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Is there a way to set the 
renormalization scale       ?

The Renormalization Scale Problem

µR

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·

ρ(Q2) = C0 + C1αs(µR) + C2α2
s(µR) + · · ·

σ = 1
2x−P+

γp→ µ+µ−p

Oberwölz

σ(pp→ cX) ∼ 1µb

√
s ∼ 5 GeV

σ(pp→ sX) ∼ 1mb

What happens if there are 
multiple physical scales ?

µ2
R = CQ2

ρ(Q2) = C0 + C1αs(µR) + C2α2
s(µR) + · · ·

σ = 1
2x−P+

γp→ µ+µ−p

Oberwölz

σ(pp→ cX) ∼ 1µb

√
s ∼ 5 GeV

General Structure of the 
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Electron-Electron Scattering in QED

t u

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Gell Mann-Low Effective Charge

4
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α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2

QED One-Loop Vacuum Polarization

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

Π(Q2) = α(0)
15π

Q2

m2 Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Serber-Uehling

Q2 << 4M2

Π(Q2) = α(0) over3π logQ2

m2

Q2 >> 4M2

β=dα
d logQ2=1

3n$
.

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β = dα
d logQ2 = 1

3n$.

Landau Pole

Q2 << 4M2

Π(Q2) = α(0)
3π

logQ2

m2

Q2 >> 4M2

β =
d( α

4π)
d logQ2 = 4

3(
α
4π)2n$ > 0

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

!+

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

t = −Q2 < 0

Π(Q2) =

α(0)
3π [53−

4m2

Q2 −(1−2m2

Q2 )
√

1 + 4m2

Q2 log
1+

√
1+4m2

Q2

|1−
√

1+4m2

Q2 |
]

(t spacelike)

Analytically continue to timelike t: Complex

5
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Volume 256, n u m b e r  1 PHYSICS LETTERS B 28 February  1991 

the light-by-light type diagrams of fig. 1. Since these 

diagrams appear beginning from the four-loop order 

we are interested in one has F(a) =F~ (or) +O ( a 4 ) .  

Note also that the total contribution to/-/ ,  of  these 

diagrams is scheme-independent. Therefore, the four- 

loop approximation of the F-function is also scheme- 

independent. 

The flus-function is defined as follows: 

1 /t 2 0o~ 1 ea 
f M s ( a ) =  ~nn O~2u2,,~a - 4-n lim 1 - a 0 1 n Z 3 / 0 0 t "  

(2.5) 

In the MS-scheme Z3 is 

(°) z~ = 1 - I ~ '  ~ lIB(-q~/~2, a)  

= 1- /~[(~nn)  lIB(--qE/lt z, orB(e, c~))] ,  (2.6) 

where the R'-operation subtracts subdivergences and 

/£ picks out poles in e. Note, that the cancellation of 

singularities in (2.5) provides a valuable check of the 

calculations. 

At the four-loop level 58 diagrams contribute to Z3. 

After multiplying them by symmetry coefficients we 

get 153 diagrams in agreement with the result of the 

computer diagram generation [ 18 ]. In the course of 

computations we have used the method of infrared 

rearrangement [9,8] which reduces the problem of 

the calculation of the four-loop counterterms in the 

MS-scheme to the problem of the calculation of the 

three-loop propagator-type integrals up to the finite 

terms in e. The total reevaluation was independently 

made twice by means of the corrected SCHOON- 

SCHIP program [ 12 ] and the SCHOONSCHIP pro- 

gram [ 14 ]. 

The results for certain two-loop integrals were 

Fig. 1. D iag rams  giving rise to the N2-scheme independen t  four- 

loop con t r ibu t ion  to the flMS', ~'- and  F-funct ions.  

checked by the REDUCE program [ 19]. The ob- 

tained final results of both calculations are in 

agreement. 

During the calculations the errors in the lower pole 

contributions to Z3 from six four-loop diagrams ob- 

tained in the course of the work [ 10] were found and 

eliminated. Our final result for the PMs-function reads 

2 OL 3 OL 4 

-{46N+[-~-~+~((3)]NZ+I~32N3}(~y. 

(2.7) 

Note, that in the four-loop term only the N 3-coeffi- 

cient coincides with the previously obtained one [ 10 ]. 

It also agrees with the result of the calculations of the 

PT contributions leading in N to the flMs-function 

[201. 

It is convenient for further applications to present 

the decomposed expression for the four-loop N z- 

contribution to f4, namely 

f~2j =~2j + ~  

704 512 1352 704 2 [ ~ - - - 3 - ( ( 3 )  IN2+ = [ - - ~ - + - ¢ - ( ( 3 )  ]N . 

(2.8) 

The first contribution, ff,~2~, comes from the light- 

by-light-type diagrams of fig. 1. As well as the term 

linear in Nin  eq. (2.7), this term is scheme-indepen- 

dent, in contrast with the N3-term ofeq. (2.7), fJi 3j , 

and the ff~2~-term of eq. (2.8) which come from the 

non-light-by-light-type diagrams with three and two 

fermion circles. 

At N= 1 the expression for the fMs-function takes 

the form 

4 o: 2 OL 3 O/ 4 

flMs(O~)= ~(~--~)+4 (~--~)-  ~ ( ~ - ~ )  

(o)' 
- [ ~ 7 3 ° + ~ ( ( 3 ) 1  ~ , (2.9) 

where ((3)=1.20205.. .  is the Riemann zeta func- 

tion. The detailed description of the calculations will 

be presented elsewhere. 

The byproduct of the calculations is the Fl-func- 
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The analytic four-loop corrections 
to the QED B-function in the MS scheme 
and to the QED  -function. 
Total reevaluation 

S.G. Gorishny 1, A.L. Kataev, S.A. Larin and L.R. Surguladze 2 

Institute of Nuclear Research, Academy of Sciences of the USSR, SU-117 312 Moscow, USSR 

Received 17 November 1990; revised manuscript received 6 December 1990 

The results of the total reevaluation of the four-loop correction to the QED B-function in the minimal and momentum subtrac- 
tion schemes (flMs and gt-functions) and for the functions F1 (cQ and F(c~) determined by the photon vacuum polarization dia- 
grams without fermion-loop contributions to the internal photon lines are presented. It is found that the ((3)-, ((4)- and ((5)- 
terms cancel in the ultimate result for the four-loop coefficient of the F~-function. The results obtained are briefly discussed. 

1. The renormal iza t ion  group ( R G )  method  (see 

e.g. ref. [ 1 ] ) is one o f  the most  powerful  methods  of  

modern  quan tum field theory. The concept  of  B-func- 

t ions occupies a central  place in the R G  formalism. 

Its various appl ica t ions  imply the direct  d iagram- 

mat ic  calculat ions of  the coefficients of  the pertur-  

bat ion theory (PT)  series for B-functions. 

It is known that beginning from the three-loop level 

the coefficients o f  B-functions of  quan tum field 

models  with one coupling constant  depend  on the 

choice o f  the renormal iza t ion  scheme. In QED three 

schemes are commonly  used. The min imal  subtrac- 

t ions (MS)  scheme is convenient  from the point  o f  

view of  the simplif icat ion o f  the RG-calculat ions [ 2 ]. 

The on-shell scheme stands out for its connection with 

the low-energy QED phenomenology.  In the momen-  

tum ( M O M )  subtract ion scheme def ined by subtrac- 

tions of  the photon propagator  at the eucledian point,  

the running coupling constant  coincides with the in- 

var iant  charge o f  QED. Thus the q/-function [ 3],  i.e. 

the QED/?-function of  the M O M  scheme, governs the 

behav iour  of  the QED invar iant  charge. 

Another  impor tan t  QED function is the scheme- 

independent  F i - func t ion  which is de te rmined  by the 

contr ibut ion  to the photon  vacuum polar izat ion 

function H of  the diagrams with one fermion loop. 

This function has been in t roduced in the studies of  

the finite QED program [4] which resulted in the 

foundat ion that  the F~-function would have a zero i f  

the ~,-function had a posi t ive zero (essentially o f  in- 

finite o rder )  [4] .  Moreover,  it was shown that the 

eigenvalue condi t ion ~(O~o)=0 is equivalent  to the 

requirement  F ( a o )  = 0 where the F-funct ion is deter- 

mined  by the photon vacuum polar izat ion diagrams 

without  fermion- loop contr ibut ions  to the internal  

photon  lines [ 5,4 ]. 

It is well known that the expression for the QED 

invar iant  charge obta ined  from a leading approxi-  

mat ion  of  the ~,-function has a pole at high energies 

which could cast a certain doubt  on the self-consis- 

tency of  QED in this region, however,  lying far be- 

yond the point  of  Grand  Unif icat ion.  In view of  the 

existence of  other  theoretical  possibili t ies,  i.e. 

~u(C~o) = 0  [ 3 - 5 ]  and 0~< ~,(c~) <c~/4n [6]  ~ it i s i m -  

Deceased. 
Permanent address: Department of High Energy Physics, Tbi- 
lisi State University, SU-380 086, USSR 

~ The n°rrnalizati°n °f the upper b°und °fthis inequality is de- 
termined by our normalization of the B-functions [see eqs. 
(2.5), (3.1) below]. 

0370-2693/91/$ 03.50 © 1991 - Elsevier Science Publishers B.V, ( North-Holland ) 81 

Phys.Lett.B256:81-86,1991
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This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

This is very important!

This is very important!

This is very important!

This is very important!

+

+ · · ·+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

All-orders lepton loop corrections to dressed photon propagator

This is very important!

This is very important!

This is very important!

This is very important!

+

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)

t = −Q2 < 0

Π(Q2) =

QED Effective Charge
!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

Π

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Initial scale  t0  is arbitrary -- Variation gives RGE Equations
Physical renormalization scale  t  not arbitrary  

7
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• No renormalization scale ambiguity!   

• Two separate physical scales: t, u = photon virtuality  

• Gauge Invariant.  Dressed photon propagator

• Sums all vacuum polarization, non-zero beta terms into running coupling.

• If one chooses a different scale, one can sum an infinite number of graphs 
-- but always recover same result!  

• Number of active leptons correctly set 

• Analytic: reproduces correct behavior at lepton mass thresholds

• No renormalization scale ambiguity!   

8

Electron-Electron Scattering in QED

t u

8
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s

e(!s) e(!s)

!"!"
# $$ee

Lessons from QED (II)

The QED Effective Charge

• Complex

• Analytic through mass thresholds

• Distinguishes between timelike and spacelike momenta

)(Im)(Im 2
sse %%&'!

9

Analyticity essential ! 

α(s)

µR

Scale of α(µr) unique

µ2
R = s

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·M ∝ α(s)

µR

Scale of α(µr) unique

µ2
R = s

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·

M ∝ α(s)

µR

Scale of α(µr) unique !

µ2
R = s

ρ = C1 αs(µR)+C2 α2
s(µR)+C3 α3

s(µR)+ · · ·

9
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M(e+e− → e+e−) ∝ α(s)

Has correct analytic / unitarity thresholds for
ImM at s = 4m2

"+"−

No other scale correct. If one chooses an-
other scale, e.g.,

µ2
R = 0.9s,

then must resum infinite number of vacuum
polarization diagrams.

Recover α(s).

QCD → Abelian Gauge Theory

limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

10
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Example in QED: Muonic Atoms

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

ψH(x,"k⊥, λi)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ

Z

e+e−

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

Z

e+e−

V (q2) = −ZαQED(q2)
q2

αQED = 1
1−Π(Q2)

ψH(x,#k⊥, λi)

pH

x,#k⊥

1− x,−#k⊥

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

ψH(x,#k⊥, λi)

pH

x,#k⊥

1− x,−#k⊥

Scale is unique:  Tested to ppm

e+e−

V (q2) = −ZαQED(q2)
q2

αQED(q2) =
αQED(0)
1−Π(q2)

µ2
R ≡ q2

ψH(x,#k⊥, λi)

pH

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ−

q

Z
This is very important!

This is very important!

This is very important!

This is very important!

Gyulassy: Higher Order VP verified to

0.1% precision in µ Pb

+

11
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The Renormalization Scale Problem
• No renormalization scale ambiguity in QED 

• Gell Mann-Low QED Coupling can be defined from physical 
observable 

• Sums all Vacuum Polarization Contributions

• Recover conformal series

• Renormalization Scale in QED scheme: Identical to Photon Virtuality

• Analytic: Reproduces lepton-pair thresholds

• Examples:  muonic atoms, g-2, Lamb Shift

• Time-like and Space-like QED Coupling related by analyticity

• Uses Dressed Skeleton Expansion

This is very important!

This is very important!

This is very important!

This is very important!

Gyulassy: Higher Order VP verified to

0.1% precision in µ Pb

+

12
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• Renormalization scale “unphysical”:  No optimal physical scale

• Can ignore possibility of multiple physical scales

• Accuracy of PQCD prediction can be judged by taking 
arbitrary guess                 with an arbitrary range  

• Factorization scale should be taken equal to renormalization 
scale

13

Conventional wisdom  in QCD 
concerning scale setting

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,"k⊥, λi)

pH

x,"k⊥

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,"k⊥, λi)

pH

x,"k⊥

These assumptions are untrue in QED 
and thus they cannot be true for QCD

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ψH(x,"k⊥, λi)

pH

x,"k⊥

13
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Scale and Scheme Ambiguity

)(),()(
0

!"!#
$

$
N

n

n

sn QRQRIn any perturbative series

)/~log(
2

))((
)()~( 0

2

!!%
&

!"
!"!" s

ss '$

You can change the scale of the last term :

2))(()()(~ !"!"!" sss C($

Or the scheme of the last term :

The result is formally the same to the order calculated

The prediction is ambiguous

5

14



 
15

Convergence of the Series

It is commonly believed that the series diverges!

Renormalons

)(),()(
0

!"!#
$

$
N

n

n

sn QRQR !nRn %

N insertions

.....

#
&

$0n

‘n’ insertions

&'( ),()( 24 !!" is pkfkkd

From  the               region02 )k

7

?

15
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µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−
Eur. Phys. J. C 48, 3–13 (2006) THE EUROPEAN

PHYSICAL JOURNAL C
Digital Object Identifier (DOI) 10.1140/epjc/s2006-02625-4

Measurement of the strong coupling αS from the four-jet rate
in e+e− annihilation using JADE data
J. Schieck1,a, S. Bethke1, O. Biebel2, S. Kluth1, P.A.M. Fernández3, C. Pahl1,
The JADE Collaborationb

1 Max-Planck-Institut für Physik, Föhringer Ring 6, 80805 München, Germany
2 Ludwig-Maximilians-Universität München, Am Coulombwall 1, 85748 Garching, Germany
3 Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, 94720, USA

Received: 30 May 2006 /
Published online: 19 September 2006 −  Springer-Verlag / Società Italiana di Fisica 2006

Abstract. Data from e+e− annihilation into hadrons collected by the JADE experiment at centre-of-mass
energies between 14 GeV and 44 GeV are used to study the four-jet event production rate as a function
of the Durham jet algorithm’s resolution parameter ycut. The four-jet rate is compared to QCD next-to-
leading order calculations including resummation of large logarithms in the next-to-leading logarithmic
approximation. The strong coupling measured from the four-jet rate is

αS (MZ0) = 0.1159±0.0004(stat.)±0.0012(exp.)±0.0024(had.)±0.0007(theo.)

in agreement with the world average.

