Non-Neutralino LSPs in mSUGRA with R-Parity Violation and their Signatures at Hadron Colliders

Sebastian Grab

University of Bonn Germany

Particle Physics Seminar Durham, November 28th, 2008

Bonn-Cologne Graduate School of Physics and Astronomy

in collaboration with B. C. Allanach, M. A. Bernhardt, S. P. Das, H. K. Dreiner, C. H. Kom, P. Richardson and M. Trenkel

Sebastian Grab (University of Bonn)

Outline

Introduction

- Supersymmetry
- Minimal supergravity (mSUGRA)

Phenomenology of the stau LSP

- Stau decays (2-body & 4-body)
- Sparticle pair production

Sneutrino, Smuon or Squarks as the LSP

- Sneutrino as the LSP
- Smuon as the LSP
- Squarks as the LSP

Summary and Outlook

Supersymmetry (SUSY)

Why SUSY?

- Higgs mass is protected from quadratic divergencies.
- Unification of gauge couplings at $M_{GUT} = \mathcal{O}(10^{16})$ GeV.

What is SUSY?

$$egin{aligned} Q \left| boson
ight
angle = \left| fermion
ight
angle \ \overline{Q} \left| fermion
ight
angle = \left| boson
ight
angle \end{aligned}$$

- Q doesn't change gauge charges.
- Q doesn't change mass.

No SUSY partners observed so far.

 \Rightarrow SUSY must be broken.

Sebastian Grab (University of Bonn)

Particle content of the MSSM

Minimal supersymmetric extension of the SM:

SM Particles	Superfields	spin 0	spin 1/2	spin 1
	Qi	$(\tilde{u}_{L_i}, \tilde{d}_{L_i})$	(u_{L_i}, d_{L_i})	
Quarks	\bar{U}_i	$\tilde{u}_{R_i}^c$	$u_{R_i}^c$	
	\bar{D}_i	$\tilde{d}_{R_i}^c$	$d_{R_i}^c$	
Leptons	Li	$(\tilde{\nu}_i, \tilde{e}_{L_i})$	(ν_i, e_{L_i})	
	\bar{E}_i	$\tilde{e}_{R_i}^c$	$e_{R_i}^c$	
	V_1		\tilde{B}^{0}	B^0
Gauge Bosons	V_2		$ ilde{W}^{\pm}$, $ ilde{W}^{0}$	W^{\pm} , W^{0}
	V_3		<i>ĝ</i> a	g _a
Higgs	H _u	(H_{u}^{+}, H_{u}^{0})	$(\tilde{H}_u^+, \tilde{H}_u^0)$	
	H_d	(H_{d}^{0}, H_{d}^{-})	$(\tilde{H}_d^0, \tilde{H}_d^-)$	

MSSM with R-parity violation

General superpotential of the MSSM superfields:

 $W_{R_p} = (\mathbf{Y}_E)_{ij} L_i H_d \bar{E}_j + (\mathbf{Y}_D)_{ij} Q_i H_d \bar{D}_j + (\mathbf{Y}_U)_{ij} Q_i H_u \bar{U}_j + \mu H_d H_u$,

$$W_{\mathcal{R}_{p}} = \underbrace{\frac{1}{2}\lambda_{ijk}L_{i}L_{j}\bar{E}_{k} + \lambda_{ijk}^{\prime}L_{i}Q_{j}\bar{D}_{k}}_{\Delta L \neq 0} + \underbrace{\frac{1}{2}\lambda_{ijk}^{\prime\prime}\bar{U}_{i}\bar{D}_{j}\bar{D}_{k}}_{\Delta B \neq 0} + \underbrace{\frac{\kappa_{i}L_{i}H_{u}}{\Delta L \neq 0}}_{\Delta L \neq 0}.$$

The lepton/baryon number violating terms lead to proton decay. It is sufficient to suppress $\Delta L \neq 0$ or $\Delta B \neq 0$ terms to keep proton stable. [Dreiner, Luhn, Thormeier, Phys.Rev.D73:075007,2006]

Minimal supergravity (mSUGRA)

number of new parameters

- $\mathcal{O}(100)$ if R_p is conserved.
- $\mathcal{O}(200)$ if R_p is violated.

Assume simple boundary conditions at the scale $M_{GUT} = \mathcal{O}(10^{16})$ GeV.

mSUGRA	parameter space
• <i>M</i> ₀	: Universal soft breaking scalar mass.
• $M_{1/2}$: Universal gaugino soft breaking mass.
• A ₀	: Universal trilinear scalar interaction.
ullet tan eta	: Ratio of vevs. of the two Higgs doublets H_u, H_d .
• sgn μ	: Solution of EW symmetry breaking scalar potential.

Parameters at the scale $M_{EW} = \mathcal{O}(10^2)$ GeV are obtained by RGEs. Programs: Softsusy, SPheno, Suspect, Isajet etc.

Running masses in mSUGRA

$\tilde{\chi}_1^0$ LSP versus $\tilde{\tau}_1$ LSP

[Allanach, Dedes, Dreiner, Phys.Rev.D69:115002,2004]

• If R_p conserved: Scenario is excluded. (neutral LSP & $m_{h^0} > 114 \text{ GeV}$). • If R_p violated:

• If R_p violated: Most of the $\tilde{\tau}_1$ LSP region is allowed.

