The Renormalization Scale Problem

Stan Brodsky, SLAC/IPPP

PHYSICAL REVIEW D 74, 054016 (2006)

Form factors of the gauge-invariant three-gluon vertex

Michael Binger* and Stanley J. Brodsky[†]

1

The Renormalization Scale Problem

$\rho(Q^2) = C_0 + C_1 \alpha_s(\mu_R) + C_2 \alpha_s^2(\mu_R) + \cdots$

$$\mu_R^2 = CQ^2$$

Is there a way to set the renormalization scale μ_R ?

What happens if there are multiple physical scales ?

The Renormalization Scale Problem

VOLUME 28, NUMBER 1

On the elimination of scale ambiguities in perturbative quantum chromodynamics

Stanley J. Brodsky

Institute for Advanced Study, Princeton, New Jersey 08540 and Stanford Linear Accelerator Center, Stanford University, Stanford, California 94305*

G. Peter Lepage

Institute for Advanced Study, Princeton, New Jersey 08540 and Laboratory of Nuclear Studies, Cornell University, Ithaca, New York 14853*

Paul B. Mackenzie

Fermilab, Batavia, Illinois 60510 (Received 23 November 1982)

We present a new method for resolving the scheme-scale ambiguity that has plagued perturbative analyses in quantum chromodynamics (QCD) and other gauge theories. For Abelian theories the method reduces to the standard criterion that only vacuum-polarization insertions contribute to the effective coupling constant. Given a scheme, our procedure automatically determines the couplingconstant scale appropriate to a particular process. This leads to a new criterion for the convergence of perturbative expansions in QCD. We examine a number of well known reactions in QCD, and find that perturbation theory converges well for all processes other than the gluonic width of the Υ . Our analysis calls into question recent determinations of the QCD coupling constant based upon Υ decay.

The Renormalization Scale Problem 3

Electron-Electron Scattering in QED

$$\mathcal{M}_{ee \to ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u)$$

$$\alpha(t) = \frac{\alpha(0)}{1 - \Pi(t)}$$

Gell Mann-Low Effective Charge

The Renormalization Scale Problem

4

IPPP September 5, 2008

QED One-Loop Vacuum Polarízation

 $t = -Q^2 < 0$

(t spacelike)

$$\Pi(Q^2) = \frac{\alpha(0)}{3\pi} \left[\frac{5}{3} - \frac{4m^2}{Q^2} - \left(1 - \frac{2m^2}{Q^2}\right)\sqrt{1 + \frac{4m^2}{Q^2}}\log\frac{1 + \sqrt{1 + \frac{4m^2}{Q^2}}}{\left|1 - \sqrt{1 + \frac{4m^2}{Q^2}}\right|}\right]$$

Analytically continue to timelike t: Complex

$$\Pi(Q^2) = rac{lpha(0)}{15\pi} rac{Q^2}{m^2}$$
 $Q^2 << 4M^2$ Serber-Uehling

$$\Pi(Q^2) = \frac{\alpha(0)}{3\pi} \frac{\log Q^2}{m^2} \qquad Q^2 >> 4M^2 \qquad \text{Landau Pole}$$

$$\beta = \frac{d(\frac{\alpha}{4\pi})}{d\log Q^2} = \frac{4}{3}(\frac{\alpha}{4\pi})^2 n_\ell > 0$$

The Renormalization Scale Problem

IPPP September 5, 2008

$$\beta_{\rm MS}(\alpha) = \sum_{i=1}^{4} \beta_i \left(\frac{\alpha}{4\pi}\right)^{i+1}$$

= $\frac{4}{3}N\left(\frac{\alpha}{4\pi}\right)^2 + 4N\left(\frac{\alpha}{4\pi}\right)^3 - (2N + \frac{44}{9}N^2)\left(\frac{\alpha}{4\pi}\right)^4$
- $\left\{46N + \left[-\frac{760}{27} + \frac{832}{9}\zeta(3)\right]N^2 + \frac{1232}{243}N^3\right\}\left(\frac{\alpha}{4\pi}\right)^5$

The analytic four-loop corrections to the QED β -function in the MS scheme and to the QED ψ -function. Total reevaluation

S.G. Gorishny¹, A.L. Kataev, S.A. Larin and L.R. Surguladze² Institute of Nuclear Research, Academy of Sciences of the USSR, SU-117 312 Moscow, USSR

Phys.Lett.B256:81-86,1991

The Renormalization Scale Problem

IPPP September 5, 2008

6

QED Effective Charge

$$\alpha(t) = \frac{\alpha(0)}{1 - \Pi(t)}$$

All-orders lepton loop corrections to dressed photon propagator

Initial scale t_o is arbitrary -- Variation gives RGE Equations Physical renormalization scale t not arbitrary

The Renormalization Scale Problem

IPPP September 5, 2008

7

Electron-Electron Scattering in QED

$$\mathcal{M}_{ee \to ee}(++;++) = \frac{8\pi s}{t} \alpha(t) + \frac{8\pi s}{u} \alpha(u)$$

t

- Two separate physical scales: t, u = photon virtuality
- Gauge Invariant. Dressed photon propagator
- Sums all vacuum polarization, non-zero beta terms into running coupling.
- If one chooses a different scale, one can sum an infinite number of graphs
 -- but always recover same result!
- Number of active leptons correctly set
- Analytic: reproduces correct behavior at lepton mass thresholds
- No renormalization scale ambiguity!