1 Introduction

The annihilation of electrons and positrons into hadrons
allows precise tests of Quantum Chromodynamics (QCD).
Many observables have been devised which provide a con-
venient way of characterizing the main features of such
events. Multijet event rates are predicted in perturbation
theory as functions of the jet-resolution parameter, with
one free parameter, the strong coupling αS. Events with
four quarks in the final state, qq̄qq̄, or two quarks and two
gluons, qq̄gg, may lead to events with four-jet structure.
In leading order perturbation theory, the rate of four-jet
events in e+e−annihilation is predicted to be proportional
to α2S. The strong coupling can be measured by determin-
ing the four-jet event production rate and fitting the theor-
etical prediction to the data.
Calculations beyond leading order are made possible

by theoretical progress achieved during the last few years.
For multi-jet rates as well as numerous event-shape distri-
butions with perturbative expansions starting at O(αS),
matched next-to-leading order (NLO) and next-to-leading
logarithmic approximations (NLLA) provide a satisfactory
description of the data over large kinematically allowed re-
gions at many centre-of-mass energies [2–5].
First evidence for four-jet structure has been reported

earlier by the JADE collaboration [6]. In addition multi-
jet event production rates were measured and the three-jet
rate was used to determine the the strong coupling αS [7–

a e-mail: schieck@mppmu.mpg.de
b See [1] for the full list of authors

9]. The ALEPH, DELPHI and OPAL collaborations pub-
lished measurements of αS based on the four-jet rate in the
energy range between 91 and 209GeV [10–12]. The same
theoretical predictions as used here were employed to de-
termine the strong coupling αS.
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of the energies of the detected particles in the event (or the
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Fig. 4. The result of
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tion scale xµ for
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χ2 fit is then determined using the statistical error σi of
the data sample at data point i and the correlation matrix
ρij : Vij(R4) = ρijσiσj .
The χ2 value is minimized with respect to αS for each

centre-of-mass energy point separately. The renormaliza-
tion scale factor xµ, as discussed in Sect. 2, is set to one.
The fit ranges are determined by requiring that the

hadronization corrections be less than 50% and the de-
tector corrections be less than 50% in the fit range. In

order to exclude the non-perturbative region we require√
s ·ycut to be larger than 2 GeV. In the Durham scheme
this value corresponds to the minimal transverse momen-
tum of the pair of proto-jets with respect to each other.
The fit range is 0.0209< ycut < 0.0495 for data taken at
14GeV, 0.0088< ycut < 0.0495 for data taken at 22 GeV,
0.0037< ycut < 0.0279 for data taken at 34.6 and 35 GeV,
0.0028 < ycut < 0.0279 for data taken at 38.3 GeV and
0.0021< ycut < 0.0279 for data taken at 43.8GeV. In Fig. 2
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to α2S. The strong coupling can be measured by determin-
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etical prediction to the data.
Calculations beyond leading order are made possible

by theoretical progress achieved during the last few years.
For multi-jet rates as well as numerous event-shape distri-
butions with perturbative expansions starting at O(αS),
matched next-to-leading order (NLO) and next-to-leading
logarithmic approximations (NLLA) provide a satisfactory
description of the data over large kinematically allowed re-
gions at many centre-of-mass energies [2–5].
First evidence for four-jet structure has been reported

earlier by the JADE collaboration [6]. In addition multi-
jet event production rates were measured and the three-jet
rate was used to determine the the strong coupling αS [7–
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lished measurements of αS based on the four-jet rate in the
energy range between 91 and 209GeV [10–12]. The same
theoretical predictions as used here were employed to de-
termine the strong coupling αS.
In this analysis we use data collected by the JADE

experiment in the years 1979 to 1986 at the PETRA
e+e−collider at DESY at six centre-of-mass energies span-
ning the range of 14–44 GeV.

2 Observable

Jet algorithms are applied to cluster the large number of
particles of a hadronic event into a small number of jets,
reflecting the parton structure of the event. For this analy-
sis we use the Durham scheme [2]. Defining each particle
initially to be a proto-jet, a resolution variable yij is calcu-
lated for each pair of proto-jets i and j:

yij =
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(1− cosθij) , (1)

where Ei and Ej are the energies of jets i and j, cos θij is
the cosine of the angle between them and Evis is the sum
of the energies of the detected particles in the event (or the
partons in a theoretical calculation). If the smallest value
of yij is less than a predefined value ycut, the pair is re-
placed by a new proto-jet with four-momentum pµk = p
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pµj , and the clustering starts again. Clustering ends when
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the regions chosen for comparison with the theory predic-
tions. The difference in detector corrections is evaluated
as an experimental systematic uncertainty. The numerical
results of the four-jet rate at hadron-level at the different
energy points are summarized in Tables 5 and 6.

4 Systematic uncertainties

Several sources of possible systematic uncertainties are
studied. Uncertainties originating frommassless quark cal-
culations are not considered, since contributions to the
four-jet rate from B hadrons are subtracted at detector-
level. For each variation of parameters the difference of the
resulting value of αS with respect to the default value is
taken as a systematic uncertainty. The default value of αS
is determined with the standard event selection and the
correction procedure using PYTHIA. The systematic un-
certainty is taken to be symmetric around the default value
of αS.

4.1 Experimental uncertainties

Contributions to the experimental uncertainties are esti-
mated by repeating the analysis with varied cuts or pro-
cedures. For each systematic variation the value of αS is
determined and then compared to the result of the stan-
dard analysis (default value).

1. In the standard analysis the reconstruction software
from 5/88 is used. As a variation a different reconstruc-
tion software from 9/87 is used.

2. In the default method the estimated minimum ioniz-
ing energy from tracks associated with electromagnetic
calorimeter clusters is subtracted from the cluster en-
ergies. As a variation all accepted tracks and all uncor-
rected electromagnetic clusters are used.

3. The thrust axis is required to satisfy | cos(θT)| < 0.7.
With this more stringent cut events are restricted to
the barrel region of the detector, which provides better
measurements of tracks and clusters compared to the
endcap regions.

4. Instead of using PYTHIA for the correction of detector
effects as described in Sect. 3.5, events generated with
HERWIG are used.

5. The requirement on missing momentum is dropped or
tightened to pmiss/

√
s < 0.25. The larger deviation from

the default value is taken as a systematic uncertainty.
6. The requirement on the momentum balance is dropped
or tightened to pbal < 0.3. The larger deviation from the
default value is taken as a systematic uncertainty.

7. The requirement on the number of long tracks is tight-
ened to Nlong ≥ 4.

8. The requirement on the visible energy is varied to
Evis/

√
s > 0.45 and Evis/

√
s > 0.55. The larger devi-

ation from the default value is taken as a systematic
uncertainty.

9. The fit range is changed. Two different cases are con-
sidered. First the fit range is reduced by one data point

at each edge of the standard fit range. Second the fit
range is extended by one data point at each edge of the
standard fit range. The larger deviation from the de-
fault fit is taken as a systematic uncertainty. In order to
take statistical fluctuations into account, the deviation
is calculated using the average deviation of a fit applied
to 50 Monte Carlo samples.

10.The amount of subtracted bb̄ background is varied by
±5% of its nominal value of about 1/11 to cover uncer-
tainties in the estimation of the background fraction in
the data. The larger deviation from the default value is
taken as the systematic uncertainty.

All contributions listed above are added in quadrature and
the result is quoted as the experimental systematic uncer-
tainty. The dominating effects are the use of the differ-
ent data versions and the different correction for detector
effects.

4.2 Hadronization

The uncertainties associated with the hadronization cor-
rection (see Sect. 5.2) are assessed by using HERWIG and
ARIADNE instead of the default hadronization correc-
tion using PYTHIA. The larger change in αS resulting
from these alternatives is taken to define the symmetric
hadronization systematic uncertainty.

4.3 Theoretical uncertainties

The theoretical uncertainty, associatedwith missing higher
order terms in the theoretical prediction, is assessed by
varying the renormalization scale factor xµ. The predic-
tions of a complete QCD calculation would be independent
of xµ, but a finite-order calculation such as that used here
retains some dependence on xµ. The renormalization scale
factor xµ is set to 0.5 and two. The larger deviation from
the default value of αS is taken as systematic uncertainty.

5 Results

5.1 Four-Jet rate distributions

The four-jet rates for the six centre-of-mass energy points
after subtraction of bb̄ background and correction for de-
tector effects are shown in Fig. 1. Superimposed are the
distributions predicted by the PYTHIA, HERWIG and
ARIADNE Monte Carlo models. Towards large ycut values
(right to the maximum of the distribution) the decrease of
the four-jet rate corresponds to the migration and classi-
fication to three- and two-jet events. Towards smaller ycut
values (left to the maximum of the distribution) the de-
crease corresponds to the migration and classification to
five or more jet events, i.e. towards the higher order QCD
and non-perturbative or hadronization region. In order to
make a more clear comparison between data and models,
the inserts in the upper right corner show the differences
between data and each model, divided by the combined
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The χ2 value is minimized with respect to αS for each

centre-of-mass energy point separately. The renormaliza-
tion scale factor xµ, as discussed in Sect. 2, is set to one.
The fit ranges are determined by requiring that the

hadronization corrections be less than 50% and the de-
tector corrections be less than 50% in the fit range. In

order to exclude the non-perturbative region we require√
s ·ycut to be larger than 2 GeV. In the Durham scheme
this value corresponds to the minimal transverse momen-
tum of the pair of proto-jets with respect to each other.
The fit range is 0.0209< ycut < 0.0495 for data taken at
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Figure 2: Scale dependence of the Higgs+2 jet cross section with minimal rapidity and transverse
momentum cuts, for mH = 115 GeV (upper) and mH = 160 GeV (lower).

We note that a choice for the minimum jet transverse momentum lower than given in

eq. (3.1) results in similar scale-dependence plots, but with much steeper renormalization

scale curves. We interpret this as a sign that the perturbative series is less well-behaved for

such a choice of cuts. Indeed, in those cases, the cross section for producing a Higgs+3 jet

final state becomes larger than the one for Higgs+2 jets.

The calculation that we have performed can be used to study much more than the two-
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Figure 1: Sample diagrams representing the production of a Higgs boson at the LHC. The basic
gluon fusion process is represented in diagram (a), with an additional one and two hard partons in
(b) and (c) respectively. Higgs production via weak boson fusion is depicted in diagram (d).

(as in figure 1(b)), so that the Higgs boson acquires a non-zero transverse momentum at

leading order (LO), has also been calculated to NLO [8 – 11].

It is then natural to consider the extension of this to the case in which a Higgs boson is

produced in association with two hard partons [12]. There are in fact two types of processes

that may contribute to such a final state, the gluon-fusion process in figure 1(c) and the

weak-boson fusion process in figure 1(d). The latter has been known to NLO for some

time [13 – 15]. It is the calculation of the full NLO QCD corrections to the Higgs+2 hard

jets process via gluon fusion in the large mt approximation that we will present in this

paper.

The lowest order amplitudes for Higgs+2 jet scattering have in fact been calculated

exactly, without using this effective coupling [16]. This is itself a 1-loop computation in-

volving pentagon diagrams, so the calculation is complicated considerably (and is currently

intractable beyond this order). However, it allows an examination of the limits in which the

effective coupling approach is valid. The results of this study indicate that this approach

is accurate as long as mH , pT (jet) < mt, a condition which will be satisfied for the results

presented in this paper.

2. Structure of the calculation

A detailed description of the calculation of the virtual matrix elements using a semi-

numerical approach is given in refs. [17, 18].
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The real matrix element corrections to H +2 jet production are obtained by including

all crossings of results for the three basic processes,

A) 0 → Hqq̄q′q̄′g ,

B) 0 → Hqq̄ggg , (2.1)

C) 0 → Hggggg .

For process A) the relevant matrix elements of ref. [19] are implemented. We have also used

the results therein for process B) when the helicities of all gluons are the same. For all other

helicity assignments we have chosen to use the more compact representation provided by

the MHV techniques of ref. [20]. Finally, process C) exploits the NNMHV matrix elements

of ref. [21], but uses the results of Del Duca et al. for the other helicity combinations. Soft

and collinear singularities are handled using the dipole subtraction scheme [22].

The calculation is incorporated into the general-purpose next-to-leading order code

MCFM.

3. Results

In order to render the cross section finite, we must apply some simple cuts to the jets.

The choice of cuts that we make is motivated partly by the studies of ref. [15], in which

the sensitivity of the Higgs cross section via the QCD and weak boson fusion processes to

the choice of minimum jet transverse momentum is studied. For this choice of cuts, the

cross section for the production of a Higgs boson and two or more jets is dominated by the

H + 2 jet contribution. As a result, the NLO QCD cross section for this process shows the

usual reduced dependence on the renormalization and factorization scales.

3.1 Inclusive cuts

The simplest “inclusive” set of cuts that we consider is specified by the following constraints

on the jets, which are formed from the partons according to the usual kT -clustering algo-

rithm [23]:

pt(jet) > 40 GeV, |ηjet| < 4.5, Rjet,jet > 0.8 . (3.1)

All of our results are based upon events in which at least two jets satisfy these cuts, with

the additional parton appearing at NLO sometimes manifest as a third jet. We do not

consider the decay of the Higgs boson and apply no cuts directly to the Higgs boson itself.

Before presenting any results, we note that the choice of parton distribution function

(PDF) that is used in the calculation is crucial. Each PDF set is obtained by fitting a

collection of observables with a particular value of αs(mZ). Since the effective coupling of

the Higgs field to two gluons is of order αs (eq. 1.2), the final lowest order matrix elements

squared for the H + 2 jet process are proportional to α4
s and thus the cross section is very

sensitive to the input value from the PDF set. Throughout this paper we will use two

sets from the CTEQ6 package [24]. At leading order (LO) the CTEQ6L1 set is used (with

αs(mZ) = 0.130 and 1-loop running) whilst at NLO we have performed the calculations

with CTEQ6M (αs(mZ) = 0.118, 2-loop running).
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Figure 1: Sample diagrams representing the production of a Higgs boson at the LHC. The basic
gluon fusion process is represented in diagram (a), with an additional one and two hard partons in
(b) and (c) respectively. Higgs production via weak boson fusion is depicted in diagram (d).

(as in figure 1(b)), so that the Higgs boson acquires a non-zero transverse momentum at

leading order (LO), has also been calculated to NLO [8 – 11].