Add one parameter at M_{GUT} : $\Lambda \in \{\lambda_{ijk}, \lambda'_{ijk}, \lambda''_{ijk}\}$.

\Rightarrow R-parity violating mSUGRA

mSUGRA with R-parity violation

We add one parameter at M_{GUT} : $\Lambda \in \{\lambda_{ijk}, \lambda'_{ijk}, \lambda''_{ijk}\}$.

Differences to R_p conserving mSUGRA:

- In principle, any SUSY particle could be the LSP. $\Rightarrow \tilde{\tau}_1$ LSP region allowed.
- Further R_p violating couplings are generated through RGEs at M_{EW} . \Rightarrow 2-body and 4-body decays of $\tilde{\tau}_1$ LSP.
- R_p violating RGEs change the SUSY mass spectrum at M_{EW} . $\Rightarrow \tilde{\nu}, \tilde{\mu}_R, \tilde{e}_R, \tilde{q}_R$ LSP.
- Single sparticle production is possible.
 ⇒ single slepton production.
- Neutrino masses are generated.

What is the phenomenology of a $\tilde{\tau}_1$ LSP scenario at hadron colliders?

- *˜*₁ LSP decays (2-body & 4-body).
 [Dreiner, SG, Trenkel, arXiv:0808.3079]
- Example: Sparticle pair production. [Allanach, Bernhardt, Dreiner, SG, Kom, Richardson, arXiv:0710.2034]

Typical mass ordering for $\tilde{\tau}_1$ LSP scenarios.

$$m_{\tilde{g}} > m_{\tilde{q}_L} > m_{\tilde{q}_R} > m_{\tilde{\chi}_2^+} > m_{\tilde{\chi}_1^+} pprox m_{\tilde{\mu}_L} > m_{\tilde{\chi}_1^0} pprox m_{\tilde{\mu}_R} > m_{ ilde{ au}_1}$$

If $\mathbf{\Lambda} \leq \mathcal{O}(10^{-3})$

- Sparticles are produced in pairs via gauge interactions, e.g. $\tilde{g}\tilde{g}$, $\tilde{q}\tilde{q}$.
- Sparticle undergo 2-body decays to the $\tilde{\tau}_1$ via gauge interactions.

$$\begin{split} \tilde{g} \to \tilde{t} \bar{t} \\ \hookrightarrow \tilde{\chi}_1^+ b \\ \hookrightarrow \tilde{\nu}_\mu \mu^+ \\ \hookrightarrow \tilde{\chi}_1^0 \nu_\mu \\ \hookrightarrow \tilde{\tau}_1^- \tau^+ \end{split}$$

If $\Lambda \geq \mathcal{O}(10^{-2})$

- Single sparticle production may dominate.
- RPV 2-body decays may alter the decay chains.

RPV decays of the $\tilde{\tau}_1$ LSP (naive picture)

- The dominant operator is: $L_3L_j\overline{E}_k, L_iL_3\overline{E}_k, L_iL_j\overline{E}_3$ or $L_3Q_j\overline{D}_k$. \Rightarrow 2-body decays.
- The dominant operator is: $L_{i\neq3}L_{j\neq3}\overline{E}_{k\neq3}$, $L_{i\neq3}Q_{j}\overline{D}_{k}$ or $\overline{U}_{i}\overline{U}_{j}\overline{D}_{k}$. \Rightarrow 4-body decays.

Dynamical generation of R_p violating couplings

Generation of λ_{i33} via λ'_{iik}

$$16\pi^2 \frac{d\lambda_{i33}}{dt} = 3(\mathbf{Y}_E)_{33}\lambda'_{ijk}(\mathbf{Y}_D)_{jk} + \dots$$

Assume: $\mathbf{Y}_E = \text{diag} \Rightarrow \text{e.g.}$ if you break only L_e then $L_{\mu/\tau}$ will not be broken via RGEs.

Quark mixing: We know $\mathbf{V}_{CKM} = V_{uL}V_{dL}^+$.up-mixing: $\mathbf{Y}_U(M_Z) \times v_u = \mathbf{V}_{CKM}^+ \text{diag}(m_u, m_c, m_t) \mathbf{V}_{CKM}$, $\mathbf{Y}_D(M_Z) \times v_d = \text{diag}(m_d, m_s, m_b)$ down-mixing: $\mathbf{Y}_U(M_Z) \times v_u = \text{diag}(m_u, m_c, m_t)$,

$$\mathbf{Y}_D(M_Z) \times v_d = \mathbf{V}_{CKM} \text{diag}(m_d, m_s, m_b) \mathbf{V}_{CKM}^+.$$

Running of R_p violating couplings: down-mixing

Running of R_p violating couplings: up-mixing

Decays of the $\tilde{\tau}_1$ LSP

Naive picture

- The dominant operator is: $L_3L_j\overline{E}_k, L_iL_3\overline{E}_k, L_iL_j\overline{E}_3$ or $L_3Q_j\overline{D}_k$, e.g. $\lambda_{233} \neq 0 \Rightarrow 2$ -body decays.
- The dominant operator is: $L_{i\neq3}L_{j\neq3}\overline{E}_{k\neq3}$, $L_{i\neq3}Q_j\overline{D}_k$ or $\overline{U}_i\overline{U}_j\overline{D}_k$, e.g. $\lambda'_{2jk} \neq 0 \Rightarrow 4$ -body decays.