The Renormalization Scale Problem

IPPP September 5, 2008

u

Scale of $\alpha(\mu_r)$ unique !

The QED Effective Charge

- Complex
- Analytic through mass thresholds
- Distinguishes between timelike and spacelike momenta

Analyticity essential!

The Renormalization Scale Problem

$$M(e^+e^- \to e^+e^-) \propto \alpha(s)$$

Has correct analytic / unitarity thresholds for ${\rm Im}M$ at $s=4m_{\ell^+\ell^-}^2$

No other scale correct. If one chooses another scale, e.g.,

$$\mu_R^2 = 0.9s,$$

then must resum infinite number of vacuum polarization diagrams.

Recover
$$\alpha(s)$$
.

The Renormalization Scale Problem

IPPP September 5, 2008

Example in QED: Muonic Atoms

$$V(q^2) = -\frac{Z\alpha_{QED}(q^2)}{q^2}$$
$$\mu_R^2 \equiv q^2$$
$$\alpha_{QED}(q^2) = \frac{\alpha_{QED}(0)}{1 - \Pi(q^2)}$$

Scale is unique: Tested to ppm

Gyulassy: Higher Order VP verified to 0.1% precision in μ Pb

The Renormalization Scale Problem

IPPP September 5, 2008

II

The Renormalization Scale Problem

- No renormalization scale ambiguity in QED
- Gell Mann-Low QED Coupling can be defined from physical observable
- Sums all Vacuum Polarization Contributions
- Recover conformal series
- Renormalization Scale in QED scheme: Identical to Photon Virtuality
- Analytic: Reproduces lepton-pair thresholds
- Examples: muonic atoms, g-2, Lamb Shift Gyulassy: Higher Order VP verified to 0.1% precision in μ Pb
- Time-like and Space-like QED Coupling related by analyticity
- Uses Dressed Skeleton Expansion

The Renormalization Scale Problem

IPPP September 5, 2008

Conventional wisdom in QCD concerning scale setting

- Renormalization scale "unphysical": No optimal physical scale
- Can ignore possibility of multiple physical scales
- Accuracy of PQCD prediction can be judged by taking arbitrary guess $\mu_R = Q$ with an arbitrary range $Q/2 < \mu_R < 2Q$
- Factorization scale should be taken equal to renormalization scale $\mu_F = \mu_R$

These assumptions are untrue in QED and thus they cannot be true for QCD

Scale and Scheme Ambiguity

In any perturbative series

$$R(Q) = \sum_{n=0}^{N} R_n(Q, \mu) \alpha_s^n(\mu)$$

You can change the scale of the last term :

$$\alpha_{s}(\widetilde{\mu}) = \alpha_{s}(\mu) - \frac{(\alpha_{s}(\mu))^{2}}{2\pi}\beta_{0}\log(\widetilde{\mu}/\mu)$$

Or the scheme of the last term :

$$\widetilde{\alpha}_{s}(\mu) = \alpha_{s}(\mu) + C(\alpha_{s}(\mu))^{2}$$

The result is formally the same to the order calculated

The prediction is ambiguous

Convergence of the Series ?

It is commonly believed that the series diverges!

$$R(Q) = \sum_{n=0}^{N} R_n(Q, \mu) \alpha_s^n(\mu)$$

$$R_n \propto n!$$

$$\int d^4k\alpha_s(k^2)f(k^\mu,p_i^\mu)\to\infty$$

From the $k^2 \approx 0$ region

Measurement of the strong coupling α_{S} from the four-jet rate in e^+e^- annihilation using JADE data

J. Schieck^{1,a}, S. Bethke¹, O. Biebel², S. Kluth¹, P.A.M. Fernández³, C. Pahl¹, The JADE Collaboration^b

Eur. Phys. J. C 48, 3-13 (2006)

The Renormalization Scale Problem

IPPP September 5, 2008

Measurement of the strong coupling α_{S} from the four-jet rate in $e^{+}e^{-}$ annihilation using JADE data

J. Schieck^{1,a}, S. Bethke¹, O. Biebel², S. Kluth¹, P.A.M. Fernández³, C. Pahl¹, The JADE Collaboration^b

Eur. Phys. J. C 48, 3-13 (2006)

The theoretical uncertainty, associated with missing higher order terms in the theoretical prediction, is assessed by varying the renormalization scale factor x_{μ} . The predictions of a complete QCD calculation would be independent of x_{μ} , but a finite-order calculation such as that used here retains some dependence on x_{μ} . The renormalization scale factor x_{μ} is set to 0.5 and two. The larger deviation from the default value of $\alpha_{\rm S}$ is taken as systematic uncertainty.