It is then natural to consider the extension of this to the case in which a Higgs boson is

produced in association with two hard partons [12]. There are in fact two types of processes

that may contribute to such a final state, the gluon-fusion process in figure 1(c) and the

weak-boson fusion process in figure 1(d). The latter has been known to NLO for some

time [13 – 15]. It is the calculation of the full NLO QCD corrections to the Higgs+2 hard

jets process via gluon fusion in the large mt approximation that we will present in this

paper.

The lowest order amplitudes for Higgs+2 jet scattering have in fact been calculated

exactly, without using this effective coupling [16]. This is itself a 1-loop computation in-

volving pentagon diagrams, so the calculation is complicated considerably (and is currently

intractable beyond this order). However, it allows an examination of the limits in which the

effective coupling approach is valid. The results of this study indicate that this approach

is accurate as long as mH , pT (jet) < mt, a condition which will be satisfied for the results

presented in this paper.

2. Structure of the calculation

A detailed description of the calculation of the virtual matrix elements using a semi-

numerical approach is given in refs. [17, 18].
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The real matrix element corrections to H +2 jet production are obtained by including

all crossings of results for the three basic processes,

A) 0 → Hqq̄q′q̄′g ,

B) 0 → Hqq̄ggg , (2.1)

C) 0 → Hggggg .

For process A) the relevant matrix elements of ref. [19] are implemented. We have also used

the results therein for process B) when the helicities of all gluons are the same. For all other

helicity assignments we have chosen to use the more compact representation provided by

the MHV techniques of ref. [20]. Finally, process C) exploits the NNMHV matrix elements

of ref. [21], but uses the results of Del Duca et al. for the other helicity combinations. Soft

and collinear singularities are handled using the dipole subtraction scheme [22].

The calculation is incorporated into the general-purpose next-to-leading order code

MCFM.

3. Results

In order to render the cross section finite, we must apply some simple cuts to the jets.

The choice of cuts that we make is motivated partly by the studies of ref. [15], in which

the sensitivity of the Higgs cross section via the QCD and weak boson fusion processes to

the choice of minimum jet transverse momentum is studied. For this choice of cuts, the

cross section for the production of a Higgs boson and two or more jets is dominated by the

H + 2 jet contribution. As a result, the NLO QCD cross section for this process shows the

usual reduced dependence on the renormalization and factorization scales.

3.1 Inclusive cuts

The simplest “inclusive” set of cuts that we consider is specified by the following constraints

on the jets, which are formed from the partons according to the usual kT -clustering algo-

rithm [23]:

pt(jet) > 40 GeV, |ηjet| < 4.5, Rjet,jet > 0.8 . (3.1)

All of our results are based upon events in which at least two jets satisfy these cuts, with

the additional parton appearing at NLO sometimes manifest as a third jet. We do not

consider the decay of the Higgs boson and apply no cuts directly to the Higgs boson itself.

Before presenting any results, we note that the choice of parton distribution function

(PDF) that is used in the calculation is crucial. Each PDF set is obtained by fitting a

collection of observables with a particular value of αs(mZ). Since the effective coupling of

the Higgs field to two gluons is of order αs (eq. 1.2), the final lowest order matrix elements

squared for the H + 2 jet process are proportional to α4
s and thus the cross section is very

sensitive to the input value from the PDF set. Throughout this paper we will use two

sets from the CTEQ6 package [24]. At leading order (LO) the CTEQ6L1 set is used (with

αs(mZ) = 0.130 and 1-loop running) whilst at NLO we have performed the calculations

with CTEQ6M (αs(mZ) = 0.118, 2-loop running).
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Figure 2: Scale dependence of the Higgs+2 jet cross section with minimal rapidity and transverse
momentum cuts, for mH = 115 GeV (upper) and mH = 160 GeV (lower).

We note that a choice for the minimum jet transverse momentum lower than given in

eq. (3.1) results in similar scale-dependence plots, but with much steeper renormalization

scale curves. We interpret this as a sign that the perturbative series is less well-behaved for

such a choice of cuts. Indeed, in those cases, the cross section for producing a Higgs+3 jet

final state becomes larger than the one for Higgs+2 jets.

The calculation that we have performed can be used to study much more than the two-
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Figure 2: Scale dependence of the Higgs+2 jet cross section with minimal rapidity and transverse
momentum cuts, for mH = 115 GeV (upper) and mH = 160 GeV (lower).

We note that a choice for the minimum jet transverse momentum lower than given in

eq. (3.1) results in similar scale-dependence plots, but with much steeper renormalization

scale curves. We interpret this as a sign that the perturbative series is less well-behaved for

such a choice of cuts. Indeed, in those cases, the cross section for producing a Higgs+3 jet

final state becomes larger than the one for Higgs+2 jets.

The calculation that we have performed can be used to study much more than the two-
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The real matrix element corrections to H +2 jet production are obtained by including

all crossings of results for the three basic processes,

A) 0 → Hqq̄q′q̄′g ,

B) 0 → Hqq̄ggg , (2.1)

C) 0 → Hggggg .

For process A) the relevant matrix elements of ref. [19] are implemented. We have also used

the results therein for process B) when the helicities of all gluons are the same. For all other

helicity assignments we have chosen to use the more compact representation provided by

the MHV techniques of ref. [20]. Finally, process C) exploits the NNMHV matrix elements

of ref. [21], but uses the results of Del Duca et al. for the other helicity combinations. Soft

and collinear singularities are handled using the dipole subtraction scheme [22].

The calculation is incorporated into the general-purpose next-to-leading order code

MCFM.

3. Results

In order to render the cross section finite, we must apply some simple cuts to the jets.

The choice of cuts that we make is motivated partly by the studies of ref. [15], in which

the sensitivity of the Higgs cross section via the QCD and weak boson fusion processes to

the choice of minimum jet transverse momentum is studied. For this choice of cuts, the

cross section for the production of a Higgs boson and two or more jets is dominated by the

H + 2 jet contribution. As a result, the NLO QCD cross section for this process shows the

usual reduced dependence on the renormalization and factorization scales.

3.1 Inclusive cuts

The simplest “inclusive” set of cuts that we consider is specified by the following constraints

on the jets, which are formed from the partons according to the usual kT -clustering algo-

rithm [23]:

pt(jet) > 40 GeV, |ηjet| < 4.5, Rjet,jet > 0.8 . (3.1)

All of our results are based upon events in which at least two jets satisfy these cuts, with

the additional parton appearing at NLO sometimes manifest as a third jet. We do not

consider the decay of the Higgs boson and apply no cuts directly to the Higgs boson itself.

Before presenting any results, we note that the choice of parton distribution function

(PDF) that is used in the calculation is crucial. Each PDF set is obtained by fitting a

collection of observables with a particular value of αs(mZ). Since the effective coupling of

the Higgs field to two gluons is of order αs (eq. 1.2), the final lowest order matrix elements

squared for the H + 2 jet process are proportional to α4
s and thus the cross section is very

sensitive to the input value from the PDF set. Throughout this paper we will use two

sets from the CTEQ6 package [24]. At leading order (LO) the CTEQ6L1 set is used (with

αs(mZ) = 0.130 and 1-loop running) whilst at NLO we have performed the calculations

with CTEQ6M (αs(mZ) = 0.118, 2-loop running).
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Figure 1: Sample diagrams representing the production of a Higgs boson at the LHC. The basic
gluon fusion process is represented in diagram (a), with an additional one and two hard partons in
(b) and (c) respectively. Higgs production via weak boson fusion is depicted in diagram (d).

(as in figure 1(b)), so that the Higgs boson acquires a non-zero transverse momentum at

leading order (LO), has also been calculated to NLO [8 – 11].

It is then natural to consider the extension of this to the case in which a Higgs boson is

produced in association with two hard partons [12]. There are in fact two types of processes

that may contribute to such a final state, the gluon-fusion process in figure 1(c) and the

weak-boson fusion process in figure 1(d). The latter has been known to NLO for some

time [13 – 15]. It is the calculation of the full NLO QCD corrections to the Higgs+2 hard

jets process via gluon fusion in the large mt approximation that we will present in this

paper.

The lowest order amplitudes for Higgs+2 jet scattering have in fact been calculated

exactly, without using this effective coupling [16]. This is itself a 1-loop computation in-

volving pentagon diagrams, so the calculation is complicated considerably (and is currently

intractable beyond this order). However, it allows an examination of the limits in which the

effective coupling approach is valid. The results of this study indicate that this approach

is accurate as long as mH , pT (jet) < mt, a condition which will be satisfied for the results

presented in this paper.

2. Structure of the calculation

A detailed description of the calculation of the virtual matrix elements using a semi-

numerical approach is given in refs. [17, 18].
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Figure 5: Scale dependence of the Higgs+2 jet cross section in the region selected by the weak
boson fusion cuts, for mH = 115 GeV (upper) and mH = 160 GeV (lower).

distribution is unchanged and therefore that the correlation survives the addition of NLO

QCD corrections.

4. Conclusions

We have presented a calculation of the production of a Higgs boson in association with

two jets at hadron colliders, performed in the limit of large top mass and accurate to the
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Figure 1: Sample diagrams representing the production of a Higgs boson at the LHC. The basic
gluon fusion process is represented in diagram (a), with an additional one and two hard partons in
(b) and (c) respectively. Higgs production via weak boson fusion is depicted in diagram (d).

(as in figure 1(b)), so that the Higgs boson acquires a non-zero transverse momentum at

leading order (LO), has also been calculated to NLO [8 – 11].

It is then natural to consider the extension of this to the case in which a Higgs boson is

produced in association with two hard partons [12]. There are in fact two types of processes

that may contribute to such a final state, the gluon-fusion process in figure 1(c) and the

weak-boson fusion process in figure 1(d). The latter has been known to NLO for some

time [13 – 15]. It is the calculation of the full NLO QCD corrections to the Higgs+2 hard

jets process via gluon fusion in the large mt approximation that we will present in this

paper.

The lowest order amplitudes for Higgs+2 jet scattering have in fact been calculated

exactly, without using this effective coupling [16]. This is itself a 1-loop computation in-

volving pentagon diagrams, so the calculation is complicated considerably (and is currently

intractable beyond this order). However, it allows an examination of the limits in which the

effective coupling approach is valid. The results of this study indicate that this approach

is accurate as long as mH , pT (jet) < mt, a condition which will be satisfied for the results

presented in this paper.

2. Structure of the calculation

A detailed description of the calculation of the virtual matrix elements using a semi-

numerical approach is given in refs. [17, 18].
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Figure 4: The pseudorapidity distribution of the two leading jets using only the inclusive cuts,
for mH = 115 GeV (upper) and mH = 160 GeV (lower). The QCD process is calculated at LO
(rescaled by the inclusive K-factor) and at NLO. The NLO result for weak boson fusion is also
shown for comparison. Both jets in an event enter the histogram, each with weight one half.

and j2), in addition to the cuts in eq. 3.1, we impose

|ηj1 − ηj2 | > 4.2, ηj1 · ηj2 < 0 . (3.2)

Thus the two “tagging jets” are required to be both well-separated in rapidity and to lie

in opposite hemispheres. Note that we have refrained from using the term “rapidity gap”

to describe this separation, since the additional softer parton that can be present at NLO

may lie between the two tagging jets.
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The real matrix element corrections to H +2 jet production are obtained by including

all crossings of results for the three basic processes,

A) 0 → Hqq̄q′q̄′g ,

B) 0 → Hqq̄ggg , (2.1)

C) 0 → Hggggg .

For process A) the relevant matrix elements of ref. [19] are implemented. We have also used

the results therein for process B) when the helicities of all gluons are the same. For all other

helicity assignments we have chosen to use the more compact representation provided by

the MHV techniques of ref. [20]. Finally, process C) exploits the NNMHV matrix elements

of ref. [21], but uses the results of Del Duca et al. for the other helicity combinations. Soft

and collinear singularities are handled using the dipole subtraction scheme [22].

The calculation is incorporated into the general-purpose next-to-leading order code

MCFM.

3. Results

In order to render the cross section finite, we must apply some simple cuts to the jets.

The choice of cuts that we make is motivated partly by the studies of ref. [15], in which

the sensitivity of the Higgs cross section via the QCD and weak boson fusion processes to

the choice of minimum jet transverse momentum is studied. For this choice of cuts, the

cross section for the production of a Higgs boson and two or more jets is dominated by the

H + 2 jet contribution. As a result, the NLO QCD cross section for this process shows the

usual reduced dependence on the renormalization and factorization scales.

3.1 Inclusive cuts

The simplest “inclusive” set of cuts that we consider is specified by the following constraints

on the jets, which are formed from the partons according to the usual kT -clustering algo-

rithm [23]:

pt(jet) > 40 GeV, |ηjet| < 4.5, Rjet,jet > 0.8 . (3.1)

All of our results are based upon events in which at least two jets satisfy these cuts, with

the additional parton appearing at NLO sometimes manifest as a third jet. We do not

consider the decay of the Higgs boson and apply no cuts directly to the Higgs boson itself.

Before presenting any results, we note that the choice of parton distribution function

(PDF) that is used in the calculation is crucial. Each PDF set is obtained by fitting a

collection of observables with a particular value of αs(mZ). Since the effective coupling of

the Higgs field to two gluons is of order αs (eq. 1.2), the final lowest order matrix elements

squared for the H + 2 jet process are proportional to α4
s and thus the cross section is very

sensitive to the input value from the PDF set. Throughout this paper we will use two

sets from the CTEQ6 package [24]. At leading order (LO) the CTEQ6L1 set is used (with

αs(mZ) = 0.130 and 1-loop running) whilst at NLO we have performed the calculations

with CTEQ6M (αs(mZ) = 0.118, 2-loop running).
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G. Bozzi, S. Catani, D. de Florian, M. Grazzini arXiv:0705.3887

Transverse Momentum of Higgs in QCD
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Lessons from Higgs calculation

• Renormalization scale not set by Higgs Mass

• No reason to take Q = MH

• Physical renormalization scale related to gluon 
virtuality -- minimum jet pT

• Similar to QED analog; analytic limit 

• PMS inapplicable

• No sign that sensitivity to renormalization scale  
is reduced at NLO

NC → 0

α(k2
a)× α(k2

b )

γ∗(k2
a)

γ∗(k2
b )

αs(k2
a)× αs(k2

b )

g∗(k2
a)

g∗(k2
b )
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limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

P. Huet, sjb

QCD Lagrangian

Analytic limit of QCD: Abelian Gauge Theory

[CF =
N2

C−1
2NC

]

FH(Q2)× [Q2]nH−1 ∼ constant

[Q2]nH−1FH(Q2) ∼ constant

FH(Q2) ∼ [ 1
Q2]

nH−1

fd(Q
2) ≡ Fd(Q

2)

Fp(
Q2
4 )Fp(

Q2
4 )

fd(Q
2) ∼ Fπ(Q2)
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logarithmic derivative 
of the QCD coupling  is negative

Coupling becomes weaker at short 
distances or high momentum transfer Gross, Wilczek, Politzer

Khriplovich, `t Hooft

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!
29
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logarithmic derivative 
of the QED coupling  is positive

Coupling becomes stronger at short 
distances or high momentum transfer

In QED (NC=0) 
the beta function is positive

0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!
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limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

QCD → Abelian Gauge Theory

limNC → 0 at fixed α = CFαs, n" = nF/CF

e+e− → p# p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD 
must be applicable to QED

31
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Lessons from QED : Summary

• Effective couplings are complex analytic 
functions with the correct threshold structure 
expected from unitarity

• Multiple “renormalization” scales appear

• The scales are unambiguous since they are 
physical kinematic invariants

• Optimal improvement of perturbation theory

11
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Features of BLM Scale Setting

• All terms associated with nonzero beta function summed into running coupling

• BLM Scale Q* sets the number of active flavors

• Only nf dependence required to determine renormalization scale at NLO

• Result is scheme independent: Q* has exactly the correct dependence to 
compensate for change of scheme

• Correct Abelian limit

• Resulting series identical to conformal series! 