But: λ'_{2ik} will generate λ_{233} .

Question: 2-body or 4-body decay dominant?

2-body versus 4-body decays

Sebastian Grab (University of Bonn)

Phenomenology of the stau LSP Spart

Sparticle pair production

$\tilde{\tau}_1$ LSP phenomenology

Example: Sparticle pair production at the LHC.

Benchmark scenario BC1

- $M_0 = A_0 = 0$
- $\lambda_{121}(M_{GUT}) = 0.032$
- $\tan\beta = 13$

•
$$M_{1/2} = 400 \text{ GeV}$$

•
$$sgn(\mu) = +1.$$

Phenomenology of the stau LSP Sparticle pair production

Branching ratios in benchmark scenario BC1

	mass [GeV]	channel	BR	channel	BR
$\tilde{\tau}_1$	148	$\mu^+ \bar{\nu}_e e^- \tau^-$	32 %	$e^+ ar{ u}_\mu e^- au^-$	<mark>32</mark> %
		$\mu^- \nu_e e^+ \tau^-$	18 %	$e^- u_\mu e^+ au^-$	18 %
ẽ _R	161	$e^- u_\mu$	50 %	$\mu^- \nu_e$	50 %
$\tilde{\mu}_R$	161	$ ilde{ au}^+ \mu^- au^-$	51 %	$ ilde{ au}^- \mu^- au^+$	49 %
$\tilde{\chi}_1^0$	162	$ ilde{ au}_1^+ au^-$	<mark>50</mark> %	$\tilde{\tau}_1^- \tau^+$	<mark>50</mark> %
$\tilde{\nu}_{ au}$	265	$\tilde{\chi}_1^0 \nu_{\tau}$	67 %	$W^+ ilde{ au}_1$	33 %
$\tilde{\nu}_{e}(\tilde{\nu}_{\mu})$	266	$\tilde{\chi}_1^0 \nu_e(\nu_\mu)$	92 %	$\mu^+(e^+)e^-$	7.5 %
$\tilde{e}_L^-(\tilde{\mu}_L^-)$	280	$ ilde{\chi}_1^0 e^-(\mu^-)$	92 %	$e^- ar{ u}_\mu (ar{ u}_e)$	8.1 %
$\tilde{\tau}_2$	283	$\tilde{\chi}_1^0 \tau^-$	63 %	$Z^0 \tilde{\tau}_1^-$	18 %
		$h^0 ilde{ au}_1^-$	19 %		

Signal rates of benchmark scenario BC1

 σ (sparticle pair production) = 4.8 pb

e^+ or μ^+	e^- or μ^-	τ^+	τ^{-}	event fraction
2	2	2	2	35 %
3	2	2	2	12 %
2	3	2	2	8.3 %
3	3	2	2	7.3 %
2	2	2	1	4.7 %
2	2	3	2	4.3 %
2	2	3	3	1.4 %
4	3	2	2	$1.1 \ \%$

- Multi-lepton final states (\approx 8 leptons).
- Multi-tau final states (\approx 4 taus).

• 2-4 jets

Sparticle pair production

Benchmark scenario BC2

- $M_0 = A_0 = 0$
- $\lambda'_{311}(M_{GUT}) = 3.5 \cdot 10^{-7}$
- $\tan\beta = 13$
- $M_{1/2} = 400 \text{ GeV}$
- $\operatorname{sgn}(\mu) = +1.$

Phenomenology of the stau LSP Sparticle pair production

Branching ratios in benchmark scenario BC2

	mass [GeV]	channel	BR	channel	BR
$\tilde{\tau}_1$	148	ūd	100 %		
$\tilde{e}_R(\tilde{\mu}_R)$	161	$ ilde{ au}_1^+ e^- (\mu^-) au^-$	51 %	$ ilde{ au}_1^- e^- (\mu^-) au^+$	49 %
$\tilde{\chi}_1^0$	162	$ ilde{ au}_1^+ au^-$	50 %	$ ilde{ au}_1^- au^+$	<mark>50</mark> %
$\tilde{\nu}_{ au}$	265	$ ilde{\chi}_1^0 u_{ au}$	67 %	$W^+ ilde{ au}_1$	33 %
$\tilde{\nu}_{e}(\tilde{\nu}_{\mu})$	266	$ ilde{\chi}_1^0 u_e(u_\mu)$	100 %		
$\tilde{e}_L^-(\tilde{\mu}_L^-)$	280	$ ilde{\chi}_1^0 e^-(\mu^-)$	100 %		
$\tilde{\tau}_2$	283	$ ilde{\chi}_1^0 au^-$	63 %	$Z^0 \tilde{\tau}_1^-$	18 %
		$h^0 ilde{ au}_1^-$	15 %		

Signal rates of benchmark scenario BC2

$\sigma({\sf sparticle \ pair \ production}) = 4.8{\sf pb}$						
	e^+ or μ^+	e^- or μ^-	τ^+	τ^{-}	event fraction	
	0	0	1	1	14 %	
	0	0	2	0	7.1 %	
	0	0	0	2	6.8 %	
	1	0	1	1	6.5 %	
	0	0	1	1	4.5 %	
	1	0	0	2	3.3 %	
	1	0	2	0	3.2 %	
	1	1	1	1	2.4 %	

- Like-sign τ events.
- 6-8 jets
- Less missing p_T .
- Detached vertex, i.e. $c \cdot \tau_{\tilde{\tau}_1} = 0.3$ mm.