> $\alpha_{\rm S} (M_{\rm Z^0})$ and the $\chi^2/{\rm d.o.f.}$ of the fit to the four-jet rate as a function of the renormalization scale x_{μ} for $\sqrt{s} = 14$ GeV to 43.8 GeV. The arrows indicate the variation of the renormalization scale factor used for the determination of the systematic uncertainties

PMS & FAC inapplicable

The Renormalization Scale Problem

IPPP September 5, 2008

17

Heavy Quark Hadroproduction

3-gluon coupling depends on 3 physical scales

The Renormalization Scale Problem

IPPP September 5, 2008

Chao-Hsi Chang

Uncertainties in P-wave Bc Production due to factorization energy scale

The summed P_t distribution and y distribution of all the P-wave states for different factorization scale μ^2_F and renormalization scale μ^2 at LHC

The upper edge of the band corresponds to $\mu_F^2 = 4M_{Pt}^2$; $\mu^2 = M_{Pt}^2/4$; and the lower edge corresponds to that of $\mu_F^2 = M_{Pt}^2/4$; $\mu^2 = 4M_{Pt}^2$. The solid line, the dotted line and the dashed line corresponds to that of $\mu_F^2 = \mu^2 = M_{Pt}^2$; $\mu_F^2 = \mu^2 = 4M_{Pt}^2$; $\mu_F^2 = \mu^2 = M_{Pt}^2/4$.

Sept. 22, 2006

Sino-German workshop

19

Gluon-Fusion : Higgs Production

The Renormalization Scale Problem

IPPP September 5, 2008

QED Analog: Two-Photon Higgs Production

The Renormalization Scale Problem

IPPP September 5, 2008

21

The Renormalization Scale Problem

IPPP September 5, 2008

Next-to-Leading order Higgs + 2 jet production via gluon fusion.

Campbell, Ellis, Zanderighi

 $p_t(\text{jet}) > 40 \text{ GeV},$

 $|\eta_{\rm jet}| < 4.5$

The Renormalization Scale Problem

IPPP September 5, 2008

500

IPPP September 5, 2008

25

Transverse Momentum of Higgs in QCD

The Renormalization Scale Problem 26

IPPP September 5, 2008

Lessons from Híggs calculation

- Renormalization scale not set by Higgs Mass
- No reason to take $Q = M_H$
- Physical renormalization scale related to gluon virtuality -- minimum jet p_T
- Similar to QED analog; analytic limit $N_C \rightarrow 0$
- PMS inapplicable
- No sign that sensitivity to renormalization scale is reduced at NLO

QCD Lagrangian

 $\lim N_C \to 0 \text{ at fixed } \alpha = C_F \alpha_s, n_\ell = n_F / C_F \qquad [C_F = \frac{N_C^2 - 1}{2N_C}]$ Analytic limit of QCD: Abelian Gauge Theory

The Renormalization Scale Problem

IPPP September 5, 2008

P. Huet, sjb

The Renormalization Scale Problem

29

IPPP September 5, 2008

The Renormalization Scale Problem

IPPP September 5, 2008

$$\lim N_C \to 0 \text{ at fixed } \alpha = C_F \alpha_s, n_\ell = n_F / C_F$$

QCD → Abelian Gauge Theory

Analytic Feature of SU(Nc) Gauge Theory

Scale-Setting procedure for QCD must be applicable to QED

The Renormalization Scale Problem

IPPP September 5, 2008

Lessons from QED : Summary

- Effective couplings are complex analytic functions with the correct threshold structure expected from unitarity
- Multiple "renormalization" scales appear
- The scales are unambiguous since they are physical kinematic invariants
- Optimal improvement of perturbation theory

Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Lepage, Mackenzie, sjb

Phys.Rev.D28:228,1983

- All terms associated with nonzero beta function summed into running coupling
- BLM Scale Q* sets the number of active flavors
- Only n_f dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q* has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit
- Resulting series identical to conformal series!
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

The Renormalization Scale Problem

IPPP September 5, 2008

$$\begin{split} & \textit{BLM Scale Setting} \\ & \rho \!=\! C_0 \alpha_{\overline{\text{MS}}}(Q) \left[1 \!+\! \frac{\alpha_{\overline{\text{MS}}}(Q)}{\pi} (-\frac{3}{2}\beta_0 A_{\text{VP}} \!+\! \frac{33}{2}A_{\text{VP}} \!+\! B) \\ & + \cdots \right] \\ & \text{by} \\ & \rho \!=\! C_0 \alpha_{\overline{\text{MS}}}(Q^*) \left[1 \!+\! \frac{\alpha_{\overline{\text{MS}}}(Q^*)}{\pi} C_1^* \!+\! \cdots \right], \end{split}$$

where

Conformal coefficient - independent of β

 $Q^* = Q \exp(3A_{\rm VP}) ,$

 $C_1^* = \frac{33}{2} A_{\rm VP} + B$.

