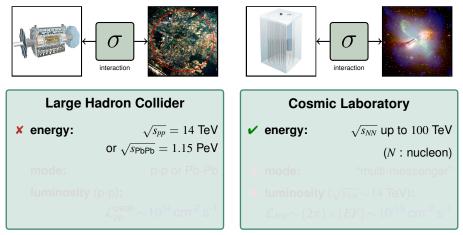
Markus Ahlers December 11, 2008 my UH√sCR

Long-Lived Sta

Indirect DM De

tection Mon

0


The Cosmic Leg

On collision with nucleons $\sqrt{s} \sim \sqrt{2m_pE} \Rightarrow$ event rate $\sim (\sqrt{s})^{-4}$

 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH\screwstar
 Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

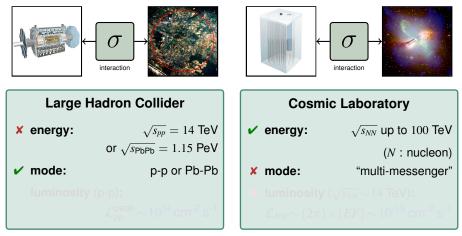
 December 11, 2008
 0
 00000
 00000
 00000
 00000
 00000
 0

CR luminosity (at $\sqrt{s_{pN}} \sim 14$ TeV) is about 47 orders of magnitude below state-of-the-art terrestrial accelerators like the LHC . . . fortunately!

Markus Ahlers December 11, 2008

Introduction Neutri

nomy UH√sCR 00000


CR Long-Lived S

Lived Staus Inc

M Detection Mon

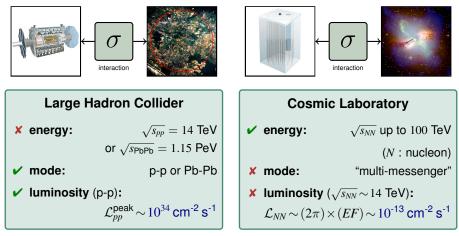
Searches Co

.

CR luminosity (at $\sqrt{s_{pN}} \sim 14$ TeV) is about 47 orders of magnitude below state-of-the-art terrestrial accelerators like the LHC . . . fortunately!

Markus Ahlers December 11, 2008 Introduction Neutrin

nomy UH√sCR 00000


Cong-Lived State COOCOCOC

Staus Indirec

lirect DM Detecti

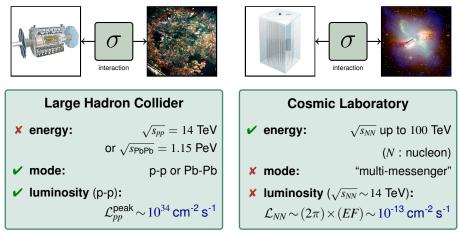
n Monopole Sear

o Conclusi

CR luminosity (at $\sqrt{s_{pN}} \sim 14$ TeV) is about 47 orders of magnitude below state-of-the-art terrestrial accelerators like the LHC . . . fortunately!

Markus Ahlers December 11, 2008 Introduction Neutr

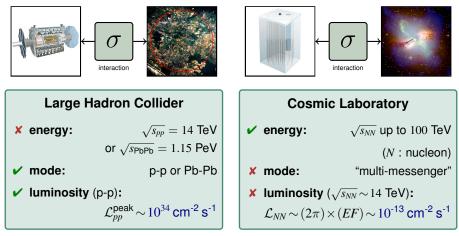
onomy UH√sCF 00000


R Long-Lived Stau 000000

is Indirect L

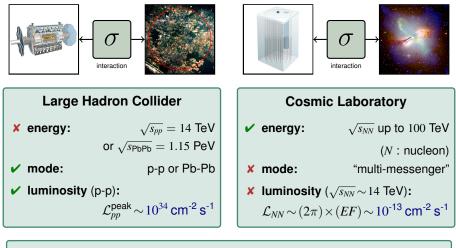
ect DM Detection

Monopole Searc


0

CR luminosity (at $\sqrt{s_{pN}} \sim 14 \text{ TeV}$) is about 47 orders of magnitude below state-of-the-art terrestrial accelerators like the LHC . . . fortunately!