So far: $\tilde{\tau}_1$ LSP in \mathbb{R}_p mSUGRA.

Now: Sneutrino, Smuon or Squarks as the LSP in R_p mSUGRA. [Bernhardt, Dreiner, SG, Das, arXiv:0810.3423] [Dreiner, SG, arXiv:0811.0200]

So far: $\tilde{\tau}_1$ LSP in \mathbb{R}_p mSUGRA.

Now: Sneutrino, Smuon or Squarks as the LSP in R_p mSUGRA. [Bernhardt, Dreiner, SG, Das, arXiv:0810.3423] [Dreiner, SG, arXiv:0811.0200]

Effects of R_p violation

What will change due to one additional R_p coupling at the GUT scale?

The RGEs get additional contributions.

- \Rightarrow Additional \mathcal{R}_p couplings at M_{EW} .
- \Rightarrow Sparticle masses can change at M_{FW} .

running sneutrino mass

$$16\pi^{2} \frac{d(m_{\tilde{\nu}_{i}}^{2})}{dt} = -\left(\frac{6}{5}g_{1}^{2}|M_{1}|^{2} + 6g_{2}^{2}|M_{2}|^{2} + \frac{3}{5}g_{1}^{2}S\right) \\ + 6\lambda_{ijk}^{\prime 2}\left[(\mathbf{m}_{\tilde{\mathbf{L}}})_{ii}^{2} + (\mathbf{m}_{\tilde{\mathbf{Q}}})_{jj}^{2} + (\mathbf{m}_{\tilde{\mathbf{D}}})_{kk}^{2}\right] + 6(\mathbf{h}_{\mathsf{D}^{\mathsf{k}}})_{ij}^{2}$$

with $(\mathbf{h}_{\mathsf{D}^{\mathsf{k}}})_{ij} = \lambda_{ijk}^{\prime} \cdot A_{0}$ at M_{GUT} ,
 $S = f(\tilde{m}^{2}).$

Note: Contribution of $(\mathbf{h}_{\mathbf{D}^{k}})_{ii}$ can dominate for negative A_{0} .

What is the LSP?

A non-vanishing coupling $\lambda'(M_{GUT})$ leads to a new LSP candidate. For SPS1a:

 $\Rightarrow \tilde{\nu}_{\mu}$ LSP; also possible: $\tilde{\nu}_{e} \& \tilde{\nu}_{\tau}$ LSP.

Sebastian Grab (University of Bonn)

$$M_{1/2}$$
– M_0 plane

$$\lambda'_{231}(M_{GUT}) = 0.11, \ A_0 = -600 \ \text{GeV}, \ \tan \beta = 10, \ \mu > 0.$$

$$M_{1/2}-M_0$$
 plane

Different LSP regions because:

•
$$m_{\tilde{\tau}_R}^2 = M_0^2 + 0.15 M_{1/2}^2 + \dots$$

(right-handed stau couples only via U(1) charges.)

•
$$m_{\tilde{\nu}_{\mu}}^2 = M_0^2 + 0.52 M_{1/2}^2 + \dots$$

(left-handed sneutrino couples via U(1) & SU(2) charges.)

•
$$m_{\tilde{\chi}_1^0}^2 \simeq M_1^2 = 0.17 M_{1/2}^2$$
.
 $(\tilde{\chi}_1^0 \text{ is bino-like.})$

[Ibanez, Lopez, Munoz, Nucl.Phys.B256,1985]

$\lambda'_{231}(M_{GUT}) = 0.11, \ M_0 = 50 \ { m GeV}, \ M_{1/2} = 500 \ { m GeV}, \ \mu > 0.$

$$A_0$$
–tan eta plane

Different LSP regions because:

•
$$m_{\tilde{\tau}_R}^2 = m_{\tau}^2 + M_0^2 + 0.15M_{1/2}^2 - 0.23M_z^2 \cos 2\beta - 2/3X_{\tau}$$

with
 $X_{\tau} = 10^{-4}(1 + \tan^2\beta)(M_0^2 + 0.15M_{1/2}^2 + 0.33A_0^2)$

•

.

•
$$m_{ ilde{ au}_{RL}} = A_{ au} - \mu aneta$$

•
$$16\pi^2 \frac{dm_{\tilde{\nu}_i}^2}{dt} = 6(\mathbf{h}_{\mathbf{D}^k})_{ij}^2 + \dots$$

with
 $(\mathbf{h}_{\mathbf{D}^k})_{ij} = \lambda'_{iik} \cdot A_0$ at M_{GUT}

So far: $\tilde{\nu}$ LSP in extended regions of \mathcal{R}_p mSUGRA parameter space.

Now: Phenomenology of a $\tilde{\nu}$ LSP at hadron colliders.