The term $33A_{VP}/2$ in C_1^* serves to remove that part of the constant *B* which renormalizes the leading-order coupling. The ratio of these gluonic corrections to the light-quark corrections is fixed by $\beta_0 = 11 - \frac{2}{3}n_f$. Use skeleton expansion: Gardi, Grunberg, Rathsman, sjb

The Renormalization Scale Problem

IPPP September 5, 2008

The Renormalization Scale Problem

Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics. Lepage, Mackenzie, sjb Phys.Rev.D28:228,1983

- All terms associated with nonzero beta function summed into running coupling
- Identical procedure in QED
- Resulting series identical to conformal series
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants
Deep-inelastic scattering. The moments of the nonsinglet structure function $F_2(x,Q^2)$ obey the evolution equation¹²

$$\beta_{0} = 11 - \frac{2}{3}n_{f}$$

$$= -\frac{\gamma_{n}^{(0)}}{8\pi}\alpha_{\overline{\mathrm{MS}}}(Q) \left[1 + \frac{\alpha_{\overline{\mathrm{MS}}}}{4\pi} \frac{2\beta_{0}\beta_{n} + \gamma_{n}^{(1)}}{\gamma_{n}^{(0)}} + \cdots \right]$$

$$\rightarrow -\frac{\gamma_{n}^{(0)}}{8\pi}\alpha_{\overline{\mathrm{MS}}}(Q_{n}^{*}) \left[1 - \frac{\alpha_{\overline{\mathrm{MS}}}(Q_{n}^{*})}{\pi}C_{n} + \cdots\right],$$

where, for example,

$$Q_2^* = 0.48Q, \quad C_2 = 0.27,$$

 $Q_{10}^* = 0.21Q, \quad C_{10} = 1.1.$

For *n* very large, the effective scale here becomes $Q_n^* \sim Q/\sqrt{n}$.

BLM scales for DIS moments

The Renormalization Scale Problem

$$V(Q^{2}) = -\frac{C_{F}4\pi\alpha_{\overline{\mathrm{MS}}}(Q)}{Q^{2}} \left[1 + \frac{\alpha_{\overline{\mathrm{MS}}}}{\pi} (\frac{5}{12}\beta_{0} - 2) + \cdots \right]$$
$$\rightarrow -\frac{C_{F}4\pi\alpha_{\overline{\mathrm{MS}}}(Q^{*})}{Q^{2}} \left[1 - \frac{\alpha_{\overline{\mathrm{MS}}}(Q^{*})}{\pi} 2 + \cdots \right],$$

where $Q^* = e^{-5/6} Q \cong 0.43Q$. This result shows that the effective scale of the $\overline{\text{MS}}$ scheme should generally be about half of the true momentum transfer occurring in the interaction. In parallel to QED, the effective potential $V(Q^2)$ gives a particularly intuitive scheme for defining the QCD coupling constant

$$V(Q^2) \equiv -4\pi C_F \frac{\alpha_V(Q^2)}{Q^2}$$

Similar to pinch scheme

The Renormalization Scale Problem

Three-Jet rate in electron-positron annihilation

The scale μ/\sqrt{s} according to the BLM (dashed-dotted), PMS (dashed), FAC (full), and \sqrt{y} (dotted) procedures for the three-jet rate in e^+e^- annihilation, as computed by Kramer and Lampe [10]. Notice the strikingly different behavior of the BLM scale from the PMS and FAC scales at low y. In particular, the latter two methods predict increasing values of μ as the jet invariant mass $\mathcal{M} < \sqrt{(ys)}$ decreases.

Other Jet Observables: Rathsman

The Renormalization Scale Problem

39

Lampe

Example of Multiple BLM Scales

Angular distributions of massive quarks and leptons close to threshold.