Markus Aniers	Neutrino Astronomy	$UH\sqrt{sCR}$	
December 11, 2008		00000	


ole Searches Conclu O

"global" luminosity: $\mathcal{L}_{N\oplus} \sim N_{\oplus} \mathcal{L}_{NN}$ (N_{\oplus} : nucleon targets)

Markus Ahlers December 11, 2008

UH_\/sCB

$$N_{\oplus} \sim \frac{A_{\text{eff}}}{\sigma^{\text{SM}}} \ll \frac{4\pi R_{\oplus}^2}{\sigma^{\text{SM}}} \sim \begin{cases} 10^{43} \text{ for nucleons } (\sigma_{NN} \sim 100 \text{ mb}) \\ 10^{50} \text{ for neutrinos } (\sigma_{\nu N} \sim 10 \text{ nb}) \end{cases}$$

Markus Ahlers December 11, 2008

UH_\/sCB

$$\# \text{events} \sim \int \mathrm{d}t \, \mathrm{d}\Omega \left(\frac{\sigma^{\text{new}}}{\sigma^{\text{SM}}}\right) \times A_{\text{eff}}(\Omega) \times F$$

• primary fluxes

- chemical compositon at $\sqrt{s} \sim 14$ TeV ($E \sim 10^8$ GeV) dominated by nucleons
- neutrinos fluxes at least one order of magnitude smaller at these energies

integrated aperture

- large detection areas (e.g. O(10⁶) km² ~ O(10⁻³)×A⊕ at EUSO)
- effective detection area: A_{eff} ∼ V/λ_{int} → Gigaton/Teraton detectors
- *longevity* of secondary particles increase V (*e.g.* μ from ν_{μ} -interactions)

relative production probability

- beyond the SM typically $\sigma^{\text{new}} \ll \sigma^{\text{SM}}$ (*e.g.* supersymmetry)
- new interaction channels more probable ($\sigma^{\text{new}}/\sigma^{\text{SM}}$) under otherwise weakly interacting particles (*e.g.* neutrinos)
- ! signal to background ratio
 - "Today's signal: tomorrow's background."
 - typically $\mathcal{O}(1)$ event per year requires an extremely low SM background

$$\# \text{events} \sim \int \mathrm{d}t \, \mathrm{d}\Omega \left(\frac{\sigma^{\text{new}}}{\sigma^{\text{SM}}} \right) \times A_{\text{eff}}(\Omega) \times F$$

primary fluxes

- chemical compositon at $\sqrt{s} \sim 14$ TeV ($E \sim 10^8$ GeV) dominated by nucleons
- neutrinos fluxes at least one order of magnitude smaller at these energies

integrated aperture

- large detection areas (*e.g.* $O(10^6) \text{ km}^2 \sim O(10^{-3}) \times A_{\oplus}$ at EUSO)
- effective detection area: $A_{\text{eff}} \sim V / \lambda_{\text{int}} \Rightarrow$ Gigaton/Teraton detectors
- *longevity* of secondary particles increase V (*e.g.* μ from ν_{μ} -interactions)

relative production probability

- beyond the SM typically $\sigma^{\sf new} \ll \sigma^{\sf SM}$ (e.g. supersymmetry)
- new interaction channels more probable ($\sigma^{\text{new}}/\sigma^{\text{SM}}$) under otherwise weakly interacting particles (*e.g.* neutrinos)
- ! signal to background ratio
 - "Today's signal: tomorrow's background."
 - typically $\mathcal{O}(1)$ event per year requires an extremely low SM background

$$\# \text{events} \sim \int \mathrm{d}t \, \mathrm{d}\Omega \left(\frac{\sigma^{\text{new}}}{\sigma^{\text{SM}}} \right) \times A_{\text{eff}}(\Omega) \times F$$

primary fluxes

- chemical compositon at $\sqrt{s} \sim 14$ TeV ($E \sim 10^8$ GeV) dominated by nucleons
- neutrinos fluxes at least one order of magnitude smaller at these energies

integrated aperture

- large detection areas (*e.g.* $O(10^6) \text{ km}^2 \sim O(10^{-3}) \times A_{\oplus}$ at EUSO)
- effective detection area: $A_{\text{eff}} \sim V / \lambda_{\text{int}} \Rightarrow$ Gigaton/Teraton detectors
- longevity of secondary particles increase V (e.g. μ from ν_μ-interactions)

relative production probability

- beyond the SM typically $\sigma^{\text{new}} \ll \sigma^{\text{SM}}$ (*e.g.* supersymmetry)
- new interaction channels more probable $(\sigma^{\text{new}}/\sigma^{\text{SM}})$ under otherwise weakly interacting particles (*e.g.* neutrinos)
- ! signal to background ratio
 - "Today's signal: tomorrow's background."
 - typically $\mathcal{O}(1)$ event per year requires an extremely low SM background

$$\# \text{events} \sim \int \mathrm{d}t \, \mathrm{d}\Omega \left(\frac{\sigma^{\text{new}}}{\sigma^{\text{SM}}} \right) \times A_{\text{eff}}(\Omega) \times F$$