Sneutrino LSP phenomenology

Example: $\lambda'_{231}(M_{GUT}) = 0.11$, $M_0 = 110$ GeV, $M_{1/2} = 450$ GeV, $A_0 = -600$ GeV, $\tan \beta = 10$, $\mu > 0$.

		mass	channel	BR
$\sigma_{LHC}(PP ightarrow 2$ Sparticles) = 3.0 pb .	$\tilde{ u}_{\mu}$	124	Бd	100 %
	$\tilde{\mu}_L^-$	147	₩ [−] ̄bd	79 %
			īd	21 %
	$\tilde{\chi}_1^0$	184	$ ilde{ u}_{\mu}ar{ u}_{\mu}$	36 %
			$\tilde{\mu}_L^- \mu^+$	14 %
Characteristic signatures	$\tilde{\nu}_e$	319	$\tilde{\chi}_1^0 \nu_e$	100 %
> $(a + 2b + iaba)$	\tilde{e}_L^-	329	$ ilde{\chi}_1^0 e^-$	100 %
• ~ 4 Jets (\approx 2 D-Jets).	\tilde{t}_1	650	$\tilde{\chi}_1^+ b$	42 %
• Not necessarily missing p_T .			$\tilde{\chi}_1^0 t$	34 %
(20% of events).			$\mu^+ d$	11 %
• High- <i>p_T</i> muon.	\tilde{d}_R	897	$\nu_{\mu}b$	45 %
(11% of events)			$\mu^{-}t$	<mark>42</mark> %
			$ ilde{\chi}_1^0 d$	13 %

High- p_T muons

Muon p_T from the decays $\tilde{d}_R \rightarrow \mu t$ and $\tilde{t}_{1/2} \rightarrow \mu d$:

- High- p_T muon can be used to discover BSM physics
- and to distinguish \mathbb{R}_p from \mathbb{R}_p SUSY.
- $\tilde{\nu}_{\tau} \text{ LSP} \Rightarrow \text{high-}p_{T} \text{ taus} \Rightarrow \text{detached vertex of } \mathcal{O}(1\text{cm}).$

So far:
$$\tilde{\nu}$$
 LSP via $\lambda' = \mathcal{O}(0.1)$.

Can we obtain new LSP candidates via $\lambda = \mathcal{O}(0.1)$ or $\lambda'' = \mathcal{O}(0.1)$? [Dreiner, SG, arXiv:0811.0200]
$\tilde{\mu}_R$ LSP parameter space:

$$M_{1/2}$$
-tan β plane

 $\lambda_{132}(M_{GUT}) = 0.09, A_0 = -1500 \text{ GeV}, M_0 = 170 \text{ GeV}, \mu > 0.$

$\tilde{\mu}_R$ LSP phenomenology

Remarks

- $M_{1/2} > 500 \text{ GeV}$. Reason: $\lambda_{132}(M_{GUT}) \le 0.05 \times (m_{\tilde{\mu}_R}/100 \text{ GeV})$. \Rightarrow Heavy SUSY spectrum.
- $\lambda_{231}(M_{GUT}) = 0.1 \Rightarrow \tilde{e}_R \text{ LSP}.$

Promising LHC signatures: $\begin{array}{c} PP \rightarrow \tilde{q}_R \tilde{q}_R \\ \rightarrow (q \tilde{\chi}_1^0) (q \tilde{\chi}_1^0) \\ \rightarrow (q \mu \tilde{\mu}_R) (q \mu \tilde{\mu}_R) \\ \xrightarrow{\lambda} (q \mu e \nu_\tau) (q \mu \tau \nu_e) \end{array}$

 \Rightarrow 4 leptons in the final state!

 \tilde{t}_1 LSP parameter space:

 A_0 -tan β plane

 $\lambda_{323}''(M_{GUT}) = 0.35, M_0 = 120 \text{ GeV}, M_{1/2} = 480 \text{ GeV}, \mu > 0.$

\tilde{t}_1 LSP phenomenology

 \tilde{t}_1 can be light, *i.e.* LEP bound $m_{\tilde{t}_1} \stackrel{>}{\sim} 94$ GeV.

at Tevatron and LHC:

[Choudhury et al., Phys. Rev. D73, 055013]: $\Rightarrow \tilde{t}_1$ LSPs up to 210 GeV can be tested at the Tevatron!

 \tilde{s}_R/d_R LSP parameter space:

$$M_{1/2}-M_0$$
 plane

 $\lambda_{212}''(M_{GUT}) = 0.5, A_0 = -3700 \text{ GeV}, \tan \beta = 19 \text{ GeV}, \mu > 0.$

 \tilde{b}_1 LSP parameter space:

 $\lambda_{223}''(M_{GUT}) = 0.5, \ M_0 = 120 \text{ GeV}, \ M_{1/2} = 400 \text{ GeV}, \ \mu > 0.$

Summary

- Including R-parity violation allows $\tilde{\tau}_1$ LSP in mSUGRA.
- Including R-parity violation changes RGEs in mSUGRA.
 ⇒ 2-body versus 4-body τ̃₁ decays.
 ⇒ ν̃, μ̃_R, ẽ_R, t̃₁, b̃₁ d̃_R, s̃_R LSP possible.
- Promising hadron collider signatures:
 - $\tilde{\tau}_1$ LSP: detached vertices, multi-lepton final states.
 - $\tilde{\nu}$ LSP: high- p_T muons.
 - $\tilde{\mu}_R$ LSP: multi-lepton final states.
 - \tilde{t}_1 LSP: 4-jet events at Tevatron.