The Renormalization Scale Problem

IPPP September 5, 2008

40

Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

Transitivity Property of Renormalization Group

$A \rightarrow C \qquad C \rightarrow B$ identical to $A \rightarrow B$

Relation of observables independent of intermediate scheme C

The Renormalization Scale Problem

IPPP September 5, 2008

Relate Observables to Each Other

- Eliminate intermediate scheme
- No scale ambiguity
- Transitive!
- Commensurate Scale Relations
- Example: Generalized Crewther Relation

$$R_{e^+e^-}(Q^2) \equiv 3 \sum_{\text{flavors}} e_q^2 \left[1 + \frac{\alpha_R(Q)}{\pi} \right].$$
$$\int_0^1 dx \left[g_1^{ep}(x, Q^2) - g_1^{en}(x, Q^2) \right] \equiv \frac{1}{3} \left| \frac{g_A}{g_V} \right| \left[1 - \frac{\alpha_{g_1}(Q)}{\pi} \right].$$

The Renormalization Scale Problem

IPPP September 5, 2008

$$\begin{split} \frac{\alpha_R(Q)}{\pi} &= \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^2 \left[\left(\frac{41}{8} - \frac{11}{3}\zeta_3\right) C_A - \frac{1}{8}C_F + \left(-\frac{11}{12} + \frac{2}{3}\zeta_3\right) f \right] \\ &\quad + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{90445}{2592} - \frac{2737}{108}\zeta_3 - \frac{55}{18}\zeta_5 - \frac{121}{432}\pi^2\right) C_A^2 + \left(-\frac{127}{48} - \frac{143}{12}\zeta_3 + \frac{55}{3}\zeta_5\right) C_A C_F - \frac{23}{32}C_F^2 \right. \\ &\quad + \left[\left(-\frac{970}{81} + \frac{224}{27}\zeta_3 + \frac{5}{9}\zeta_5 + \frac{11}{108}\pi^2\right) C_A + \left(-\frac{29}{96} + \frac{19}{6}\zeta_3 - \frac{10}{3}\zeta_5\right) C_F \right] f \\ &\quad + \left(\frac{151}{162} - \frac{19}{27}\zeta_3 - \frac{1}{108}\pi^2\right) f^2 + \left(\frac{11}{144} - \frac{1}{6}\zeta_3\right) \frac{d^{abc}d^{abc}}{C_F d(R)} \frac{\left(\sum_f Q_f\right)^2}{\sum_f Q_f^2} \right\}. \end{split}$$

$$\begin{aligned} \frac{\alpha_{g_1}(Q)}{\pi} &= \frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi} + \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^2 \left[\frac{23}{12}C_A - \frac{7}{8}C_F - \frac{1}{3}f\right] \\ &+ \left(\frac{\alpha_{\overline{\mathrm{MS}}}(Q)}{\pi}\right)^3 \left\{ \left(\frac{5437}{648} - \frac{55}{18}\zeta_5\right)C_A^2 + \left(-\frac{1241}{432} + \frac{11}{9}\zeta_3\right)C_A C_F + \frac{1}{32}C_F^2 \right. \\ &+ \left[\left(-\frac{3535}{1296} - \frac{1}{2}\zeta_3 + \frac{5}{9}\zeta_5\right)C_A + \left(\frac{133}{864} + \frac{5}{18}\zeta_3\right)C_F \right]f + \frac{115}{648}f^2 \right\}. \end{aligned}$$

Eliminate MSbar, Find Amazing Simplification

The Renormalization Scale Problem

IPPP September 5, 2008

44

$$R_{e^+e^-}(Q^2) \equiv 3 \sum_{\text{flavors}} e_q^2 \left[1 + \frac{\alpha_R(Q)}{\pi} \right].$$

$$\int_{0}^{-} dx \left[g_{1}^{ep}(x,Q^{2}) - g_{1}^{en}(x,Q^{2}) \right] \equiv \frac{1}{3} \left| \frac{g_{A}}{g_{V}} \right| \left[1 - \frac{\alpha_{g_{1}}(Q)}{\pi} \right]$$

$$\frac{\alpha_{g_1}(Q)}{\pi} = \frac{\alpha_R(Q^*)}{\pi} - \left(\frac{\alpha_R(Q^{**})}{\pi}\right)^2 + \left(\frac{\alpha_R(Q^{***})}{\pi}\right)^3$$

Geometric Series in Conformal QCD

Generalized Crewther Relation

Lu, Kataev, Gabadadze, Sjb

The Renormalization Scale Problem

IPPP September 5, 2008

.1

45

Lu, Kataev, Gabadadze, Sjb

Generalized Crewther Relation

$$[1 + \frac{\alpha_R(s^*)}{\pi}][1 - \frac{\alpha_{g_1}(q^2)}{\pi}] = 1$$
$$\sqrt{s^*} \simeq 0.52Q$$

Conformal relation true to all orders in perturbation theory No radiative corrections to axial anomaly Nonconformal terms set relative scales (BLM) Analytic matching at quark thresholds No renormalization scale ambiguity!