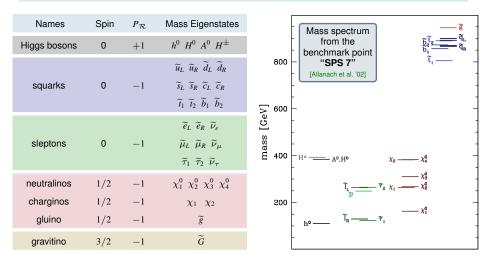
primary fluxes

- chemical compositon at $\sqrt{s} \sim 14$ TeV ($E \sim 10^8$ GeV) dominated by nucleons
- neutrinos fluxes at least one order of magnitude smaller at these energies

integrated aperture

- large detection areas (*e.g.* $O(10^6) \text{ km}^2 \sim O(10^{-3}) \times A_{\oplus}$ at EUSO)
- effective detection area: $A_{\text{eff}} \sim V / \lambda_{\text{int}} \Rightarrow$ Gigaton/Teraton detectors
- *longevity* of secondary particles increase V (*e.g.* μ from ν_{μ} -interactions)

relative production probability


- beyond the SM typically $\sigma^{\text{new}} \ll \sigma^{\text{SM}}$ (*e.g.* supersymmetry)
- new interaction channels more probable $(\sigma^{\text{new}}/\sigma^{\text{SM}})$ under otherwise weakly interacting particles (*e.g.* neutrinos)

! signal to background ratio

- "Today's signal: tomorrow's background."
- typically $\mathcal{O}(1)$ event per year requires an extremely low SM background

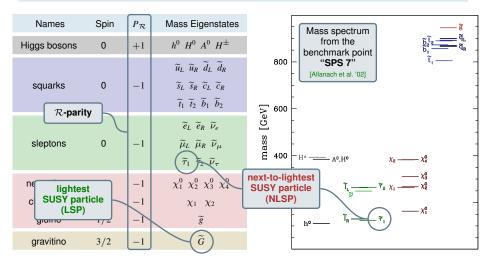
Candidate Signal: Supersymmetry

The minimal supersymmetric extension of the Standard Model (MSSM).

Markus Ahlers December 11, 2008

Introduction Neutri

R Long-Lived Staus


S Indirect Dr

ct DM Detectior ວ

ction Monop

Candidate Signal: Supersymmetry

R-parity conservation: next-to-lightest SUSY particle (NLSP) can only decay into states containing the lightest SUSY particle (LSP).

 Markus Ahlers
 Introduction
 Neutrino
 Astronomy
 UH \sigma_5 CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 00000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Long-lived Stau NLSPs

- A stau NLSP can be considered as stable if *τ*β*γ* is larger than the Earth's diameter 2*R*_⊕ (or energy loss range).
- Above production threshold E_{CM} > 2m_{τ̃} ⇒ γ ≥ m_{τ̃}/m_p and β ~ 1:

$$au\gtrsim au_\oplus\simeq 0.4{
m ms}igg(rac{m_{\widetilde au}}{100\,{
m GeV}}igg)^{-1}$$

- SUSY scenarios with quasi-stable stau NLSP include:
 - gravitino LSP in supergravity-inspired SUSY breaking scenarios (mSUGRA) [Feng/Su/Takayama'04,Ellis/Olive/Santoso/Spanos'04,Ellis/Raklev/Oye'06]
 - gravitino LSP in gauge-mediated SUSY breaking (GMSB) [Dine&Nelson'93,Dicus/Dutta/Nandi'97,Feng&Moroi'98,Giudice/Rattazzi
 - stau-neutralino near-degeneracy: $m_{\tilde{\tau}} m_{\chi} \lesssim 1$ GeV [Griest&Seckel'91,Ellis/Falk/Olive/Srednicki'97,Gladyshev/Kazakov/Paucar'05,Jittoh et al.'06]
 - axino LSP scenarios
 [Covi/Roszkowski/Ruis de Austri/Small'04,Brandenburg et al.'05]
 - sneutrino LSP scenarios

[Arkani-Hamed et al.'00,Hooper/March-Russell/West'05,Asaka/Ishiwata/Moroi'06]

Markus Ahlers		Long-Lived Staus		
December 11, 2008		00000		

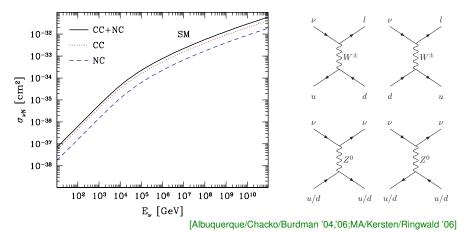
Long-lived Stau NLSPs

- A stau NLSP can be considered as stable if *τ*βγ is larger than the Earth's diameter 2*R*_⊕ (or energy loss range).
- Above production threshold E_{CM} > 2m_{τ̃} ⇒ γ ≥ m_{τ̃}/m_p and β ~ 1:

$$au\gtrsim au_\oplus\simeq 0.4{
m ms}igg(rac{m_{\widetilde au}}{100\,{
m GeV}}igg)^{-1}$$