Outlook

• Detailed anlaysis including background, detector simulations and data.

backup slides

Sparticle Pair Production at the Tevatron

Sparticle Pair Production at the LHC

2-body versus 4-body decay: A₀-dependence

$$BR_{2} = \frac{1}{1 + \Gamma_{4}/\Gamma_{2}}$$
with
$$\Gamma_{2} \propto \lambda_{233}^{2} m_{\tilde{\tau}_{1}}$$

$$\Gamma_{4} \propto \lambda_{2jk}^{\prime 2} \frac{m_{\tilde{\tau}_{1}}^{7}}{m_{\tilde{\chi}}^{2} m_{\tilde{f}}^{4}}$$

$$\Rightarrow \Gamma_4/\Gamma_2 \propto m_{ ilde{ au}_1}^6$$

2-body versus 4-body decay: $M_{1/2}$ -dependence

$$BR_{2} = \frac{1}{1 + \Gamma_{4}/\Gamma_{2}}$$
with
$$\Gamma_{2} \propto \lambda_{233}^{2} m_{\tilde{\tau}_{1}}$$

$$\Gamma_{4} \propto \lambda_{2jk}^{\prime 2} \frac{m_{\tilde{\tau}_{1}}^{7}}{m_{\tilde{\chi}}^{2} m_{\tilde{f}}^{4}}$$

$$\Rightarrow \Gamma_4/\Gamma_2 \propto m_{\tilde{ au}_1}^6$$

2-body versus 4-body decay: M_0 -dependence

$$BR_{2} = \frac{1}{1 + \Gamma_{4}/\Gamma_{2}}$$
with
$$\Gamma_{2} \propto \lambda_{233}^{2} m_{\tilde{\tau}_{1}}$$

$$\Gamma_{4} \propto \lambda_{2jk}^{\prime 2} \frac{m_{\tilde{\tau}_{1}}^{7}}{m_{\tilde{\chi}}^{2} m_{\tilde{f}}^{4}}$$

$$\Rightarrow \Gamma_4/\Gamma_2 \propto m_{ ilde{ au}_1}^6$$

Single slepton production via λ'_{iik}

Promising signatures at hadron colliders

 \Rightarrow Promising signature: Like-sign muon final states!

 \Rightarrow Low SM background: 5 events at LHC for 10 fb⁻¹ after cuts! [Dreiner, Richardson, Seymour, Phys.Rev.D63:055008,2001]

Cross sections at hadron colliders.

Note: $\lambda'_{211} = 0.01$ at $M_{GUT} \Rightarrow \lambda'_{211} \approx 0.03$ at M_{EW} .

Numerical example for LHC

 \textit{M}_{0} = 0 GeV, $\textit{M}_{1/2}$ = 700 GeV, \textit{A}_{0} = 1150 GeV, $\textit{tan}\beta$ = 26, $\text{sgn}\mu$ = +1.

• σ_{prod} : Cross section for $\tilde{\mu}_L$ production.

•
$$\sigma_{\lambda'}$$
: $\sigma_{prod} \times BR(\tilde{\mu}_L \to \mu^{\pm} \mu^{\pm} + X) \& \tilde{\tau}_1$ decay via λ' .

• σ_{λ} : $\sigma_{prod} \times BR(\tilde{\mu}_L \to \mu^{\pm} \mu^{\pm} + X) \& \tilde{\tau}_1 \text{ decay via } \lambda.$

				up mixing		down i	mixing
$m_{ ilde{\mu}_L} = 470 { m GeV}$			$\sigma_{\it prod}$ [fb]	$\sigma_{\lambda'}$ [fb]	$\sigma_{\lambda'}$ [fb] σ_{λ} [fb]		σ_{λ} [fb]
		$\mu^- \mu^-$	476	1.02	99.2	—	100
λ'_{211}	$= 1 imes 10^{-2}$	$\mu^+ \mu^+$	885	1.90	184	_	186
		$\mu^- \mu^-$	309	61.8	_	_	65.1
λ'_{221}	$= 1 imes 10^{-2}$	$\mu^+ \mu^+$	105	21.1	—	_	22.2

- Final state might reveal quark mixing and $\tan \beta$.
- Ratio $(\#\mu^+\mu^+)/(\#\mu^-\mu^-)$ can reveal the indices j,k of λ'_{ijk} .

Possible Signatures

$ ilde{ au_1}$ decay	$ ilde{\mu}_L$ production			$ ilde{ u}_{\mu}$ production				
via λ'_{2jk}	$\tau^+\tau^-$	$\mu^-\mu^\pm$ [ℓ^+	+ℓ-]	jj	$\tau^+\tau^-$	μ^{\pm}	$[\ell^+\ell^-]$,Е _Т jj
	$\tau^+\tau^-$	μ^- [ℓ^+	+ℓ-] Æ	гjj	$\tau^+\tau^-$		$[\ell^+\ell^-]$,Ет jj
via λ_{233}	$\tau^+\tau^-$	μ^- [ℓ^-	+ℓ-] Æ	Г	$\tau^+\tau^-$		$[\ell^+\ell^-]$	Æτ
	τ^{\pm}	$\mu^-\mu^\mp$ [ℓ^+	⁺ ℓ [−]] /E ₇	Г	$\mid \tau^{\pm}$	μ^{\mp}	$[\ell^+\ell^-]$	Æτ

with $\ell = e, \mu$ if decays $\tilde{\chi}_1^0 \to \tilde{\ell}_R^{\pm} \ell^{\mp}$ and $\tilde{\ell}_R^- \to \ell^- \tau^{\pm} \tilde{\tau}_1^{\mp}$ allowed.