The Renormalization Scale Problem

* why is the velation between

$$V_{R}$$
 and V_{g1} (Cabalipsee
Experied 2. (Cabalipsee
Kateen
H.2.L.
So Emple?. (H.2.L.
So Emple?. (H.2.L.
So Emple?. (H.2.L.
So Emple?. (I - a_{g1}) = 1
(I + a_{g1}) (I - a_{g1}) = 1
+ Follows from Crewther relation !
Total JS = k R' = k (H R)
Total JS = k R' = k (H R)
Total So Free Reve
John GLe
Dewlater's from Creather Relation
Progeticit to F Ketrey
Prophysic

The Renormalization Scale Problem

IPPP September 5, 2008

47

48

IPPP September 5, 2008

Leading Order Commensurate Scales

Translation between schemes at LO

The Renormalization Scale Problem

IPPP September 5, 2008

49

Analyticity and Mass Thresholds

 $M\!S$ does not have automatic decoupling of heavy particles

Must define a set of schemes in each desert region and match $\alpha_s^{(f)}(M_Q) = \alpha_s^{(f+1)}(M_Q)$

- The coupling has discontinuous derivative at the matching point
- At higher orders the coupling itself becomes discontinuous!
- Does not distinguish between spacelike and timelike momenta

"AN ANALYTIC EXTENSION OF THE MS-BAR RENORMALIZATION SCHEME" S. Brodsky, M. Gill, M. Melles, J. Rathsman. **Phys.Rev.D58:116006,1998**

The Renormalization Scale Problem

IPPP September 5, 2008

Define QCD Coupling from Observable Grunberg

$$R_{e^+e^- \to X}(s) \equiv 3\Sigma_q e_q^2 \left[1 + \frac{\alpha_R(s)}{\pi}\right]$$

$$\Gamma(\tau \to X e \nu)(m_{\tau}^2) \equiv \Gamma_0(\tau \to u \bar{d} e \nu) \times [1 + \frac{\alpha_{\tau}(m_{\tau}^2)}{\pi}]$$

Commensurate scale relations: Relate observable to observable at commensurate scales

Effective Charges: analytic at quark mass thresholds, finite at small momenta H.Lu, Rathsman, sjb

The Renormalization Scale Problem

The Renormalization Scale Problem

52

IPPP September 5, 2008

Stan Brodsky, SLAC/IPPP

Deur, Korsch, et al: Effective Charge from Bjorken Sum Rule

IPPP September 5, 2008

53

The Renormalization Scale Problem

IR Fixed Point for QCD?

- Dyson-Schwinger Analysis: QCD coupling (mom scheme) has IR Fixed point! Alkofer, Fischer, von Smekal et al.
- Lattice Gauge Theory
- Define coupling from observable, indications of IR fixed point for QCD effective charges
- Confined gluons and quarks: Decoupling of QCD vacuum polarization at small Q²
- Justifies application of AdS/CFT in strong-coupling conformal window

Conformal symmetry: Template for QCD

- Initial approximation to PQCD; then correct for non-zero beta function and quark masses: BLM
- Commensurate scale relations: relate observables at corresponding scales: Generalized Crewther Relation
- Arguments for Infrared fixed-point for α_s
- Effective Charges: analytic at quark mass thresholds, finite at small momenta

The Renormalization Scale Problem

IPPP September 5, 2008

The Pinch Technique

(Cornwall, Papavassiliou)

The Renormalization Scale Problem

IPPP September 5, 2008

57

Pínch Scheme (PT)

- J. M. Cornwall, Phys. Rev. D 26, 345 (1982)
- Equivalent to Background Field Method in Feynman guage
- Effective Lagrangian Scheme of Kennedy & Lynn
- Rearrange Feynman diagrams to satisfy Ward Identities
- Longitudinal momenta from triple-gluon coupling, etc. hit vertices which cancel ("pinch") propagators
- Two-point function: Uniqueness, analyticity, unitarity, optical theorem
- Defines analytic coupling with smooth threshold behavior

58

Use Physical Scheme to Characterize QCD Coupling

- Use Observable to define QCD coupling or Pinch Scheme
- Analytic: Smooth behavior as one crosses new quark threshold
- New perspective on grand unification

Binger, Sjb

Unification in Physical Schemes

"PHYSICAL RENORMALIZATION SCHEMES AND GRAND UNIFICATION" M.B. and Stanley J. Brodsky. **Phys.Rev.D69:095007,2004**

$$\alpha_{i}(Q) = \frac{\alpha_{i}(Q_{0})}{1 + \hat{\Pi}_{i}(Q) - \hat{\Pi}_{i}(Q_{0})}$$
 i=1,2,3
$$\hat{\Pi}_{i}(Q) = \frac{\alpha_{i}}{4\pi} \sum_{p} \beta_{i}^{(p)} \left(L_{s(p)}(Q^{2} / m_{p}^{2}) + \cdots \right)$$

"log-like" function:

$$L_{s(p)} \approx \log(e^{\eta_p} + Q^2 / m_p^2)$$

 $\eta_p = 8/3, 5/3, 40/21$ For spin s(p) = 0, $\frac{1}{2}$, and 1

> Elegant and natural formalism for all threshold effects

The Renormalization Scale Problem

IPPP September 5, 2008

The Renormalization Scale Problem

IPPP September 5, 2008

Asymptotic Unification. The solid lines are the analytic \overline{PT} effective couplings, while the dashed lines are the \overline{DR} couplings. For illustrative purposes, $\alpha_3(M_Z)$ has been chosen so that unification occurs at a finite scale for \overline{DR} and asymptotically for the \overline{PT} couplings. Here $M_{SUSY} = 200$ GeV is the mass of all light superpartners except the wino and gluino which have values $\frac{1}{2}m_{\tilde{g}} = M_{SUSY} = 2m_{\tilde{w}}$. For illustrative purposes, we use SU(5).