- SUSY scenarios with quasi-stable stau NLSP include:
 - gravitino LSP in supergravity-inspired SUSY breaking scenarios (mSUGRA) [Feng/Su/Takayama'04,Ellis/Olive/Santoso/Spanos'04,Ellis/Raklev/Oye'06]
 - gravitino LSP in gauge-mediated SUSY breaking (GMSB) [Dine&Nelson'93,Dicus/Dutta/Nandi'97,Feng&Moroi'98,Giudice/Rattazzi'99]
 - stau-neutralino near-degeneracy: $m_{\tilde{\tau}} m_{\chi} \lesssim 1$ GeV [Griest&Seckel'91,Ellis/Falk/Olive/Srednicki'97,Gladyshev/Kazakov/Paucar'05,Jittoh et al.'06]
 - axino LSP scenarios
 [Covi/Roszkowski/Ruis de Austri/Small'04,Brandenburg et al.'05]
 - sneutrino LSP scenarios

[Arkani-Hamed et al.'00, Hooper/March-Russell/West'05, Asaka/Ishiwata/Moroi'06]

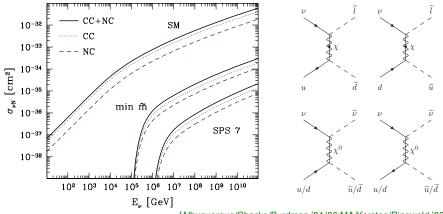

Markus Ahlers		Long-Lived Staus		
December 11, 2008		00000		

Staus from Astrophysical Neutrinos

Two SUSY mass spectra with a $\tilde{\tau}_R$ NLSP:

- "min \widetilde{m} ": $m_{\chi} = m_{\chi^0} = m_{\widetilde{l}} = 100 \text{ GeV}$ and $m_{\widetilde{q}} = 300 \text{ GeV}$
- "SPS 7": SUSY masses corresponding to the benchmark point SPS 7

["The Snowmass Points and Slopes", Allanach et al. '02]

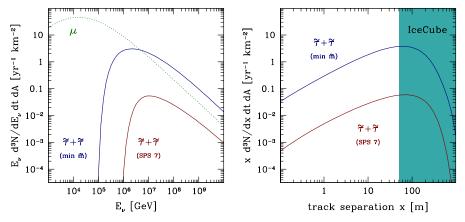

Markus Ahlers	Introduction	Neutrino Astronomy	UH√₅CR	Long-Lived Staus	Indirect DM Detection	Monopole Searches	Conclusions
December 11, 2008				000000			

Staus from Astrophysical Neutrinos

Two SUSY mass spectra with a $\tilde{\tau}_R$ NLSP:

- "min \widetilde{m} ": $m_{\chi} = m_{\chi^0} = m_{\widetilde{l}} = 100 \text{ GeV}$ and $m_{\widetilde{q}} = 300 \text{ GeV}$
- "SPS 7": SUSY masses corresponding to the benchmark point SPS 7
 ""The Genurate Brite and General Allegen

["The Snowmass Points and Slopes", Allanach et al. '02]

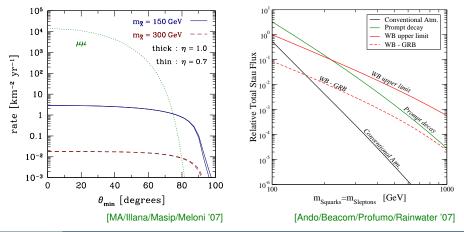


[Albuquerque/Chacko/Burdman '04,'06;MA/Kersten/Ringwald '06]

Markus Ahlers	Introduction	Neutrino Astronomy	UH√sCR	Long-Lived Staus	Indirect DM Detection	Monopole Searches	Conclusions
December 11, 2008				000000			

Staus from Astrophysical Neutrinos

- Neutrino benchmark flux: $E_{\nu}^2 F_{\text{WB}}(E_{\nu}) \approx 2 \times 10^{-8} \text{ cm}^{-2} \text{ s}^{-1} \text{ sr}^{-1} \text{ GeV}$ (per flavor) [Waxman/Bahcall '98]
- only small background from SM processes (coincident muons, di-muons from decaying hadrons) [Albuquerque/Burdman/Chacko'06]



Markus Ahlers		Long-Lived Staus		
December 11, 2008		000000		

Staus from Cosmic Rays

- Flux of cosmic rays is (reasonably) well-known at around 10⁶ GeV.
- Two channels have been considered:

"direct": prompt staus from gluino and squark production "indirect": staus from atmospheric neutrinos

Markus Ahlers		Long-Lived Staus		
December 11, 2008		000000		

Stau NLSPs at Neutrino Telescopes

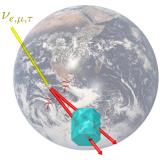
1. Life-time of a
$$\tilde{\tau}$$
 NLSP with \tilde{G} LSP

$$\frac{\tau}{1\text{ms}} \simeq \left(\frac{m_{3/2}}{100 \text{ keV}}\right)^2 \left(\frac{m_{\tilde{\tau}}}{100 \text{ GeV}}\right)^{-5} + \mathcal{O}\left(\frac{m_{3/2}}{m_{\tilde{\tau}}}\right)$$