• Renormalon n! growth of PQCD coefficients from beta function eliminated!

• In general, BLM scale depends on all invariants

  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb
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BLM Scale Setting

Use skeleton expansion:
Gardi, Grunberg, Rathsman, sjb

nf  dependent 
coefficient identifies 

quark loop VP 
contribution 

Conformal coefficient - independent of  β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!

β0 = 11− 2
3nf

34



 
IPPP  September 5, 2008  Stan Brodsky, SLAC/IPPP

 The Renormalization Scale  Problem
35

nf  dependent coefficient 
identifies quark loop VP 

contribution to 

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

β = d
d logQ2g(Q2) < 0

β = d
d logQ2g(Q2) > 0

This is very important!

This is very important!

Conformal coefficient ! 
Independent of  

β0 = 11− 2
3nf
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Features of BLM Scale Setting

• All terms associated with nonzero beta function 
summed into running coupling

• Identical procedure in QED

• Resulting series identical to conformal series 

• Renormalon n! growth of PQCD coefficients 
from beta function eliminated!

• In general, BLM scale depends on all invariants

  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb
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.

BLM scales for DIS moments

β0 = 11− 2
3nf

37
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Similar to pinch scheme

V (Q2) ≡ −4πCF
αV (Q2)

Q2

β0 = 11− 2
3nf

38
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Kramer & 
LampeThree-Jet rate in electron-positron annihilation

Other Jet Observables:  Rathsman

39
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µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !
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minp2

med
p2
max

xµ = µR√
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e+e− → γ∗ → 4jets
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"−

µ2
R !

Q2
minQ2

med
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max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

"+

"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets
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"−

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q

Q̄

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q

Q̄

Example of Multiple BLM Scales
 Angular distributions of massive quarks and leptons close to threshold.

Hoang, Kuhn, Teubner, sjb

40
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Relate Observables to Each 
Other

• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Example: Generalized Crewther Relation

41
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Transitivity Property of Renormalization Group

A B

C

A      C C      B A       B identical to 

Relation of observables independent of intermediate scheme C

42
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Relate Observables to Each Other
• Eliminate intermediate scheme

• No scale ambiguity 

• Transitive!

• Commensurate Scale Relations

• Example: Generalized Crewther Relation

43
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 Eliminate MSbar, 
Find Amazing Simplification

44
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Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb

45
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[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

[1 + αR(s∗)
π ][1− αg1(q

2)
π ] = 1

√
s∗ $ 0.52Q

Generalized Crewther Relation

Conformal relation true to all orders in 
perturbation theory

No radiative corrections to axial anomaly
Nonconformal terms set relative scales (BLM)

Analytic matching at quark thresholds
No renormalization scale ambiguity!

Lu, Kataev, Gabadadze, Sjb

46
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Translation between schemes at LO

p

Leading Order Commensurate Scales

49
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Analyticity and Mass Thresholds

MS does not have automatic decoupling of heavy particles

Must define a set of schemes in each desert region and match

)()( )1()(

Q

f

sQ

f

s MM !
"##

• The coupling has discontinuous derivative at the matching point

• At higher orders the coupling itself becomes discontinuous!

• Does not distinguish between spacelike and timelike momenta

“AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME”

S. Brodsky, M. Gill, M. Melles, J. Rathsman.  Phys.Rev.D58:116006,1998 6

50
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Define QCD Coupling from 
Observable

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Re+e−→X(s) ≡ 3Σqe2q [1 + αR(s)
π ]

Γ(τ → Xeν)(m2
τ ) ≡ Γ0(τ → ud̄eν)×[1+ατ(m2

τ )
π ]

Commensurate scale relations: 
Relate observable to observable at commensurate scales

Grunberg

H.Lu, Rathsman, sjb

51

Effective Charges: analytic at quark mass thresholds,  finite at small momenta

51
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!0.008 at s"m!
2 corresponds to a value of "MS(MZ

2)

"(0.117–0.122)!0.002, where the range corresponds to
three different perturbative methods used in analyzing the

data. This result is, at least for the fixed order and renorma-

lon resummation methods, in good agreement with the world

average "MS(MZ

2)"0.117!0.002 #46$. However, from the

figure we also see that the effective charge only reaches

"!(s)%0.9!0.1 at s"1 GeV2, and it even stays within the
same range down to s%0.5 GeV2. This result is in good
agreement with the estimate of Mattingly and Stevenson #47$
for the effective coupling "R(s)%0.85 for !s#0.3 GeV de-
termined from e

$
e

% annihilation, especially if one takes into

account the perturbative commensurate scale relation,

"!(m!!
2
)""R(s*) where, for "R"0.85, we have s*

!0.10 m!!
2
according to Eq. &7'. As we will show in more

detail in the next section, this behavior is not consistent with

the coupling having a Landau pole but rather shows that the

physical coupling is much more constant at low scales, sug-

gesting that physical QCD couplings are effectively constant

or ‘‘frozen’’ at low scales.

At the same time, it should be recognized that the behav-

ior of "!(s) in the region s#1 GeV2 is more and more
influenced by nonperturbative effects as the scale is lowered.

Even though the dominant nonperturbative effects cancel in

the sum of the vector and axial-vector contributions as can

be seen by looking at the corresponding effective charges

individually. Looking at "!
V(s), we see that it more or less

vanishes as the integration region moves to the left of the

two-pion peak in the hadronic spectrum. In the same way the

behavior of "!
A(s) at small scales is governed by the single

pion pole.

III. ANALYSIS OF THE INFRARED BEHAVIOR OF !"„s…

In order to be able to analyze the infrared behavior of the

effective coupling "!(s) in more detail, we will compare

with &a' the fixed-order perturbative evolution of the "!(s)

coupling on the one hand, and &b' with the evolution of cou-
plings that have nonperturbative or all-order resummations

included in their definition. For the latter case, many differ-

ent schemes have been suggested, and we will concentrate on

two of them: the one-loop ‘‘timelike’’ effective coupling

"eff(s) #3–5$, and the modified "̃V coupling calculated from

the static quark potential using perturbative gluon condensate

dynamics #48$.
The perturbative couplings evolve according to the stan-

dard evolution equation

das&s '

d ln s
"%(0as

2&s '%(1as
3&s '%(2as

4&s '%(3as
5&s '% . . . ,

&8'

where as(s)""s(s)/(4)). The first two terms in the ( func-
tion, (0 and (1, are universal at leading twist whereas the
higher order terms are scheme dependent. Currently the (
function is known to four loops ((3) in the MS scheme and
to three loops ((2) in the "! scheme. In the latter case there

also exists an estimate of the four-loop term. For complete-

ness these terms are summarized in the Appendix.

Figure 3 shows a comparison of the experimentally deter-

mined effective charge "!(s) with solutions to the evolution

equation &8' for "! at two-, three-, and four-loop order nor-

malized at m! . It is clear from the figure that the data on

"!(s) does not have the same behavior as the solution of the

&universal' two-loop equation which is singular1 at the scale
s!1 GeV2. However, at three loops the behavior of the per-
turbative solution drastically changes, and instead of diverg-

ing, it freezes to a value "!!2 in the infrared. The reason for
this fundamental change is, of course, the negative sign of

(! ,2 . At the same time, it must be kept in mind that this

result is not perturbatively stable since the evolution of the

coupling is governed by the highest order term. This is illus-

trated by the widely different results obtained for three dif-

ferent values of the unknown four-loop term (! ,3 which are

also shown.2 Still, it may be more than a mere coincidence

that the three-loop solution freezes in the infrared. Recently

it has been argued that "R(s) freezes perturbatively to all

orders #49$. Given the commensurate scale relation &6' this
should also be true perturbatively for "!(s). It is also inter-

esting to note that the central four-loop solution is in good

agreement with the data all the way down to s!1 GeV2.
The one-loop ‘‘timelike’’ effective coupling #3–5$

1The same divergent behavior would also be seen at three-and

four-loop order in the MS scheme where both (2 and (3 are posi-
tive for n f"3.
2The values of (! ,3 used are obtained from the estimate of the four

loop term in the perturbative series of R! , K4
MS"25!50 #30$.

FIG. 3. &Color online' The effective charge "! for nonstrange

hadronic decays of a hypothetical ! lepton with m!!
2 "s compared

to solutions of the fixed order evolution equation &8' for "! at two-,

three-, and four-loop order. Error bands include statistical and sys-

tematic errors.

BRODSKY et al. PHYSICAL REVIEW D 67, 055008 &2003'

055008-4

QCD Effective Coupling from
hadronic τ decay

Menke,Merino,Rathsman,SJB
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3

Relations 4 and 6 constrain αs,g1
at low Q2 (dashed line in Fig. 1). At large

Q2, Γp−n
1 can be estimated using Eq. 1 at leading twist and αs calculated

with pQCD. αs,g1
can be subsequently extracted (gray band).

These data and sum rules give αs,g1
(Q2) at any Q2. A similar result

is obtained using a model of Γp−n
1 and Eq. 2 (dotted line). The Burkert-

Ioffe11 model is used because of its good match with data.
One can compare our result to effective coupling constants extracted

using different processes. αs,τ was extracted from τ -decay data12 from the
OPAL experiment (inverted triangle). It is compatible with αs,g1

. The
Gross-Llewellyn Smith sum rule13 (GLS) can be used to form αs,F3

. The
sum rule relates the number of valence quarks in the hadron, nv, to the
structure function F3(Q2, x). At leading twist, it reads:

∫ 1

0

F3(Q
2, x)dx = nv

[

1 −
αs(Q2)

π
− 3.58

(

αs(Q2)

π

)2

− 20.21

(

αs(Q2)

π

)3
]

.(7)

We expect αs,F3
= αs,g1

at high Q2, since the Q2-dependence of Eq. 1
and 7 at leading twist are identical. The GLS sum was measured by the
CCFR collaboration14 and the resulting αs,F3

is shown by the star symbols.

Figure 1. Extracted αs,g1
(Q)/π using JLab data (up triangles), the GLS sum rule

(stars), the world Γp−n

1
data (open square), the Bjorken sum rule (gray band) and the

Burkert-Ioffe Model. αs,τ (Q)/π from OPAL is given by the reversed triangle. The
dashed line is the GDH constrain on the derivative of αs,g1

/π at Q2=0.

Γp−n
bj (Q2) ≡ gA

6 [1− α
g1
s (Q2)

π ]

Gaussian

k−6.5
T

dσ
dkT

kT (GeV)

ζ ↔ z

M =
∫
ΠdxidyiφF (xi, Q̃)×TH(xi, yi, Q̃)×φI(yi, Q̃)

Deur, Korsch, et al:  Effective Charge from Bjorken Sum Rule

GDH 
constraint
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VI. THE QCD RUNNING COUPLING

In the DSE approach, the ghost-gluon coupling in the
M̃OM scheme is calculated by the gluon dressing func-
tion Z3 and the ghost dressing function Z̃3 and the vertex
renormalization factor Z̃1 as

g(q) = Z̃−1
1 Z1/2

3 (µ2, q2)Z̃3(µ2, q2)g(µ).

Our lattice simulation[16] of the gluon propagator and
the ghost propagator of MILCc yields the running cou-
pling shown in FIG.3. There are deviations from the
pQCD (dash-dotted line) and the DSE approach with
κ = 0.5 (long dashed line). As was done by the Orsay
group[9], we consider a correction including the A2 con-
densates and obtained 〈A2〉 ∼ a few GeV2.

-0.4-0.2 0 0.2 0.4 0.6 0.8 1
Log_10!q"GeV#$

0.5

1

1.5

2

2.5

3
Α
s
"q#

FIG. 3: The running coupling αs(q) as a function of
log10 q(GeV) of MILCc (a = 0.12fm) βimp = 6.76(triangles)
and 6.83(diamonds), (50 samles each).

The running coupling in the infrared can be estimated
from the quark-gluon coupling

g(q) = Zψ
1

−1
Z1/2

3 (µ2, q2)Z2(µ2, q2)g(µ),

where Z2 is the quark dressing function and Zψ
1 is the ver-

tex renormalization factor. An evaluation of Z2(µ2, q2)
is given in the next section.

VII. THE QUARK PROPAGATOR

We extended the measurement of the quark propagator
using Asqtad action of MILCc [14] to MILCf . In the
case of MILCc, we compared the Asqtad action and the
Staple+Naik action.

Due to long computation time for the convergence of
the conjugate gradient method, the number of samples is
of the order of 10 for each βimp and the bare quark mass
m0.

The quark propagator is defined as a statistical average
over Landau gauge fixed samples

Sαβ(p) =
〈
〈χp,α|

1
i /D(U) + m0

|χp,β〉
〉

.

In this expression, the inversion, 1

i /D(U)+m0
, is performed

via conjugate gradient method after preconditioning, and
we obtain

Sαβ(q) = Z2(q)
−iγq + M(q)
q2 + M(q)2

.

The mass function M(q) reflects dynamical chiral sym-
metry breaking. In high momentum region, it is param-
eterized as

M(q) = −
4π2dM 〈ψ̄ψ〉µ[log(q2/Λ2

QCD)]dM−1

3q2[log(µ2/Λ2
QCD)]dM

+
m(µ2)[log(µ2/Λ2

QCD)]dM

[log(q2/Λ2
QCD)]dM

,

where dM = 12/(33 − 2Nf ) and m(µ2) is the running
mass.

In the infrared region, we adopt the monopole fit

M(q) =
c̃Λ3

q2 + Λ2
+ m0.

The momentum dependence of M(q) and Z2(q) of
m0 = 13.6MeV in the infrared region of Asqtad action is
smoother than that of the Staple+Naik action. It could
be attributed to the effect of the tadpole renormalization.
The parameters c̃ and Λ in our fit of the mass function
are given in TABLE V.

We showed the quark wave function renormalization
Zψ(q2) = g1(µ2)/Z2(q2) of MILCf βimp = 7.11 using
the staple+Naik action in [14], where Z2(q2) is the bare
lattice data and g1(q2) is the coefficient of γµ of the vector
current vertex that compensates artefacts in Z2.