$$\begin{split} \bar{u}_{j} \, d_{k} & \xrightarrow{\lambda'} \tilde{\mu}_{L}^{-} \to \mu^{-} \tilde{\chi}_{1}^{0}, \\ & \hookrightarrow \tau^{+} \tilde{\tau}_{1}^{-} \\ & \stackrel{\lambda'}{\hookrightarrow} \tau^{-} \mu^{-} \, u_{j} \, \bar{d}_{k} \\ & \stackrel{\lambda}{\hookrightarrow} \nu_{\tau} \, \mu^{-}, \\ & \hookrightarrow \tau^{-} \tilde{\tau}_{1}^{+} \\ & \stackrel{\lambda'}{\hookrightarrow} \tau^{+} \mu^{-} \, u_{j} \, \bar{d}_{k} \end{split}$$

 $\Rightarrow \text{ Multi-lepton final states,} \\ \text{e.g. four } \mu \text{ in final state.} \\ \Rightarrow \text{Like sign-muon events.} \end{cases}$

SM background for $\mu^{\pm}\mu^{\pm}$ events

 $\rm 4.9\pm1.6$ like-sign μ events after cuts at the LHC for $\rm 10 fb^{-1}.$ [Dreiner,

Richardson, Seymour, Phys.Rev.D63:055008]

Number of leptons in BC1

[Desch, Fleischmann, Wienemann]

RPV couplings leading to a sneutrino LSP

couplings λ'_{ijk} with upper bounds of $\mathcal{O}(0.1-1)$ at M_{EW}

coupling	LSP
λ'_{112}	$\tilde{\nu}_e$
λ'_{121}	$\tilde{\nu}_e$
λ'_{131}	$\tilde{\nu}_e$
λ'_{212}	$ ilde{ u}_{\mu}$
λ'_{221}	$ ilde{ u}_{\mu}$
λ'_{231}	$ ilde{ u}_{\mu}$
λ'_{312}	$\tilde{\nu}_{\tau}$
λ'_{321}	$\tilde{\nu}_{\tau}$
λ'_{331}	$\tilde{\nu}_{\tau}$

and up-mixing.

Charm physics, e.g. $D_0 - \overline{D}_0$ mixing, will test couplings $\lambda'_{i21} \& \lambda'_{i12}$.

Running of $(h_{D^k})_{ij}$

$\lambda'_{ijk}(M_{GUT}) = 0.1, \ M_{1/2} = 500 \ { m GeV}$

A_0 dependence

 $\lambda'_{221}(M_{GUT}) = 0.149, \ M_0 = 50 \text{ GeV}, \ \tan \beta = 10.$

$ilde{ u}_{ au}$ LSP parameter space

muon anomalus magnetic moment: $\delta a_{\mu} = a_{\mu}|_{exp} - a_{\mu}|_{SM} = 2.95 \times 10^{-9}$. $\Leftrightarrow 3.4\sigma$ deviation to SM prediction!

 $\delta a_{\mu}|_{SUSY} = 2.95 imes 10^{-9}$ (red line), $\pm 1\sigma$, $\pm 2\sigma$.

Single $\tilde{\mu}_L$ and $\tilde{\nu}_\mu$ production via λ'_{221}

Problem: Large QCD background.

$W+ \ge 2$ jets at the Tevatron

Dijet production at the Tevatron

p_T distributions in benchmark scenario BC1

• Taus with $p_T > 30$ GeV might be usefull to identify the scenario.

• Missing p_T is less than in the R_p conserving MSSM.

p_T distributions in benchmark scenario BC2

- Tau identification is difficult but possible.
- Reconstruction of the $\tilde{\tau}_1$ mass is possible via the two jets.

Benchmark scenario BC3

- $M_0 = 100 \,\,{
 m GeV}$
- $A_0 = -100 \text{ GeV}$
- $\lambda'_{331}(M_{GUT}) = 0.122$
- $\tan\beta = 10$
- $M_{1/2} = 250 \text{ GeV}$
- $\operatorname{sgn}(\mu) = +1.$

Branching ratios in benchmark scenario BC3

	mass [GeV]	channel	BR	channel	BR
$\tilde{\nu}_{ au}$	93	Бd	100 %		
$\tilde{\chi}_1^0$	97	$ar{ ilde{ u}}_ au u_ au$	50 %	$\tilde{ u}_{ au} ar{ u_{ au}}$	50%
$\tilde{\tau}_1^-$	105	$ u_{ au} b ar{d} au^{-}$	<mark>37</mark> %	$ar{ u_{ au}}ar{m{b}}m{d} au^-$	37 %
		$ ilde{\chi}_1^0 au^-$	26 %		
$\tilde{e}_R^-(\tilde{\mu}_R^-)$	146	$\tilde{\chi}_{1}^{0}e^{-}(\mu^{-})$	100 %		
$\tilde{\tau}_2^-$	159	$\tilde{\chi}_1^0 au^-$	100 %		
$\tilde{\chi}_2^0$	181	$ar{ ilde{ u}}_ au u_ au$	27 %	$ ilde{ u}_{ au}ar{ u}_{ au}$	27 %
		$ ilde{ au}_1^+ au^-$	22 %	$\tilde{\tau}_1^- \tau^+$	22 %
$\tilde{\chi}_1^-$	181	$\tilde{\nu}_{ au} au^-$	63 %	$\tilde{\tau}_1^- \nu_{\tau}$	35 %
$\tilde{\nu}_{e}(\tilde{\nu}_{\mu})$	189	$\tilde{\chi}_1^0 \nu_e(\nu_\mu)$	85 %	$ ilde{\chi}_1^+ e^- (\mu^-)$	11~%
$\tilde{e}_L^-(\tilde{\mu}_L^-)$	206	$ ilde{\chi}_1^0 e^-(\mu^-)$	48 %	$ ilde{\chi}_1^- ar{ u_e}(ar{ u_\mu})$	33 %
		$ ilde{\chi}_2^0 e^-(\mu^-)$	19 %		