Cosmic Neutrinos:

- rates depend on fluxes and SUSY mass spectrum
- $\mathcal{O}(1)$ stau pair per year possible for light mass spectrum and WB flux

2. Energy loss length of a $\widetilde{\tau}$ NLSP


$$\left(\frac{L}{L_{\mu}}\right) \sim \left(\frac{m_{\widetilde{\tau}}}{m_{\mu}}\right) \times \mathcal{O}(1)$$

[e.g. Huang/Reno/Sarcevic/Uscinski '05,'06]

3. *R*-parity conservation

→ pair-production of strongly boosted $\tilde{\tau}$ NLSPs appearing as quasi-parallel tracks

[Albuquerque/Burdman/Chacko '04]

[Albuquerque/Burdman/Chacko '04,'06] [MA/Kersten/Ringwald '06]

 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH_\5CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

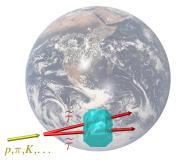
 December 11, 2008
 0
 0000
 00000
 0000
 0000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

Stau NLSPs at Neutrino Telescopes

CRs & atmospheric neutrinos:

- $\mathcal{O}(1)$ "prompt" stau pair per year for light squarks and gluinos
- O(1) stau pair per year from large prompt atmospheric ν-fluxes possible

2. Energy loss length of a $\widetilde{\tau}$ NLSP


$$\left(\frac{L}{L_{\mu}}\right) \sim \left(\frac{m_{\widetilde{\tau}}}{m_{\mu}}\right) \times \mathcal{O}(1)$$

[e.g. Huang/Reno/Sarcevic/Uscinski '05,'06]

3. *R*-parity conservation

→ pair-production of strongly boosted $\tilde{\tau}$ NLSPs appearing as quasi-parallel tracks

[Albuquerque/Burdman/Chacko '04]

[MA/Illana/Masip/Meloni '07] [Ando/Beacom/Profumo/Rainwater '07]

Markus Ahlers		Long-Lived Staus		
December 11, 2008		000000		

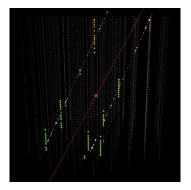
Stau NLSPs at Neutrino Telescopes

1. Life-time of a
$$\tilde{\tau}$$
 NLSP with \tilde{G} **LSP**
$$\frac{\tau}{1\text{ms}} \simeq \left(\frac{m_{3/2}}{100 \text{ keV}}\right)^2 \left(\frac{m_{\tilde{\tau}}}{100 \text{ GeV}}\right)^{-5} + \mathcal{O}\left(\frac{m_{3/2}}{m_{\tilde{\tau}}}\right)$$

Work in Progress for IceCube:

- MC for signal and background
- trigger/filtering estimates

2. Energy loss length of a $\widetilde{\tau}$ NLSP


$$\left(\frac{L}{L_{\mu}}\right) \sim \left(\frac{m_{\widetilde{\tau}}}{m_{\mu}}\right) \times \mathcal{O}(1)$$

[e.g. Huang/Reno/Sarcevic/Uscinski '05,'06]

3. *R*-parity conservation

→ pair-production of strongly boosted $\tilde{\tau}$ NLSPs appearing as quasi-parallel tracks

[Albuquerque/Burdman/Chacko '04]

[courtesy of A.Olivas]

 Markus Ahlers
 Introduction
 Neutrino Astronomy
 UH \sigma CR
 Long-Lived Staus
 Indirect DM Detection
 Monopole Searches
 Conclusions

 December 11, 2008
 0
 0000
 000000
 00000
 00000
 0
 0

Other Candidate Signals

• quasi-horizontal showers compared to Earth-skimming $u_{ au}$

- #showers *rise* with cross section \leftrightarrow flux of ν_{τ} *depleted* by a large cross section
- test of QCD parton distributions at small Bjorken-x : $10^{4} O_{2} V/T$
 - $x \sim M_{Z/W}^2/(2m_p E_{\nu}) \sim 10^4 {
 m GeV}/E_{\nu}$
- test of exotic neutrino interactions like low-scale gravity effects or non-perturbative electroweak instanton-mediated processes

[Anchordoqui/Han/Hooper/Sarkar '05; Anchordoqui/Cooper-Sarkar/Hooper/Sarkar '06]

- inelasticity measurement and particle multiplicity
 - "anomalous" inelasticities as a probe of *e.g.* leptoquark production and quantum black holes of low-scale gravity
 IKowalski/Bingwald/Tu '02: Anchordogui et al. '06: Anchordogui/Glenz/Pa
- non-standard neutrino oscillations
 - quantum gravity effects
 - neutrino decay

Lisi/Marrone/Montanino '00,'03,Anchordoqui et al. '05]

Barger et al. '99,Beacom et al. '02]

....