We adopt 〈A2〉 as a fitting parameter and calculate[9]

Zψ(q2) =
g1(µ2)
Z2(q2)

= Zpert
ψ (q2) +

(
α(µ)
α(q)

)(−γ0+γA2 )/β0

q2

〈A2〉µ
4(N2

c − 1)
Zpert

ψ (µ2)

+
c2

q4

where α(q) are data calculated in the M̃OM scheme us-
ing the same MILCf gauge configuration[7].

Here Nf is chosen to be 2 but the data does not change
much for 3. We choose ΛQCD = 0.691GeV and 〈ψ̄ψ〉µ =
−(0.7ΛQCD)3[17, 18].

Since g1(q2) in the infrared is expected to be given by
the running coupling, the absence of suppression of the
quark wave function renormalization suggests that the
infrared suppression of the running coupling obtained by
the ghost-gluon coupling could be an artefact.

In [20] the Z2(q) is normalized to 1 at q = 3GeV. In our
simulation without this kind of renormalization, Z2(q) at
q = 3GeV is close to 1 and the results are consistent.
Our mass function M(q) of βimp = 7.09 are about 20%

Schwinger-Dyson

lattice: Furui, Nakajima (MILC)

PQCD Asymptotic freedom 

DSE: Alkofer, Fischer, von Smekal et al.

54

Shirkov
Gribov

Dokshitser
Siminov
Maxwell
Cornwall

log10 Q2(GeV2)

Φ(z) = z3/2φ(z)

φ(z = z0 = 1
Λc

) = 0.

[− d2

dz2 + V(z)]φ(z) = M2φ(z)

V(z) = −1−4L2

4z2 → −1−4L2

4z2 + κ4z2

∆ = 2 + L

αs(Q2)

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′

σ = x− = ct− x3

x+ = ct + x3

Conformal window 
 Infrared  fixed-point

αs(Q2)

β(Q2) = dαs(Q2)
d logQ2 → 0

Π(Q2) → α
15π

Q2

m2

Q2 << 4m2

A

A′
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IR Fixed Point for QCD?

• Dyson-Schwinger Analysis: QCD coupling  (mom 
scheme) has IR Fixed point!     Alkofer, Fischer, von 
Smekal et al.

• Lattice Gauge Theory

• Define coupling from observable, indications of IR fixed 
point for QCD effective charges

• Confined gluons and quarks: Decoupling of QCD vacuum 
polarization at small Q2 

• Justifies application of AdS/CFT in strong-coupling 
conformal window

55
55
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Conformal symmetry: Template for QCD

• Initial approximation to PQCD; then correct for 
non-zero beta function and quark masses:  BLM

• Commensurate scale relations: relate observables at 
corresponding scales: Generalized Crewther Relation

• Arguments for Infrared fixed-point for αs

• Effective Charges: analytic at quark mass thresholds,  
finite at small momenta

• Eigensolutions of Evolution Equation of distribution 
amplitudes

• AdS/QCD
56

V. Braun et al; 
 Frishman, Lepage, Sachrajda, sjb
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13

The Pinch Technique
(Cornwall, Papavassiliou)

Gauge-invariant gluon self-energy!

Gauge-dependent

++(2)PT =

self!energy!like projection

self!energy!like projection

)()(),( 11 kSpSkpVq !!
!"#

q V

natural generalization of QED charge

57
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Pinch Scheme (PT)

• J. M. Cornwall, Phys. Rev. D  26, 345 (1982)

• Equivalent to Background Field Method in Feynman guage

• Effective Lagrangian Scheme of Kennedy & Lynn

• Rearrange Feynman diagrams to satisfy Ward Identities

• Longitudinal momenta from triple-gluon coupling, etc. hit 
vertices which cancel (“pinch”) propagators

• Two-point function: Uniqueness, analyticity, unitarity, optical 
theorem

• Defines analytic coupling with smooth threshold behavior

58
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Use Physical Scheme to 
Characterize QCD Coupling

• Use Observable to define QCD coupling or Pinch 
Scheme

• Analytic: Smooth behavior as one crosses new 
quark threshold

• New perspective on grand unification

Binger, Sjb 
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Unification in Physical Schemes

! "###$%& ' )/(
4

)(ˆ 22

)(

)(

pps

p

p

i
i

i mQLQ (
)

*
)(ˆ)(ˆ1

)(
)(

0

0

QQ

Q
Q

ii

i
i

&+&$
%

*
* i=1,2,3

)/log( 22

)( pps mQeL p $,
-

40/21 5/3, 8/3,%p-

For spin s(p) = 0, !, and 1

“log-like” function:

“PHYSICAL RENORMALIZATION SCHEMES AND GRAND UNIFICATION”

M.B. and Stanley J. Brodsky. Phys.Rev.D69:095007,2004

Elegant and natural formalism for all threshold effects

(Automatically included) 17
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1

1

!
"

1

2

!
"

1

3

!
"

18

Asymptotic unification of 
strong, electromagnetic, and 

weak forces in analytic 
pinch scheme

QED

QCD

Binger, sjbSupersymmetric
SU(5)

61
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Figure 6: Asymptotic Unification. The solid lines are the analytic PT effective
couplings, while the dashed lines are the DR couplings. For illustrative purposes,
α3(MZ) has been chosen so that unification occurs at a finite scale for DR and
asymptotically for the PT couplings. Here MSUSY = 200GeV is the mass of all light
superpartners except the wino and gluino which have values 1

2mg̃ = MSUSY = 2mw̃.
For illustrative purposes, we use SU(5).

and

δH
i =

∑

h∈H

1

4π
β(h)

i log
m2

h

M2
X

. (32)

The exact 1-loop analytic light threshold corrections are contained in ∆L
i , while the

heavy threshold splittings are contained in δH
i , with some arbitrarily chosen heavy

mass MX which is conveniently taken to be the mass of heavy gauge bosons.
It is useful to verify that predictions for lX and α3(MZ) are invariant under the

choice of physical renormalization scheme. In performing the calculation, one must
use the fact that the ηO

p functions do not depend on the gauge group or representation
of p, only the spin. These are necessary (but not sufficient) conditions for the sum
rule in Eq.(11). This scheme equivalence does not extend to unphysical schemes such
as DR, though the errors are quantifiable.

Due to the physical renormalization scheme invariance, we may choose the simplest

21

Binger, sjb

Supersymmetric
SU(5)
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Unification in Physical Schemes

• Smooth analytic threshold behavior 
with automatic decoupling

• More directly reflects the unification of 
the forces 

• Higher “unification” scale than usual

19

63
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H. Jung, QCD & Collider Physics, Lecture 3 WS 05/06 15

Renormalization scale and scheme
The parameters         or                
depend on the details, how the 
renormalization is done, i.e. which 
of the final parts are kept...
Schemes are (Brodsky,Lu PRD 51,  3652 (1995)):

Fastest apparent convergence 
(FAC) choose scale          such 
that NLO coefficient vanishes
Principle of minimum sensitivity 
(PMS)  chooses       at a 
stationary point  

BLM scheme (Brodsky,Lepage,Mackenzie)  

choose scale such that all flavor 
dependence is put into coupling 
and  coefficients are independent 
of number of quark flavours 
renormalising gluon propagators

What is the relevant scale in QED and 
QCD ?

Apply higher order corrections and 
hope that changes of the scale do 
not change much the result .. 
(standard folklore ..)
BLM has clear prescription from 
QED:

From analogy with QED apply no 
scale uncertainty also for QCD !
but what about triple gluon vertex?

H. Jung
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General Structure of the 

Three-Gluon Vertex

3 index tensor            built out of          and          

with 
321

ˆ
!!!" !#g 321

,, ppp

0
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$%% ppp

“THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX”

M.B. and Stanley J. Brodsky.  hep-ph/0602199. Submitted to PRD
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14 basis tensors and form factors
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Analytic calculation:
general masses, spin

M. Binger, sjb
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3 Gluon Vertex In 

Scattering Amplitudes

Pinch-Technique approach : 

fully dress with gauge-invariant Green’s functions

(A)
+ perms

(B)

35
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self!energy!like

projection

self!energy!like

projection

self!energy!like

projection

Figure 3: Pinch-technique for QCD at 1 loop. The unique gluonic self-energy-
like projection of the vertex and box graphs yield terms which must be added to the
conventional self-energy to get the PT effective charge.

where ηPT−DRED
p ( Q

mp
) = ηp are the constants given in Table I for massive fields and

ηg = 64/33 for massless spin 1 fields9. The fact that these ηO
p (Q/m) functions are

constants is what makes the PT observable the most simple and natural choice for
defining an effective charge scheme. More general physical effective charge schemes
(see Eqs.(8,9,10)) have more complicated running due to the ηO

p (Q/mp) terms. The
calculation of α̃(Q) has been performed using dimensional reduction (DRED), rather

9We will use ′W ′ or ′1′ subscripts to denote massive spin 1 fields and a ′g′ subscript for massless
spin fields. The constants 64/33 and 40/21 are related straightforwardly. In general, for a massive
gauge boson W in the representation R of group G that is being considered and representations R′

in additional group factors G′, we have

βW =
11

3
C(R)d(R′) −

1

6
C(R)d(R′) =

7

2
C(R)d(R′) (20)

and

ηW =
1

βW

(
11

3
C(R)d(R′)

(64

33

)
−

1

6
C(R)d(R′)

(8

3

))

=
40

21
. (21)

13

Pinch Scheme -- Effective Charge

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + [Aµ, Aν]

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

α(t) = α(0)
1−Π(t)

α(t) = α(t0)
1−Π(t,t0)

Π(t, t0) = Π(t)−Π(t0)
1−Π(t0)
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A Happy Marriage

PT = BFM in quantum Feynman gauge (BFMFG)

Proven by Binosi and Papavassiliou to all orders

also = star-scheme for electroweak theory at one-loop (Kennedy and Lynn) 

PT/BFMFG Green’s functions have excellent properties :

• Non-abelian analogs of QED with simple Ward ID’s

• Lead to analytic effective charges

• Can be derived from unitarity (optical theorem)

• Correct asymptotic UV behavior

!!!"#$ )log()( 2

0

2
ppPT %

15

Background Field Method

• Gauge field is split into 

quantum (Q) and 

background (B) parts

!!! QBA "#

LoopsExternal legs

Choose the gauge fixing function appropriately

!
!!

!
!

!
c

babcacaca QBgfQQBDG "$## ))((

( In the conventional formulation                       )aa AG !
!$#

Green’s functions are background gauge-invariant

But they do (lightly) depend on the quantum gauge-fixing parameter

Only through UV finite terms (Kallosh)
14
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The Gauge Invariant 

Three Gluon Vertex
Cornwall and Papavassiliou performed 

the PT construction :

The “pinched” parts are added 

to the “regular” 3 gluon vertex

21

PT = + pinched

parts

Later shown to = BFMFG

Integrals were not evaluated…

gauge

dependent

gauge

invariant
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General Structure of the 

Three-Gluon Vertex

Simple (QED-like) Ward ID

! " ! " )(ˆ1 )(  )(ˆ1 )(),,(ˆ
11223213 2121321

3 pptpptpppp #$%#$&' (((((((

(

)(()() ppgppt %& 2)(where

13 nonzero form factorsOne form factor always = 0

(not obvious)

23
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3 Gluon Vertex In 

Scattering Amplitudes

! "hHtAtAtAg

cgbgagverticescolorAmplitude

bare
ˆˆˆˆ)1(                   

)()()(

00 ####$

$$%

&&##

Other tensors and form factors

Tree level tensor structure :

132321213 )()()(ˆ
1332210

'''''''''
gppgppgppt &#&#&%

),,(~ cbag

2

3

2

2

2

1

pc

pb

pa

%

%

%

Form factors                                        depend on theseHAAA  , , ,0 &#

37
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Multi-scale Renormalization of 

the Three-Gluon Vertex

36

)( 2

1pg

gauge-invariant 

subset of rad. cor.

coupling at each vertex 

absorb the rad. cor. 

)( 2

2pg )( 2

3pg

1p

2p

3p

),,(~ 2

3

2

2

2

1 pppg
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Convenient Tensor Bases

24

Physical      Basis

• Written in terms of linear 
combinations of momenta

called “+” and “-” momenta
such that

by elementary Ward IDs

• Maximum # of FF’s vanish 
when in a physical matrix 
element  

• Good for real scattering 
problems

LT Basis

• Longitudinal (L) FF’s :

• Transverse (T) FF’s :

• Good for theoretical work and 
solving Ward ID

!

0    ),,(ˆ
321

)(

3 321

3 "#$ pppp
L

%%%

%

0    ),,(ˆ
321

)(

3 321

3 "#$ pppp
T

%%%

%

Complementary in their relation to current conservation (Ward ID’s)

0"$& extVp
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Form Factors : Supersymmetric

Relations

• Any form factor can be decomposed :

!! ""#
s

Ss

f

QfGA FTFTFCF 22

G = gluons

Q = quarks

S = scalars
sfA TTC  , , are color factors

• Individually,                     are complicated…SQG FFF ,,

29

75



 
IPPP  September 5, 2008  Stan Brodsky, SLAC/IPPP

 The Renormalization Scale  Problem
76

Form Factors : Supersymmetric

Relations (Massless)

GQQG FF
d

F !
"

#$
2

2
)(

….but certain linear sums are simple : 

0    for 7 of the 13 FF’s

(in physical basis)

Simple N=1 SUSY contribution in d=4

0)10(4 %"!! SQG FdFF For all FF’s !!

N=4 SUSY in d=4 gives 0 

These are off-shell generalizations of relations found in 

SUSY scattering amplitudes by

Z. Bern, L.J. Dixon, D.C. Dunbar, and D.A. Kosower (NPB 425,435) 30

Vanishing contribution of the N=4 supermutiplet in  d=4 dimensions

±

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

xµ = µR√
s

e+e− → γ∗ → 4jets

Q 76
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Form Factors : Consequences of 

Supersymmetric Relations

For any SUSY each of the 13 FF’s are

even though only one FF is directly related 

to coupling renormalization

0!"

##
$

$
$

$
$

$

$
%

f

s

f

fA T
d

T
d

d
C

d

d
d

1

1

1

)2(2

)1(2

67
)(0!

sfA TTC
3

1

3

4

3

11
$$

d = 4

Contributions of gluons, quarks, and 

scalars have same functional form 33
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Form Factors : Supersymmetric

Relations (Massive)
Equal masses for massive gauge bosons (MG), quarks (MQ), and scalars (MS)

0)9(4 !"## MSMQMG FdFF

Massive gauge boson (MG) inside of loop might be the

X and Y gauge bosons of SU(5), for example

1 d.o.f. “eaten” by MG

External gluons remain unbroken and massless

MGMQMQG FF
d

F #
"

$%
2

1
)( is simple 

31
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Form Factors : Consequences of 

Supersymmetric Relations

For any SUSY each of the 13 FF’s are

even though only one FF is directly related 

to coupling renormalization

0!"