Signal rates of benchmark scenario BC3

 σ (sparticle pair production) = 4.7 \cdot 10⁴fb

e^+ or μ^+	e^- or μ^-	τ^+	τ^{-}	Ø _T	event fraction
0	0	0	0	yes	27 %
0	0	1	0	yes	19 %
0	0	0	1	yes	16 %
0	0	1	1	yes	14 %
0	0	1	1	no	4.4 %
0	0	2	1	yes	4.0 %
0	0	1	2	yes	3.0 %
1	0	0	1	yes	1.9 %

- Most difficult scenario to trigger, although light spectrum.
- 4.7 million sparticle events at the LHC with $\int \mathcal{L} = 100 \, \text{fb}^{-1}$.
- b-tagging should be possible.

p_T distributions in benchmark scenario BC3

- b-tagging should be possible.
- Most of the taus from $\tilde{\tau}_1$ decays are invisble ($p_T \leq 30$ GeV).

Benchmark scenario BC4

Branching ratios in benchmark scenario BC4

	mass [GeV]	channel	BR	channel	BR
$\tilde{\tau}_1$	169	$cds au^-$	79 %	$ar{c}ar{d}ar{s} au^-$	21 %
$\tilde{e}_R(\tilde{\mu}_R)$	236	$ ilde{ au}_1^+ e^- (\mu^-) au^-$	58 %	$ ilde{ au}_1^- e^- (\mu^-) au^+$	42 %
$\tilde{\chi}_1^0$	249	$ ilde{ au}_1^+ au^-$	47 %	$ ilde{ au}_1^- au^+$	47 %
$\tilde{\nu}_{ au}$	393	$W^+ ilde{ au}_1$	89 %	$ ilde{\chi}_1^0 u_{ au}$	12 %
$\tilde{\nu}_{e}(\tilde{\nu}_{\mu})$	402	$\tilde{\chi}_1^0 \nu_e(\nu_\mu)$	100 %		
$\tilde{e}_L^-(\tilde{\mu}_L^-)$	413	$ ilde{\chi}_1^0 e^-(\mu^-)$	100 %		
$\tilde{\tau}_2$	417	$Z^0 \tilde{\tau}_1^-$	48 %	$h^0 ilde{ au}_1^-$	38 %
		$ ilde{\chi}_1^0 au^-$	15 %		
$\tilde{d}_R(\tilde{s}_R)$	897	$\overline{c}\overline{s}(\overline{d})$	<mark>99</mark> %	$ ilde{\chi}_1^0 d(s)$	1.2 %
<i>̃C</i> _R	906	<u></u> sd	<mark>95</mark> %	$ ilde{\chi}_1^0 c$	4.7 %

Signal rates of benchmark scenario BC4

$\sigma({\sf sparticle \ pair \ production})=7.1\cdot 10^2{\sf fb}$								
	e^+ or μ^+	e^- or μ^-	τ^+	τ^{-}	Øτ	event fraction		
	0	0	1	1	no	23 %		
	0	0	0	0	no	18 %		
	0	0	2	2	no	8.0 %		
	1	0	2	2	yes	5.6 %		
	0	0	2	1	yes	4.1 %		
	1	1	2	2	no	3.7 %		
	1	0	1	1	yes	3.6 %		
	0	1	2	2	yes	3.2 %		

- Many jets in final state (6-8 jets).
- Very little missing p_T .
- Heavy spectrum.
- First two generations of \tilde{q}_R undergo RPV decays.

p_T distributions in benchmark scenario BC4

Triggering to taus should be possible.
Dynamical generation of RPV couplings

$$16\pi^{2}\frac{d}{dt}\lambda_{ikk} = (Y_{E})_{kk}[3\lambda'_{iaq}(Y_{D})^{*}_{aq} + \lambda_{ill}(Y_{E})^{*}_{ll}]$$

$$16\pi^{2}\frac{d}{dt}\lambda'_{ijk} = \lambda'_{ijl}2(Y^{\dagger}_{D}Y_{D})_{kl} + \lambda'_{ilk}[(Y_{D}Y^{\dagger}_{D})_{lj} + (Y_{U}Y^{\dagger}_{U})_{lj}]$$

$$+3\lambda'_{iaq}(Y_{D})^{*}_{aq}(Y_{D})_{jk} + \lambda_{iaa}(Y_{E})^{*}_{aa}(Y_{D})_{jk}$$

$$16\pi^{2}\frac{d}{dt}\kappa_{i} = \mu[3\lambda'_{iaq}(Y_{D})^{*}_{aq} + \lambda_{ill}(Y_{E})^{*}_{ll}].$$

Breaking of one lepton number does not break the two other lepton numbers.

Sebastian Grab (University of Bonn)