Other Candidate Signals

• quasi-horizontal showers compared to Earth-skimming $u_{ au}$

- #showers *rise* with cross section \leftrightarrow flux of ν_{τ} *depleted* by a large cross section
- test of QCD parton distributions at small Bjorken-x :
 - $x \sim M_{Z/W}^2/(2m_p E_{\nu}) \sim 10^4 {
 m GeV}/E_{\nu}$
- test of exotic neutrino interactions like low-scale gravity effects or non-perturbative electroweak instanton-mediated processes

[Anchordoqui/Han/Hooper/Sarkar '05; Anchordoqui/Cooper-Sarkar/Hooper/Sarkar '06]

inelasticity measurement and particle multiplicity

- "anomalous" inelasticities as a probe of *e.g.* leptoquark production and quantum black holes of low-scale gravity
 [Kowalski/Ringwald/Tu '02; Anchordogui et al. '06; Anchordogui/Glenz/Parker '07]
- non-standard neutrino oscillations
 - quantum gravity effects
 - neutrino decay

Lisi/Marrone/Montanino '00,'03,Anchordoqui et al. '05]

Barger et al. '99, Beacom et al. '02]

Markus Ahlers December 11, 2008

omy UH√sC 0000 R Long-Lived Staus

Indirect DM

etection Mono

ies Co

Other Candidate Signals

• quasi-horizontal showers compared to Earth-skimming $u_{ au}$

- #showers *rise* with cross section \leftrightarrow flux of ν_{τ} *depleted* by a large cross section
- test of QCD parton distributions at small Bjorken-x : $10^{4} O_{2} V/T$
 - $x \sim M_{Z/W}^2/(2m_p E_{\nu}) \sim 10^4 {
 m GeV}/E_{\nu}$
- test of exotic neutrino interactions like low-scale gravity effects or non-perturbative electroweak instanton-mediated processes

[Anchordoqui/Han/Hooper/Sarkar '05; Anchordoqui/Cooper-Sarkar/Hooper/Sarkar '06]

inelasticity measurement and particle multiplicity

• "anomalous" inelasticities as a probe of *e.g.* leptoquark production and quantum black holes of low-scale gravity

[Kowalski/Ringwald/Tu '02; Anchordoqui et al. '06; Anchordoqui/Glenz/Parker '07]

non-standard neutrino oscillations

quantum gravity effects

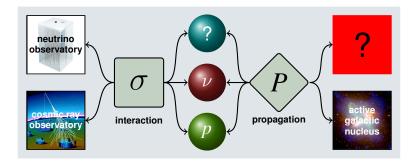
[Lisi/Marrone/Montanino '00,'03,Anchordoqui et al. '05]

neutrino decay

[Barger et al. '99,Beacom et al. '02]

Markus Ahlers December 11, 2008

. . .

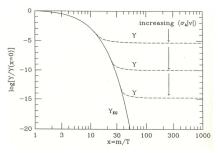

nomy UH√s 0000 R Long-Lived Staus

Indirect DM Det

ction Monopo


O

Exotic Sources: Indirect Signals of Dark Matter


Markus Ahlers			Indirect DM Detection	
December 11, 2008			0000	

Dark Matter WIMPs

• comoving number density *Y* of a thermal relic *X* (Boltzmann equation):

$$\frac{x}{Y_{\mathsf{EQ}}} \frac{\mathrm{d}Y}{\mathrm{d}x} = -\frac{\langle \sigma_A | \nu | \rangle \, sY_{\mathsf{EQ}}}{H} \left[\left(\frac{Y}{Y_{\mathsf{EQ}}} \right)^2 - 1 \right]$$
$$Y_{\mathsf{EQ}} \propto x^{3/2} \exp(-x) \quad (x = m/T \gg 1)$$
$$H(x) = x^{-2} H(m)$$

[Kolb&Turner'90]

- annihilation rate $\langle \sigma_A | v | \rangle n_{\sf EQ}$ Boltzmann-suppressed at late times
- ightarrow number per comoving volume "freezes out" for $n_{\sf EQ} \left< \sigma_A | v | \right> \lesssim H$
- weak-scale solution: $\Omega_X h^2 \sim \Omega_{\mathsf{DM}} h^2 \times \frac{c \alpha^2 (100 \mathsf{GeV})^{-2}}{\langle \sigma_A | v | \rangle}$
- popular WIMP candidate: neutralino (χ) LSP in R-parity conserving supersymmetric extensions of the Standard Model

Indirect WIMP Detection

- WIMP accumulation in massive celestial bodies (Sun and Earth): $\dot{N} = C AN^2$
- annihilation rate: $A = \langle \sigma_{\mathsf{A}} | v | \rangle / V_{\mathsf{eff}}$
- capture rate C depend on the elastic scattering of WIMPs off nuclei:
 - spin-independent (scaling with target mass) and
 - spin-dependent (scaling with target spin)
- equilibrium: $N \simeq \sqrt{C/A} \ (t \gg 1/\sqrt{AC}) \rightarrow \text{annihilation rate today: } \Gamma = C/2$

annihilation channels: $\chi\chi \to W^+W^- / b\bar{b} / c\bar{c} / \tau^+\tau^- \to \nu$ 'S + ...