##
$

$
$

$
$

$

$
%

f

s

f

fA T
d

T
d

d
C

d

d
d

1

1

1

)2(2

)1(2

67
)(0!

sfA TTC
3

1

3

4

3

11
$$

d = 4

Contributions of gluons, quarks, and 

scalars have same functional form 33

Form Factors : Consequences of 

Supersymmetric Relations

For any SUSY each of the 13 FF’s are

even though only one FF is directly related 

to coupling renormalization

0!"

##
$

$
$

$
$

$

$
%

f

s

f

fA T
d

T
d

d
C

d

d
d

1

1

1

)2(2

)1(2

67
)(0!

sfA TTC
3

1

3

4

3

11
$$

d = 4

Contributions of gluons, quarks, and 

scalars have same functional form 33
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Summary of Supersymmetric

Relations

0)9(4 !"## MSMQMG FdFF0)10(4 !"## SQG FdFF

Massless Massive

GQQG FF
d

F #
"

$%
2

2
)(

= simple

MGMQMQG FF
d

F #
"

$%
2

1
)(

= simple

32
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3 Scale Effective Charge

!
"

4

),,(~
),,(~

2 cbag
cba #

(First suggested by H.J. Lu)

$
%

&
'
(

) ***+,+-
.

/
!""

1
),,(

4

11

),,(~
1

0 cbaL
cba bare

0 1,(),,(
4

1

),,(~
1

),,(~
1

00

000

aLcbaL
cbacba

,+- /
!""

L(a,b,c) = 3-scale “log-like” function

), 00 cb

L(a,a,a) = log(a)
38
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3 Scale Effective Scale

! " ),,(Im),,(log),,( 2 cbaLicbaQcbaL eff #$

Governs strength of the three-gluon vertex

% &),,(),,(
4

1

),,(~
1

),,(~
1

0000

000

cbaLcbaL
cbacba

'#( )
*++

),,(~ˆ
321

cba+,,, -.

Generalization of the BLM scale to the 3-gluon vetex
40

Generalization of BLM Scale to 3-Gluon Vertex
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3 Scale Log-Like Function

! " #$%$$
&

' ),,(logloglog
1

),,( cbaJabccbacbaL ()*(*)

39

! "

! "

! "acbpp

cbapp

bacpp

%%'+'

%%'+'

%%'+'

2

1

2

1

2

1

13

32

21

)

(

*

)*()*( $$'&

125.3,#

Master triangle integral can be 

written in terms of Clausen functions

! "-- ieLiCl 22 Im)( '

2

3

2

2

2

1

pc

pb

pa

'

'

'
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Properties of the Effective Scale

),,(),,( 22 cbaQcbaQ effeff !!!"

),,(||),,( 22 cbaQcbaQ effeff #### "

||),,(2 aaaaQeff "

||54.5),,(2 aaaaQeff $!!

||||for         ||08.3),,(2 caccaaQeff %%$

||||for         ||8.22),,(2 caccaaQeff %%$!

|||,|||for         
||

||
8.22),,(2 cba
a

bc
cbaQeff %%$

41

Surprising dependence on Invariants
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General Structure of the 

Three-Gluon Vertex

3 index tensor            built out of          and          

with 
321

ˆ
!!!" !#g 321

,, ppp

0
321
$%% ppp

“THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX”

M.B. and Stanley J. Brodsky.  hep-ph/0602199. Submitted to PRD

1
p

3
p2

p
3

!
2

!

1
!

$"
321

ˆ
!!!

14 basis tensors and form factors
22

µ2
R !

Q2
minQ2

med
Q2

max

µ2
R !

p2
minp2

med
p2
max

!+

!−

< 0|Gµν(x)Gστ(0)|0 >

Gµν = ∂µAν − ∂νAµ + ig[Aµ, Aν]

H. J. Lu
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The Effective Scale

! "2222
,GeV 10 ,GeV 10 pQeff ! "2222

,GeV 10 ,GeV 10 pQeff ##

42
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The Effective Scale
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44

The Effective Scale

),,1(2 yxQeff
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Mass Effects

Calculated for all form factors

SUSY relations 0)9(4 !"## MSMQMG FdFF

FF of tree level tensor structure Effective Charge

$
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LMQMassive “log-like” function :
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Massive Log-Like Function
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Effective Number of Flavors
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Symmetric Timelike

49
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Singularities: anomalous thresholds
Related to three-beam scattering?
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Symmetric Mixed Signature
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Singularities: anomalous thresholds Related to three-beam scattering?
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52

• Preliminary calculation 
using (massless) results 
for tree level form factor

• Very low effective scale         

much larger cross 
section than         with 
scale 

• Future : repeat analysis 
using the full mass-
dependent results and 
include all form factors

crossed++=

= 0
jet

jet

p
T

T

p

proton

proton

C

C

= 0

where

MS

QQQR MM or    !"

Heavy Quark Hadro-production

Q

Q

Expect that this approach accounts for most of the one-loop corrections
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γ∗

e+e− → "V jet X

Infamous J/ψ → ρπ decay:

Violates hadron helicity conservation

ψ′ → ρπ and ψ′′ → ρπ suppressed

Is there an Υ → ρπ puzzle?

εµνστ εµV pν
V pσ

jet qτ

e+

e- kg

c

c

c

c

c

Production of four heavy-quark jets

Defines analytic QCD effective charge

  time-like values not same as space-like 

coupling similar to  “pinch” scheme

complex for time-like argument

M. Binger, sjb

T (γ∗ → QQ̄QQ̄) ∝ α4Q(k2
g )

dσ
dz ∝ (1− z)9

FH(s) ∝ [1s ]
nH−1

Sz = 0

Tseagull = F (M2
HH̄

)

e+e− → BcBc

e+e− → DsDs

T (γ∗ → QQ̄QQ̄) ∝ α4Q(k2
g )

dσ
dz ∝ (1− z)9

FH(s) ∝ [1s ]
nH−1

Sz = 0

Tseagull = F (M2
HH̄

)

e+e− → BcBc

e+e− → DsDs
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Future Directions

Gauge-invariant four gluon vertex

),,,( 43214 ppppL

),,,( 4321

2

 4 ppppQ eff

PT

Hundreds of form factors!

57
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The Gauge-Invariant  Family of 

Green’s Functions
Ward ID’s

PT

PT

PT
PT

PT

Etc…

58
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PT Self-Energy at Two-Loops

PT

• Finite terms give relation between

• 3-loop beta function 

• 2-loop longitudinal form factors of the 

three-gluon vertex (via the Ward ID)

• N=4 Supersymmetry gives a non-zero 

but UV finite contribution 

 )(  and  )( 22
QQ

SMPT !!

55
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54

PT Self-Energy at Two-Loops

F1, S1, G1, H1

S5 S6 S7

S2 S3 S4

F4F3F2

RF2, RS2, RGH2RF1, RS1, RGH1H7

H6H5H4

H3H2G5

G4G3G2

Y4Y3

Y2Y1

Papavassiliou showed :

BFMPT =

1!Q"
B B
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Summary and Future

• Multi-scale analytic renormalization 

based on physical, gauge-invariant

Green’s functions

• Optimal improvement of perturbation 

theory with no scale-ambiguity since 

physical kinematic invariants are the 

arguments of the (multi-scale) couplings 

60

101



 Stan Brodsky, SLAC/IPPPIPPP  September 5, 2008
 The Renormalization Scale  Problem

Factorization scale

• Arbitrary separation of soft and hard physics

• Dependence on factorization scale not associated 
with beta function - present even in conformal 
theory

• Keep factorization scale separate from 
renormalization scale

• Residual dependence when one works in fixed 
order in  perturbation theory.

102

not

dO
dµrenormalization

= 0

µfactorization != µrenormalization

dO
dµfactorization

= 0

at all orders

not

dO
dµrenormalization

= 0

µfactorization != µrenormalization

dO
dµfactorization

= 0

at all orders
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New Insights into Hard Inclusive 
Reactions in QCD

• Elimination of Renormalization Scale Ambiguity

• Heavy quark distributions: severely underestimated at high xF -- intrinsic 
charm and bottom

• Higher-twist processes can dominate

• Off-shell effects: DGLAP modified at high x

• Anomalous nuclear effects: hidden color, factorization breaking

• Initial and final-State Interactions: SSA, Diffraction, shadowing, 
antishadowing, violation of Lam-Tung, breakdown of PQCD factorization 
formulae

• Hadronization at Amplitude Level: LFWFs, AdS/CFT
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T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

!Sp ·!q×!pq

 Hwang,  
Schmidt, sjb

Light-Front Wavefunction  
S and P- Waves

QCD S- and P-
Coulomb Phases

--Wilson Line

104

i

Collins, Burkardt
Ji, Yuan
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Final-State Interactions Produce 
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!

• Requires nonzero orbital angular momentum of quark

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; Wilson line effect;                       
gauge independent

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases

• QCD phase at soft scale

• New window to QCD coupling and running gluon mass in the IR

• QED S and P Coulomb phases infinite -- difference of phases finite

!S ·!p jet×!q

!S ·!p jet×!qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

105
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N.C.R. Makins, NNPSS, July 28, 2006
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• First evidence for non-zero 
Sivers function!

• ⇒ presence of non-zero quark

orbital angular momentum!

• Positive for !+... 

Consistent with zero for !"...

• Systematic error bands include 

acceptance and smearing effects, 

and contributions from unpolarized 

<cos(2!)> and    <cos(!)>  moments 

It exists too!
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The Leading-Twist Sivers Function: Can it Exist in DIS?

A T-odd function like f⊥1T must arise from
interference ... but a distribution function

is just a forward scattering amplitude,
how can it contain an interference?

q

P

2

~
q q

P P

Im

Brodsky, Hwang, & Schmidt 2002

can interfere

with

and produce
a T-odd effect!

(also need Lz != 0)

It looks like higher-twist ... but no , these are soft gluons
= “gauge links” required for color gauge invariance

Such soft-gluon reinteractions with the soft wavefunction are

final (or initial) state interactions ... and may be

process dependent ! new universality issues e.g. Drell-Yan

Gamberg: Hermes
data compatible with BHS 

model

Schmidt, Lu: Hermes
charge pattern follow quark 
contributions to anomalous 

moment
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].

W.-D. Nowak / Nuclear Physics A 755 (2005) 325c–328c 327c

Sivers asymmetry from HERMES

3. INTERPRETATION

The Collins moment for π+, averaged over acceptance, is positive: Aπ+
C = 0.042 ±

0.014stat.. This agrees with expectations for the transversity distributions hq
1(x), derived

from the similarities to the well measured valence helicity distributions g q
1(x) [13], namely

positive hu
1(x) and negative hd

1(x). The acceptance averaged Collins moment for π− is
large and negative, especially at large x: Aπ−

C = −0.076 ± 0.0016stat.. This comes as a
surprise, as neither u nor d flavor dominates π− production and also |hd

1(x)| < |hu
1(x)| is

expected. This observation may be explained if the disfavored Collins function was larger
and opposite in sign, as e.g. suggested by the string fragmentation model of Ref. [14].
Note that little dependence on z is seen for the Collins moments.

The Sivers moments averaged over acceptance are Aπ+
S = 0.034 ± 0.008stat. and Aπ−

S =
−0.004 ± 0.010stat., i.e. positive for π+ and consistent with zero for π−. The former
result is the first indication for the existence of a non-zero Sivers distribution function
f⊥,u

1T . However, this conclusion has to be taken with caution, as presently an unknown
systematic uncertainty has to be attributed to this result, due to the yet unmeasured
asymmetry in the pion yield from exclusive ρ0 production. More data is presently collected
at Hermes, both for semi-inclusive pion and exclusive vector meson production, which
is hoped to allow a firm conclusion on the existence of a non-zero Sivers function.
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In the context of the quark-parton model, the virtual-photon asymmetry Ah
UT can be

represented in terms of parton distribution and fragmentation functions [7]:

Ah
UT (φ, φS) ∝ sin(φ + φS)

∑

q

e2
q I

[
hq

1T (x, p2
T ) H⊥,q

1 (z, k2
T )

]

+ sin(φ − φS)
∑

q

e2
q I

[
f⊥,q

1T (x, q2
T ) Dq

1(z, k
2
T )

]
+ . . . (3)

Here eq is the charge of the quark species q, f⊥,q
1T (x, q2

T ) the Sivers distribution func-
tion, H⊥,q

1 (z, k2
T ) the Collins fragmentation function, hq

1T (x, p2
T ) a twist-2 relative of the

transversity distribution function [7] and Dq
1(z, k

2
T ) is the usual unpolarized fragmentation

function.
The appearance in Eq. 3 of the convolution integral I[. . .] over initial (pT ) and final

(kT ) quark transverse momenta implies that the different functions involved can not be
readily extracted in a model-independent way from the measured asymmetry. It is under
theoretical debate to what extent weighting of the measured asymmetries makes the
involved distribution and fragmentation functions appear factorized.

The data were taken since 2002 using the Hermes forward spectrometer [10] at Desy
in conjunction with a transversely polarized hydrogen target [11]. All presently available
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final results are summarized in Ref. [9], de-
tails of the analysis can be found in Ref. [12].
The kinematics coverage of the measure-
ment is 0.023 < x < 0.4 and 0.2 < z < 0.7,
and the corresponding average values of the
kinematic parameters are 〈x〉 = 0.09, 〈z〉 =
0.36, 〈y〉 = 0.54, 〈Q2〉 = 2.41 GeV2 and
〈Pπ⊥〉 = 0.41 GeV. The x and z-dependence
of the extracted moments is shown in Fig.2.
The statistical correlation in the fit between
the Collins and Sivers harmonic components
ranges between -0.5 and -0.6.

Figure 2. Top (middle) panel: Fitted
virtual-photon Collins (Sivers) moments for
charged pions, as a function of x (left) and z
(right). The error bars represent the statis-
tical uncertainties, the moments have an 8%
scale uncertainty. The bottom panel shows
the relative contribution to the measured
pion yield from exclusive vector meson pro-
duction, based on a Monte Carlo simulation.
The figure was taken from Ref.[9].
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Single Spin Asymmetry In the Drell Yan Process
!Sp ·!p×!qγ∗
Quarks Interact in the Initial State
Interference of Coulomb Phases for S and P states
Produce Single Spin Asymmetry [Siver’s Effect]Proportional

to the Proton Anomalous Moment and αs.
Opposite Sign to DIS! No Factorization

Collins; 
Hwang, Schmidt. 

sjb

Predict Opposite Sign SSA in DY !

107
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated

• Violates Lam-Tung Relation!