The Renormalization Scale Problem 62

IPPP September 5, 2008

Unification in Physical Schemes

- Smooth analytic threshold behavior with automatic decoupling
- More directly reflects the unification of the forces
- Higher "unification" scale than usual

63

Renormalization scale and scheme

- The parameters μ^2 or Λ_{qcd} depend on the details, how the renormalization is done, i.e. which of the final parts are kept...
- Schemes are (Brodsky,Lu PRD 51, 3652 (1995)):
 - Fastest apparent convergence (FAC) choose scale μ^2 such that NLO coefficient vanishes
 - Principle of minimum sensitivity (PMS) chooses μ^2 at a stationary point $\frac{d\rho^{obs}}{d\mu} = 0$
 - BLM scheme (Brodsky,Lepage,Mackenzie) choose scale such that all flavor dependence is put into coupling and coefficients are independent of number of quark flavours renormalising gluon propagators

- What is the relevant scale in QED and QCD ?
 - Apply higher order corrections and hope that changes of the scale do not change much the result .. (standard folklore ..)
 - BLM has clear prescription from QED:

- From analogy with QED apply no scale uncertainty also for QCD !
- but what about triple gluon vertex?

H. Jung, QCD & Collider Physics, Lecture 3 WS 05/06

15

The Renormalization Scale Problem

IPPP September 5, 2008

64

General Structure of the Three-Gluon Vertex

"THE FORM-FACTORS OF THE GAUGE-INVARIANT THREE-GLUON VERTEX"

3 index tensor $\hat{\Gamma}_{\mu_1\mu_2\mu_3}$ built out of $\mathcal{G}_{\mu\nu}$ and p_1, p_2, p_3 with $p_1 + p_2 + p_3 = 0$

14 basis tensors and form factors

The Renormalization Scale Problem

65

<u>37th Annual World Series of Poker</u> Event #39 - WSOP No Limit Hold'em Championship WSOP 3rd \$4,123,310 Aug 10, 2006

Biggest Poker Accomplishments:

2006 WSOP - Event 39, No-Limit Texas Hold'em Championship Event 3rd\$4,123,3102007 WSOP - Event 22, No-Limit Hold'em3rd\$295,2452006 WSOP - Event 27, No-Limit Hold'em6th\$101,5702007 WSOP - Event 8, No-Limit Hold'em w/Re-Buys14th\$21,278

Name: Mike Binger Location: Atherton, CA, United States Cashes: 7 Total Winnings: \$4,347,767 ProRank 1 Position: 629

The Renormalization Scale Problem

IPPP September 5, 2008

66

3 Gluon Vertex In Scattering Amplitudes

Pinch-Technique approach :

fully dress with gauge-invariant Green's functions

The Renormalization Scale Problem 67

Pínch Scheme -- Effective Charge

The Renormalization Scale Problem

IPPP September 5, 2008

68

Background Field Method

 Gauge field is split into quantum (Q) and background (B) parts

$$A_{\mu} = B_{\mu} + Q_{\mu}$$

External legs Loops

PT = BFM in quantum Feynman gauge (BFMFG)

Proven by Binosi and Papavassiliou to all orders

also = star-scheme for electroweak theory at one-loop (Kennedy and Lynn)

PT/BFMFG Green's functions have excellent properties :

- Non-abelian analogs of QED with simple Ward ID's
- · Lead to analytic effective charges
- Can be derived from unitarity (optical theorem)
- Correct asymptotic UV behavior

$$\Pi_{PT}(p^2) \propto \beta_0 \log(p^2) + \cdots$$

The Renormalization Scale Problem

IPPP September 5, 2008

The Gauge Invariant Three Gluon Vertex

The Renormalization Scale Problem

IPPP September 5, 2008

General Structure of the Three-Gluon Vertex

Simple (QED-like) Ward ID

$$p_{3}^{\mu_{3}}\hat{\Gamma}_{\mu_{1}\mu_{2}\mu_{3}}(p_{1},p_{2},p_{3}) = t_{\mu_{1}\mu_{2}}(p_{2}) \Big[1 + \hat{\Pi}(p_{2}) \Big] - t_{\mu_{1}\mu_{2}}(p_{1}) \Big[1 + \hat{\Pi}(p_{1}) \Big]$$

where $t_{\mu\nu}(p) = p^{2}g_{\mu\nu} - p_{\mu}p_{\nu}$

One form factor always = 0 13 nonzero form factors (not obvious)