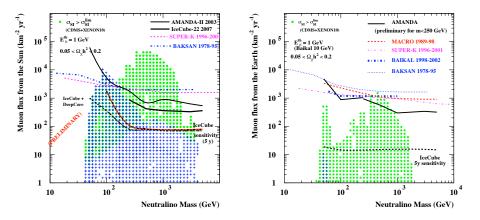
→ Neutrinos are the unique messengers of these processes.

$$(E_{\mu}) \simeq (1-y) \langle E_{\nu} \rangle \simeq \frac{m_{\chi}}{3}$$
 to $\frac{m_{\chi}}{6}$

→ Use the dense AMANDA inner core with lower energy threshold at low WIMP masses.

Markus	Ahl	ers
December	11,	2008

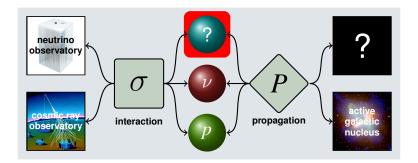
y UH√sCR 00000


Long-Lived Staus

Indirect DM

Detection

le Searches


IceCube WIMP sensitivity

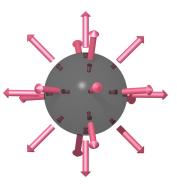
90% CL upper limit on the muon flux form hard χ annihilations in the Sun (left) and in the center of the Earth (right). Markers (♣) show cosmologically relevant MSSM models and dots (●) the parameter space excluded by XENON [Angle et al.'07].

Markus Ahlers	Introduction	Neutrino Astronomy	UH√sCR	Long-Lived Staus	Indirect DM Detection	Monopole Searches	Conclusions
December 11, 2008					0000		

Exotic Particles: Direct Signals of Monopoles

Markus Ahlers			Monopole Searches	
December 11, 2008			0000	

Magnetic Monopoles


- Spontaneous breaking of gauge symmetry $\mathcal{G} \to \mathcal{H}$ allows for monopole defects if $\pi_2(\mathcal{G}/\mathcal{H}) \neq 1$.
- $\pi_1(\mathcal{G}) = 1$ (simply connected) $\rightarrow \pi_2(\mathcal{G}/\mathcal{H}_{SM}) = \pi_1(\mathcal{H}_{SM}) \neq 1$
- e.g. "hedgehog solution" for $SO(3) \rightarrow U(1)$ with triplet Higgs field ϕ^a

['t Hooft'74, Polyakov'74]

$$V(\phi^{a}) = \frac{\lambda}{8} (\phi^{a} \phi^{a} - \sigma^{2})^{2}$$

$$\phi^{a} \xrightarrow{r \to \infty} \sigma \hat{r}_{a} \text{ and } A_{i}^{a} \xrightarrow{r \to \infty} \epsilon_{iab} \frac{\hat{r}_{b}}{er}$$

$$\Rightarrow B_{i} = \frac{1}{2} \epsilon_{ijk} F_{jk}^{3} \xrightarrow{r \to \infty} \frac{1}{e} \frac{\hat{r}_{i}}{r^{2}}$$

→ magnetic monopole with

mass
$$m_{
m M}\sim rac{m_{
m V}}{lpha}$$
 and carge $g=rac{4\pi}{e}$

Magnetic Monopoles

• Kibble mechanism:

Monopole production in the early universe at $T_{cr} \sim m_V$ gives roughly one monopole per correlated volume (\sim horizon size in 2nd order phase transition).

[Kibble'80]

• "naive" monopole abundance:

$$\Omega_{\rm M} h^2 \simeq 10^{13} \Big(\frac{T_{\rm cr}}{10^{14} \,{\rm GeV}} \Big)^3 \Big(\frac{m_{\rm M}}{10^{16} \,{\rm GeV}} \Big) \qquad$$
 "monopole problem"

- standard solution: inflationary phase for $T < T_{\rm cr}$ leaving typical monopole fluxes unobservable
- → Searches for relic monopoles are only promising for non-inflationary models ("flatness and horizon problem"?) and/or light monopoles (m_M ≤ 10¹¹ GeV) produced after inflation.
- overclosure bound: $\Omega_{\rm M}h^2 < \Omega_{\rm tot}h^2 < 1$ and uniform monopole distribution

$$J_{\rm M} \lesssim 10^{-15} {
m cm}^{-2} {
m sr}^{-1} {
m s}^{-1} \Big(rac{v}{10^{-3}c} \Big) \Big(rac{10^{16} {
m GeV}}{m_{
m M}} \Big)$$

Magnetic Monopoles

• Kibble mechanism:

Monopole production in the early universe at $T_{cr} \sim m_V$ gives roughly one monopole per correlated volume (\sim horizon size in 2nd order phase transition).