• Not obtained from standard PQCD subprocess analysis

• Normalized to the square of the single spin asymmetry in semi-
inclusive DIS

• No polarization required 

• Challenge to standard picture of PQCD Factorization

Boer, Hwang, sjb
ν(QT )

cos 2φ correlation

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 '2003(

054003-4

110



 
IPPP  September 5, 2008  Stan Brodsky, SLAC/IPPP

 The Renormalization Scale  Problem

ar
X

iv
:h

ep
-p

h
/0

5
1
1
0
2
5
 v

1
  
 3

 N
o
v
 2

0
0
5

ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0
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0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Drell-Yan planar correlations

Double ISI

Hard gluon radiation

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) " constant at small Q2.

Q4F1(Q2) " constant

If αs(Q∗2) " constant

ν(QT )

Q = 8GeV

πN → µ+µ−X NA10

Conformal behavior: Q4F1(Q2)→ const

Conformal behavior: Q2Fπ(Q2)→ const

αs(Q2) # constant at small Q2.

Q4F1(Q2) # constant

Violates Lam-Tung relation!

Boer, Hwang, sjb
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ "= 0, ν "= 0 and
λ "= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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PQCD Factorization (Lam Tung):

Model: Boer,
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c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

c

c̄

g

Q4F1(Q2)→ const

x→ 1 ≡ kz → −∞

α(t) = α(0)
1−Π(t)

2πρ(x, b, Q)

Problem for factorization when both ISI and FSI occur

g

112
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FIG. 8: The exchange of two extra gluons, as in this graph,
will tend to give non-factorization in unpolarized cross sec-
tions.

FIG. 9: In a conventional perturbative QCD calculation for
an unpolarized partonic cross section, non-factorization by
the mechanisms discussed in this paper would first appear in
graphs of this order.

culations. Normally one performs calculations with on-
shell massless quarks and gluons, and extracts collinear
divergences that are grouped with parton densities and
fragmentation functions; any remaining divergences can-
cel between graphs. Non-factorization in the hadronic
cross section corresponds to uncanceled divergences in
quark-gluon calculations. The lowest order in which the
mechanisms we have discussed could possible give an un-
canceled divergence in unpolarized partonic cross sec-
tions is NNNLO, as in Fig. 9. The region for the un-
canceled divergence is where the lower gluon is collinear
to the lower incoming quark, and two of the exchanged
gluons are soft. This graph is at least one order beyond
all standard perturbative QCD calculations.

Because our calculations directly concern cross sec-
tions that use transverse-momentum-dependent parton
densities, a certain amount of care is needed in inter-
preting the results. The natural direction for the Wilson
lines is light-like, as from Eq. (3.8). However light-like
Wilson lines give divergences in transverse-momentum-
dependent densities [7]. These are due to rapidity di-
vergences [20] in integrals over gluon momentum; they
cancel [7] in conventional parton densities only because
of an integral over all transverse momentum in integrated

parton densities. The solution adopted by Collins, Soper
and Sterman [7] (CSS) was to define parton densities
without Wilson lines but in a non-light-like axial gauge.
The gauge-fixing vector introduces a cut-off on gluon ra-
pidity, and then an evolution equation with respect to
the cut-off was derived. The non-perturbative functions
involved in this CSS evolution equation have been mea-
sured (e.g., [21]) in fits to DY cross sections, and would
be an essential ingredient in testing non-factorization.

However, there are some unsatisfactory features of the
use of axial gauges, which are made particularly evident
in polarized cross sections. This includes complications
concerning gauge links at infinity [22], when a Wilson line
formalism is used. A much better definition is to use a
non-light-like Wilson line. This again obeys an equation
of the CSS form. It is also possible to use a subtractive
formalism [20, 23] with light-like Wilson lines but with
generalized renormalization factors involving vacuum ex-
pectation values of Wilson lines, which also implement a
rapidity cutoff, and lead to a CSS equation.

To test the predicted non-factorization, we simply need
predictions of high-pT hadrons in hadron-hadron colli-
sions, made on the basis of fits to parton densities in
DIS and DY and to fragmentation functions in e+e− and
SIDIS [24]. Probing the SSA would be particularly inter-
esting, and such measurements are underway at RHIC
[25, 26]. The same physics is probed in the transverse
shape of jets, and would be worth investigating.

Our counterexample applies in a kinematic region
where the normal intuitive ideas of the parton model
appear quite appropriate, even with a generalization to
kT -factorization. Therefore it forces us to question un-
der what conditions factorization is actually valid and to
what extent it has actually been demonstrated. It cannot
be assumed that naive extensions of apparently estab-
lished results are applicable beyond the cases to which
the actual proofs explicitly apply.

For hadron-hadron collisions, factorization has been
proved [5, 6] for the Drell-Yan process integrated over
transverse momentum or at large transverse momentum
(of order Q). These proofs apply in the presence of gluon
exchanges of the kind that we discuss in the present pa-
per. But these papers do not go beyond this, to the pro-
duction of hadrons. Because factorization is important to
all aspects of hadron-collider phenomenology, it is critical
to solve this problem for the hadroproduction of high-pT

hadrons. Given our counterexample to kT -factorization,
a proof of factorization can only succeed in a situation
where conventional collinear factorization is appropriate.
For dihadron production this is when the hadron-pair has
itself large transverse momentum or when the pair’s out-
of-plane transverse momentum is integrated over a wide
range.

In fact, Nayak, Qiu and Sterman [27] have recently
given strong arguments that collinear factorization does
indeed hold in such a situations. The graphs examined
are similar to ours. They apply Ward identities to prove
an eikonalization generalizing our specific calculations.
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Factorization is violated in production of high-transverse-momentum particles in
hadron-hadron collisions

John Collins∗

Physics Department, Penn State University, 104 Davey Laboratory, University Park PA 16802, U.S.A.

Jian-Wei Qiu†

Department of Physics and Astronomy, Iowa State University, Ames IA 50011, U.S.A. and
High Energy Physics Division, Argonne National Laboratory, Argonne IL 60439, U.S.A.

(Dated: 15 May 2007)

We show that hard-scattering factorization is violated in the production of high-pT hadrons in
hadron-hadron collisions, in the case that the hadrons are back-to-back, so that kT factorization
is to be used. The explicit counterexample that we construct is for the single-spin asymmetry
with one beam transversely polarized. The Sivers function needed here has particular sensitivity
to the Wilson lines in the parton densities. We use a greatly simplified model theory to make the
breakdown of factorization easy to check explicitly. But the counterexample implies that standard
arguments for factorization fail not just for the single-spin asymmetry but for the unpolarized cross
section for back-to-back hadron production in QCD in hadron-hadron collisions. This is unlike
corresponding cases in e+e− annihilation, Drell-Yan, and deeply inelastic scattering. Moreover, the
result endangers factorization for more general hadroproduction processes.

PACS numbers: 12.38.Bx, 12.39.St, 13.85.Ni, 13.87.-a, 13.88.+e

I. INTRODUCTION

The great importance of hard-scattering factorization
in high-energy phenomenology hardly needs emphasis.
Essential to its application and predictiveness is the uni-
versality of parton densities (and fragmentation func-
tions, etc) between different reactions. However, as can
be seen from [1, 2, 3, 4], process-dependent Wilson lines
appear to be needed in the inclusive production of two
high-transverse-momentum particles in hadron-hadron
collisions, i.e., in the process

H1 + H2 → H3 + H4 + X. (1.1)

In this paper we will show that this situation definitively
leads to a breakdown of factorization.

The standard expectation is that the cross section is
a convolution of a hard scattering coefficient dσ̂, par-
ton densities, fragmentation functions and a possible soft
function:

E3E4

dσ

d3p3d3p4

=
∑

∫

dσ̂i+j→k+l+X fi/1 fj/2 d3/k d4/l

+ power-suppressed correction.
(1.2)

Here the sum and integral are over the flavors and mo-
menta of the partons of the hard scattering, fi/H denotes
a parton density, and dH/i a fragmentation function.

It is noteworthy that the classic published proofs for
factorization in hadron-hadron scattering [5, 6] only con-
cerned the Drell-Yan process. There are a number of

∗Electronic address: collins@phys.psu.edu
†Electronic address: jwq@iastate.edu

difficult issues in the proof that are highly non-trivial
to extend to other reactions in hadron-hadron collisions,
even though Eq. (1.2) is a standard expectation.

We will examine the case that the produced hadrons
are almost back-to-back. Then the appropriate factoriza-
tion property is kT -factorization, which entails [7] the use
of transverse-momentum dependent (TMD) parton den-
sities and fragmentation functions. However, the issues
raised by our counterexample to factorization are suffi-
ciently general that they create a need to examine very
carefully the arguments for factorization in hadropro-
duction of hadrons even in situations where ordinary
collinear factorization with integrated densities is appro-
priate. In the case of kT -factorization with TMD den-
sities, the factorization formula needs the insertion of a
soft factor S, not shown in Eq. (1.2).

The problems concern gluon exchanges between differ-
ent kinds of collinear line, as in Fig. 7 below. To obtain
factorization, the gluon attachments must be converted
to Wilson lines in gauge-invariant definitions of the par-
ton densities and fragmentation functions. This relies [6]
on the use of Ward identities applied to approximations
to the amplitudes. But the approximations are only valid
after certain contour deformations on the loop momenta.

Bacchetta, Bomhof, Mulders and Pijlman [1, 2, 3, 4]
argued that because of the complicated combination of
initial- and final-state interactions, the Wilson lines must
be modified. What is not so clear is the interpretation of
their result. So in the present paper we present an argu-
ment to make fully explicit the failure of factorization.

Since the issue is one of factorization in general, and
not just specifically in QCD, we clarify the issue by ex-
amining a particular process in a model field theory. The
process is a transverse single-spin asymmetry of the kind
controlled by a Sivers function. This is a case where prob-

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

e-Print: arXiv:0705.2141 [hep-ph]
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Final-State Interaction 
Produces Diffractive DIS 

Quark Rescattering 

Hoyer, Marchal, Peigne, Sannino, SJB (BHMPS)

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron
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Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate 
T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target
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Feynman Gauge Light-Cone Gauge

Result is Gauge Independent

Final State Interactions in QCD 
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QCD Mechanism for Rapidity Gaps

Wilson Line: ψ(y)
Z y

0
dx eiA(x)·dx ψ(0)

P

117

Reproduces lab-frame color dipole approach

Hoyer, Marchal, Peigne, Sannino, sjb
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Physics of Rescattering

• Diffractive DIS: New Insights into Final State 
Interactions in QCD

• Origin of Hard Pomeron

• Structure Functions not Probability 
Distributions!

• T-odd SSAs, Shadowing, Antishadowing

• Diffractive dijets/ trijets, doubly diffractive Higgs

• Novel Effects: Color Transparency, Color 
Opaqueness, Intrinsic Charm, Odderon
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“Dangling Gluons”
• Diffractive DIS

• Non-Unitary Correction to DIS:  Structure functions are not probability 
distributions

• Nuclear Shadowing, Antishadowing-  Not in Target WF

• Single Spin Asymmetries -- opposite sign in DY and DIS

•  DY                   distribution at leading twist from double ISI-- not given 
by PQCD factorization -- breakdown of factorization!

• Wilson Line Effects not 1 even in LCG

• Must correct hard subprocesses for initial and final-state soft gluon 
attachments

• Corrections to Handbag Approximation in DVCS!

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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Hadronization at the Amplitude Level

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

e+

e−

γ∗

g

q̄

q

pp → p + J/ψ + p

Construct helicity amplitude using Light-Front Perturbation 
theory;   coalesce quarks via Light-Front Wavefunctions

ψ(x,"k⊥, λi)

e+

e−

γ∗

g

q̄

q

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

ψH(x,"k⊥, λi)

pH

x,"k⊥

1− x,−"k⊥

e+

e−

γ∗

Event amplitude 
generator

τ = t + z/c

πq → γ∗q

γ∗

π

p

$

$̄
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General remarks about orbital angular mo-
mentum

!R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

∑n
i=1(xi

!P⊥+ !k⊥i) = !P⊥

xi
!P⊥+ !k⊥i

∑n
i

!k⊥i = !0⊥

∑n
i xi = 1

General remarks about orbital angular mo-
mentum

Ψn(xi,!k⊥i, λi)

∑n
i=1(xi

!R⊥+!b⊥i) = !R⊥

xi
!R⊥+!b⊥i

∑n
i
!b⊥i = !0⊥

∑n
i xi = 1

P+, !P+

xiP
+, xi

!P⊥+ !k⊥i

ẑ

!L = !R× !P

!Li = (xi
!R⊥+!b⊥i)× !P

!"i = !b⊥i × !k⊥i

!"i = !Li − xi
!R⊥ × !P = !b⊥i × !P

Light-Front Wavefunctions

P+ = P0 + Pz

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

ū

E′ = E − ν, &q

P+ = P0 + Pz

Fixed τ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

ψ(σ, b⊥)

β = dαs(Q2)
d lnQ2 < 0

u

Invariant under boosts!  Independent of Pμ 

121

A(σ,∆⊥) = 1
2π

∫
dζe

i
2σζM(ζ,∆⊥)

P+, $P⊥

xiP
+, xi

$P⊥+ $k⊥i

ζ = Q2

2p·q

ẑ

$L = $R× $P

$Li = (xi
$R⊥+$b⊥i)× $P

F.T. < 0|ψ(y1)ψ(y2)ψ(y3)|p > |τi=0

φπ(x, Q) = P+
π

∫ dz−
4π eiπP+

π z−/2

< 0|ψ(0) γ+γ5

2
√

2nC
ψ(z)|π >(Q) |z+=&z⊥=0

p4
T

d3σ
d3p/E

p8
T

d3σ
d3p/E

d3σ
d3p/E

= AF (xT )
pn
T

121



 Stan Brodsky, SLAC/IPPPIPPP  September 5, 2008
 The Renormalization Scale  Problem

122

New Perspectives for QCD from AdS/CFT

• LFWFs:  Fundamental description of hadrons at 
amplitude level

• Holographic Model from AdS/CFT : Confinement at large 
distances and conformal behavior at short distances

• Model for LFWFs, meson and baryon spectra: many 
applications!

• New basis for diagonalizing Light-Front Hamiltonian

• Physics similar to MIT bag model, but covariant. No 
problem with support 0 < x  < 1.

• Quark Interchange dominant force at short distances

122
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3

from momentum conservation at the vertex we find

F (Q2) = R3

∫ ∞

0

dz

z3
e3A(z)ΦP ′(z)J(Q, z)ΦP (z). (9)

The form factor in AdS is the overlap of the normalizable
modes dual to the incoming and outgoing hadron ΦP and
ΦP ′ and the non-normalizable mode J(Q, z), dual to the
external source [15]

We integrate (4) over angles to obtain

F (q2) = 2π

∫ 1

0
dx

(1− x)
x

∫
ζdζJ0

(
ζq

√
1− x

x

)
ρ̃(x, ζ),

(10)
where we have introduced the variable

ζ =
√

x

1− x

∣∣∣
n−1∑

j=1

xjb⊥j

∣∣∣, (11)

representing the x-weighted transverse impact coordinate
of the spectator system.