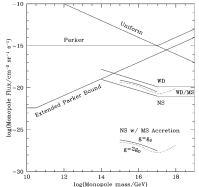
[Kibble'80]

• "naive" monopole abundance:

$$\Omega_{\rm M} h^2 \simeq 10^{13} \Big(\frac{T_{\rm cr}}{10^{14} \,{\rm GeV}} \Big)^3 \Big(\frac{m_{\rm M}}{10^{16} \,{\rm GeV}} \Big) \qquad$$
 "monopole problem"

- standard solution: inflationary phase for $T < T_{\rm cr}$ leaving typical monopole fluxes unobservable
- → Searches for relic monopoles are only promising for non-inflationary models ("flatness and horizon problem"?) and/or light monopoles (m_M ≤ 10¹¹ GeV) produced after inflation.
 - overclosure bound: $\Omega_{\rm M}h^2 < \Omega_{\rm tot}h^2 < 1$ and uniform monopole distribution

$$J_{\rm M} \lesssim 10^{-15} {\rm cm}^{-2} {
m sr}^{-1} {
m s}^{-1} \Big(rac{v}{10^{-3} c} \Big) \Big(rac{10^{16} \, {
m GeV}}{m_{
m M}} \Big)$$


Limits on Monopole Fluxes

Parker bound:

"monopole short-circuit" vs. "galactic dynamo"

$$J_{\rm M} \lesssim 10^{-15} {\rm cm}^{-2} {\rm sr}^{-1} {\rm s}^{-1} \Big(\frac{B}{3\,\mu{\rm G}}\Big) \Big(\frac{3\times10^7\,{\rm yr}}{\tau}\Big) \Big(\frac{r}{30\,{\rm kpc}}\Big)^{1/2} \Big(\frac{300\,{\rm pc}}{\ell}\Big)^{1/2}$$

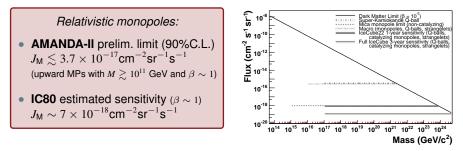
- "extended" Parker bound: [Adams et al.'93] survival and growth of small magnetic seed fields
- monopole catalysis: [Rubakov'81,Callan'81] strong limits from nucleon decay in white dwarfs (WD) or neutron stars (NS) [Kolb/Colgate/Harvey'82, Dimopoulos/Preskill/Wilczek'82] [Freese/Turner/Schramm'83]
- experimental focus on non-catalyzing monopoles [e.g. Kephart/Shafi'01]

[Freese&Krasteva'99]

Markus Ahlers December 11, 2008

Monopole Searches 0000

[Parker'70]


Magnetic Monopoles at Cherenkov Telescopes

- **Relativistic** monopoles mimic heavy ions with $Z \sim \frac{1}{2\alpha} \sim 68$.
- → 0.75 $\lesssim \beta$: direct Cherenkov photons N_{γ} per path dx and wavelength $d\lambda$

$$\frac{\mathrm{d}^2 N_{\gamma}^M}{\mathrm{d}x \mathrm{d}\lambda} = \left(\frac{\alpha_{\mathsf{M}}}{\alpha} n_{\mathsf{ice}}^2\right) \times \frac{2\pi\alpha}{\lambda^2} \left(1 - \frac{1}{\beta^2 n_{\mathsf{ice}}^2}\right) \simeq 8300 \times \frac{\mathrm{d}^2 N_{\gamma}^e}{\mathrm{d}x \mathrm{d}\lambda}$$

→ $0.5 \lesssim \beta \lesssim 0.75$: Cherenkov light from "delta electrons"

 Non-relativistic nucleon-catalyzing monopoles (also Q-balls and strangelets) are discriminated from BG by the duration of their photon signal.

Conclusions

- IceCube construction runs smoothly and will reach the instrumented volume of one cubic-kilometer in about two years.
- Neutrino astronomy is a key contribution to "classical" physics, like the
 - observation of extremely distant and old sources,
 - particle acceleration in CR sources,
 - cosmic ray composition and propagation,
 - ...
- IceCube is also sensitive to "exotic" physics in the form of
 - long-lived charged particles (stau NLSPs) from high-energy cosmic ray and neutrino interactions,
 - neutrino fluxes from WIMP annihilations,
 - relic monopoles, Q-balls, stranglets,

• . . .