We can now make contact with the AdS results. Com-
paring (10) with the expression for the form factor in
AdS space (9) for arbitrary values of Q we find

J(Q, ζ) =
∫ 1

0
dxJ0

(
ζQ

√
1− x

x

)
= ζQK1(ζQ), (12)

which is also the solution for the electromagnetic poten-
tial in AdS (8). Thus we can identify the spectator den-
sity function appearing in the light-front formalism with
the corresponding AdS density

ρ̃(x, ζ) =
R3

2π

x

1− x
e3A(ζ) |Φ(ζ)|2

ζ4
. (13)

Eq (13) expresses the duality between extended AdS
modes and point-like partonic distributions. It gives a
precise relation between the string modes in AdS5 and
the QCD transverse density in four dimensional space-
time. The variable ζ, 0 ≤ ζ ≤ Λ−1

QCD, represents the
invariant separation between quarks, and it is also the
holographic variable z, ζ = z.

For two partons ρ̃(x, ζ) = |ψn=2(x, ζ)|2/(1−x)2, and a
closed form solution for the two-constituent bound state
light-front wave function is found

|ψ(x, ζ)|2 =
R3

2π
x(1− x) e3A(ζ) |Φ(ζ)|2

ζ4
. (14)

In the case of two partons ζ2 = x
1−x%η2

⊥ = x(1− x)b2
⊥.

For spin-carrying constituents the relevant dimension
is that of twist (dimension minus spin) τ = ∆−σ, where
σ is the sum over the constituent’s spin σ =

∑n
i=1 σi.

Twist is equal to the number of partons τ = n. Upon
the substitution ∆ → n + L, φ(z) = z−3/2Φ(z), in

the five-dimensional AdS wave equations describing glue-
balls, mesons or vector mesons [5] we find an effec-
tive Schrödinger equation written in terms of the four-
dimensional impact variable ζ

[
− d2

d2ζ
+ V (ζ)

]
= M2φ(ζ), (15)

with the effective conformal potential [16]

V (ζ) = −
1− 4L2

4ζ2
. (16)

The new wave equation has a stable range of solutions ac-
cording to the Breitenlohner-Freedman bound [17]. The
solution to (15) is

φ(z) = z−
3
2 Φ(z) = Cz

1
2 JL(zM). (17)

The eigenvalues are determined by the boundary condi-
tions at φ(z = 1/ΛQCD) = 0, and are given in terms of
the roots of the Bessel functions: ML,k = βL,kΛQCD.
The normalized LFWF ψ̃L,k follow from (14) [18]

ψ̃L,k(x,%b⊥) = BL,k

√
x(1− x)

JL

(√
x(1− x)|%b⊥|βL,kΛQCD

)
θ
(
%b 2
⊥ ≤

Λ−2
QCD

x(1− x)

)
, (18)

where BL,k = ΛQCD

[
(−1)LπJ1+L(βL,k)J1−L(βL,k)

]− 1
2 .

The first eigenmodes are depicted in Figure 1, and the
masses of the light mesons in Figure 2. The predictions
for the lightest hadrons are improved relative to the re-
sults of [5] with the boundary conditions determined in
terms of twist instead of conformal dimensions. The de-
scription of baryons is carried out along similar lines and
will be presented somewhere else.

ζ(GeV–1) ζ(GeV–1)

ψ(x,ζ)

2-2006
8721A10

x x
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FIG. 1: Two-parton bound state holographic LFWF eψ(x, ζ)

for ΛQCD = 0.32 GeV: (a) ground state # = 0, k = 1, (b) first

orbital excited state # = 1, k = 1.

We have shown how the string amplitude Φ(z) defined
on the fifth dimension in AdS5 space can be precisely

Effective 
conformal 
potential:

Holography: 
Map AdS/CFT  to  3+1 LF Theory

[
− d2

d2ζ
+ V (ζ)

]
=M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
=M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

Jz = Sz
p =

∑n
i=1 Sz

i +
∑n−1

i=1 #z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation

G. de Teramond, sjb 

u↓(x)
u↑(x)

∼ (1− x)2

Q2(GeV2)

[
− d2

d2ζ
+ V (ζ)

]
φ(ζ) =M2φ(ζ)

[
− d2

dζ2 + V (ζ)
]
φ(ζ) =M2φ(ζ)

ζ2 = x(1− x)b2
⊥.

#L = #P × #R

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

x (1− x) !b⊥

ψ(x,!b⊥) = ψ(ζ)

φ(z)

ζ =
√

x(1− x)!b2⊥

z

z∆

z0 = 1
ΛQCD

Frame Independent
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Induced by 
conformal metric
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Figure 8: Asymptotic effective partonic density 2πρ(x, b⊥, Q → ∞) in terms of the
longitudinal momentum fraction x, the transverse relative impact variable b⊥ and
momentum transfer Q for the harmonic oscillator model. The figure corresponds to
κ = 0.67 GeV. The distribution is peaked at b⊥ = 0.
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Figure 9: LFWF ψ(x, b) for the truncated space model (left) and for the HO model
(right) in terms of the longitudinal momentum fraction x, the transverse relative
impact variable b⊥. The figures correspond to ΛQCD = 0.32 GeV and κ = 0.76 GeV.
The WF are normalized to Mρ.
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AdS/CFT Predictions for Meson LFWF 
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Truncated Space Harmonic Osci#ator

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0

ψ(x, b⊥)

x

b⊥(GeV)−1

Identify z ↔ ζ =
√

x(1− x) b⊥

Thus α = L is integer

α ≥ 0

α > 0
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F2(Q2)

Q2(GeV2)

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

M ∼ f(θCM)
QNtot−4

∑
initial λ

H
i =

∑
final λ

H
j
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Ü Graphics Ü
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Ü Graphics Ü

ProtonFFGaussian.nb 12

Fp
2(Q2)

Fp
1(Q2)

Q2(GeV2)

Harmonic Oscillator Confinement

κ = 0.454 GeV

JADE determination of αs(MZ)

M =
∫

TH ×Πφi

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2

⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F1(Q2)I→F =
∫ dz

z3Φ
↑
F (z)J(Q, z)Φ↑I(z)

F2(Q2)I→F =
∫ dz

z2Φ
↑
F (z)J(Q, z)Φ↓I(z)

Harmonic Osci$ator 
Confinement

Truncated Space Confinement

zD(z)c→pX = Fp→cX(x = 1/z)

zi ∝ m⊥i =
√

m2
i + k2

⊥

X = cūd̄ū

At large Q2 the important integration region
is z ∼ 1/Q.

F1(Q2)I→F =
∫ dz

z3Φ
↑
F (z)J(Q, z)Φ↑I(z)

F2(Q2)I→F =
∫ dz

z2Φ
↑
F (z)J(Q, z)Φ↓I(z)

Λ = 0.2 GeV

G. de Teramond, sjb 
Preliminary

Current modified 
by metric 

lnFπ(q2)

κ = 0.364 GeV

κ = 0.424 GeV

τ = t + z/c

φ(x, Q0) ≡
∫ Q0 d2k⊥ψ(x,&k⊥) ∝ fM

√
x(1− x)

φM(x) ≡
∫

d2k⊥ψM(x,&k⊥) ∝ fM

√
x(1− x)
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Paul Hoyer Jyväskylä 27.3 2007

25

! N " µ+ µ- X at high xF

xF " 1

In the limit where (1-xF)Q2 is fixed as Q2 " # :

µ+

µ-

!

N

q Soft scattering of stopped

quark in target affects hard 

process

Entire pion wf

contributes to

hard process

Virtual photon is 

longitudinally 

polarized

Berger and Brodsky, PRL 42 (1979) 940

x " 0

x " 1
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Berger, Lepage, sjb
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#
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Pion appears directly in subprocess at large xF
All of the pion’s momentum is transferred to the lepton pair

Lepton Pair is produced longitudinally polarized
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Chicago-Princeton
Collaboration

xπ = xq̄

The p/π+ and p̄/π− ratios as a function of
pT increase dramatically to values ∼ 1 as a
function of centrality in Au + Au collisions
at RHIC which was totally unexpected and
is still not fully understood.

E dσ
d3p

(pp→ γX)

E dσ
d3p

(pp→ π0X)

√
snE dσ

d3p
(pp→ γX) at fixed xT

Dramatic change in 
angular distribution at 

large xF

Direct Subprocess Prediction

 Phys.Rev.Lett.55:2649,1985

Example of a higher-twist 
direct subprocess

128



 

p

u
u

neff = 4

nactive =  4
neff = 2nactive -  4

xT

ε = 1− xT

xT = 2pT√
s

pp→ HX at high pT

Working assumption: leading-twist subpro-
cesses plus jet fragmentation

qq → qq, gq → gq, gg → qq̄, gg → gg

u

p

H

Color Opaque

 Hadron created from 
jet fragmentation

Oberwölz

α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pN → pX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T
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p

u u

d

Baryon can be made directly within hard subprocess

nactive =  6

g g

Oberwölz

φp(x1, x2, x3) ∝ Λ2
QCD

α(Q2) " 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pp→ pX) = F (xT ,θCM)
p8
T

E dσ
d3p

(pN → πX) = F (xT ,θCM)

pneff
T

E dσ
d3p

(pN → pX) = F (xT ,θCM)
p2N
T
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Collision can produce 3 
collinear quarks 

Coalescence 
within hard 
subprocess

Bjorken
Blankenbecler, Gunion, sjb

Berger, sjb 
Hoyer, et al: Semi-Exclusive

neff = 8

neff = 2nactive -  4

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

uu→ pd̄

qq → Bq̄

gu→ π+d

β ∝ Q2

m2

dσ
dxF

(pA→ J/ψX)

dσ
dxF

(πA→ J/ψX)

d
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94 D.Sivers et a!., Large transverse momentum processes
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Fig. 5.6.2. Plots ofNeff and Feff from the ISR—BS and FNAL—CP data for charged particles. The FNAI. energy pairs are

(19.4-23.8 GeV) marked by X’s and (23.8--27.4 GeV) marked by dots.

up by a jet of hadrons. Another important application of this analysis is the process pp -+ pX,

since it separates the Drell—Yan N 2 process from hadron-produced muons.

These ‘~effcurves also display an important feature of hard scattering mod~lswhich provides

neff = 2N = 8

F (xT , θCM = π/2) = C(1− xT )9

qq → qq: neff = 4

gq → πq: neff = 6
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α(Q2) ! 4π
β0

1
logQ2/Λ2

QCD

E dσ
d3p

(pp→ pX) = F (xT ,θCM)
p12
T

E dσ
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4
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Figure 7: (left) p/! and p̄/! ratio as a function of pT and centrality from Au+Au collisions at
√
sNN = 200

GeV [45]. Open (filled) points are for !± (!0), respectively. (right) Invariant yield of p and p̄, from the

same data, as a function of centrality scaled by the number of binary-collisions (Ncoll)

there is direct and unbiased access to one of the interacting constituents, the photon, which can be

measured to high precision, and production is predominantly via a single subprocess [50]:

g+q→ "+q , (4.3)

with q+ q̄→ " + g contributing on the order of 10%. However, the measurement is difficult ex-

perimentally due to the huge background of photons from !0 → "+ " and # → "+ " decays. This

background can be calculated using Eq. 3.4 and can be further reduced by ‘tagging’—eliminating

direct-photon candidates which reconstruct to the invariant mass of a !0 when combined with

other photons in the detector, and/or by an isolation cut—e.g. requirement of less than 10% ad-

ditional energy within a cone of radius $r =
√

($#)2+($%)2 = 0.5 around the candidate photon

direction—since the direct photons emerge from the constituent reaction with no associated frag-

ments.

The exquisite segmentation of the PHENIX Electromagnetic calorimeter ($#×$% ∼ 0.01×
0.01) required in order to operate in the high multiplicity environment of RHI collisions also pro-

vides excellent " and !0 separation out to pT ∼ 25 GeV/c. This will be useful in making spin-

asymmetry measurements of direct photons in polarized p-p collisions for determination of the

gluon spin structure function [51], but, in the meanwhile, has provided a new direct photon mea-

surement in p-p collisions which clarifies a longstanding puzzle between theory and experiment in

this difficult measurement. In Fig. 8-(left) the new measurement of the direct photon cross sec-

tion in p-p collisions at
√
s = 200 GeV from PHENIX [52] is shown compared to a NLO pQCD

calculation, with excellent agreement for pT > 3 GeV/c. This data has resolved a longstanding

discrepancy in extracting the gluon structure function from previous direct photon data [53, 54]

(see Fig. 8-(right)) by its agreement with ISR data and the theory at low xT .

4.3 xT -scaling in direct photon, jet and identified proton production in p-p collisions

The new direct photon measurement also shows nice xT scaling with previous measurements

(Fig. 9-(left)) with a value n(xT ,
√
s) = 5.0. This is closer to the asymptotic value of n(xT ,

√
s) = 4

11

Protons less absorbed  
in nuclear co#isions than pions!
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 The Renormalization Scale  Problem

Evidence for  Direct, Higher-Twist 
Subprocesses

• Anomalous power behavior at fixed xT

• Protons more likely to come from direct 
subprocess than pions

• Protons less absorbed than pions in central 
nuclear collisions because of color transparency

• Predicts increasing proton to pion ratio in central 
collisions

• Exclusive-inclusive connection at xT = 1
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•  Guess arbitrary renormalization scale and take arbitrary 
range.    Wrong for QED and Precision Electroweak.  

• Prediction depends on choice of renormalization scheme

•  Variation of result with respect to renormalization scale 
only sensitive to nonconformal terms; no information on 
genuine (conformal) higher order terms

• FAC and PMS give unphysical results.

• Renormalization scale not arbitrary:  Analytic constraint 
from flavor thresholds

Conventional renormalization scale-setting method :
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Features of BLM Scale Setting

• All terms associated with nonzero beta function summed into running coupling

• BLM Scale Q* sets the number of active flavors

• Only nf dependence required to determine renormalization scale at NLO

• Result is scheme independent: Q* has exactly the correct dependence to 
compensate for change of scheme

• Correct Abelian limit

• Resulting series identical to conformal series! 

• Renormalon n! growth of PQCD coefficients from beta function eliminated!

• In general, BLM scale depends on all invariants

  On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Phys.Rev.D28:228,1983 Lepage, Mackenzie, sjb
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Use BLM!

• Satisfies Transitivity,  all aspects of Renormalization Group; scheme 
independent

• Analytic at Flavor Thresholds

• Preserves Underlying Conformal Template

• Physical Interpretation of Scales; Multiple Scales

• Correct Abelian Limit (NC =0) 

• Eliminates unnecessary source of imprecision of PQCD predictions

• Commensurate Scale Relations:  Fundamental Tests of QCD free of 
renormalization scale and scheme ambiguities

• BLM used in many applications, QED, LGTH, BFKL, ...
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