The Renormalization Scale Problem

3 Gluon Vertex In Scattering Amplitudes

The Renormalization Scale Problem

IPPP September 5, 2008

72
Multi-scale Renormalization of the Three-Gluon Vertex

The Renormalization Scale Problem

Convenient Tensor Bases

Physical + Basis

• Written in terms of linear combinations of momenta called "+" and "-" momenta such that $p_+ \cdot V_{ext} = 0$

by elementary Ward IDs

- Maximum # of FF's vanish when in a physical matrix element
- Good for real scattering problems

LT Basis

• Longitudinal (L) FF's :

$$p_{3}^{\mu_{3}} \cdot \hat{\Gamma}_{\mu_{1}\mu_{2}\mu_{3}}^{(L)}(p_{1}, p_{2}, p_{3}) \neq 0$$

• Transverse (T) FF's :

$$p_{3}^{\mu_{3}} \cdot \hat{\Gamma}_{\mu_{1}\mu_{2}\mu_{3}}^{(T)}(p_{1}, p_{2}, p_{3}) = 0$$

 Good for theoretical work and solving Ward ID

Complementary in their relation to current conservation (Ward ID's) 24

The Renormalization Scale Problem

Form Factors : Supersymmetric Relations

• Any form factor can be decomposed :

$$F = C_A F_G + 2\sum_f T_f F_Q + 2\sum_s T_s F_s$$

- G = gluons Q = quarks S = scalars C_A, T_f, T_s are color factors
- Individually, F_G, F_Q, F_S are complicated...

The Renormalization Scale Problem

IPPP September 5, 2008

Form Factors : Supersymmetric Relations (Massless)

....but certain linear sums are simple :

$$\Sigma_{QG}(F) \equiv \frac{d-2}{2}F_Q + F_G \longrightarrow 0 \quad \text{for 7 of the 13 FF's} \\ (\text{in physical basis}) \\ \pm$$

Simple N=1 SUSY contribution in d=4

$$F_G + 4F_Q + (10 - d)F_S = 0$$
 For all FF's !!

N=4 SUSY in d=4 gives 0

These are off-shell generalizations of relations found in SUSY scattering amplitudes by Z. Bern, L.J. Dixon, D.C. Dunbar, and D.A. Kosower (NPB 425,435)

Vanishing contribution of the N=4 supermutiplet in d=4 dimensions

The Renormalization Scale Problem

IPPP September 5, 2008

76

Form Factors : Consequences of Supersymmetric Relations

For any SUSY each of the 13 FF's are $\propto \beta_0$ even though only one FF is directly related to coupling renormalization

$$\beta_0(d) = \frac{7d - 6}{2(d - 1)} C_A - \frac{2(d - 2)}{d - 1} \sum_f T_f - \frac{1}{d - 1} \sum_f T_s$$

$$\xrightarrow{d = 4} \frac{11}{3} C_A - \frac{4}{3} T_f - \frac{1}{3} T_s$$

Contributions of gluons, quarks, and scalars have same functional form ³³

The Renormalization Scale Problem

Form Factors : Supersymmetric Relations (Massive)

Equal masses for massive gauge bosons (MG), quarks (MQ), and scalars (MS)

$$F_{MG} + 4F_{MQ} + (9 - d)F_{MS} = 0$$

$$1 \text{ d.o.f. "eaten" by MG}$$

Massive gauge boson (MG) inside of loop might be the X and Y gauge bosons of SU(5), for example

External gluons remain unbroken and massless

$$\Sigma_{MQG}(F) \equiv \frac{d-1}{2} F_{MQ} + F_{MG} \quad \text{ is simple}$$

The Renormalization Scale Problem

IPPP September 5, 2008

Form Factors : Consequences of Supersymmetric Relations

For any SUSY each of the 13 FF's are $\propto \beta_0$ even though only one FF is directly related to coupling renormalization

$$\beta_0(d) = \frac{7d-6}{2(d-1)} C_A - \frac{2(d-2)}{d-1} \sum_f T_f - \frac{1}{d-1} \sum_f T_s$$

$$\xrightarrow{d=4} \frac{11}{3} C_A - \frac{4}{3} T_f - \frac{1}{3} T_s$$

Contributions of gluons, quarks, and scalars have same functional form

The Renormalization Scale Problem

Summary of Supersymmetric Relations

Massless	Massive
$F_G + 4F_Q + (10 - d)F_S = 0$	$F_{MG} + 4F_{MQ} + (9 - d)F_{MS} = 0$
$\Sigma_{QG}(F) \equiv \frac{d-2}{2}F_Q + F_G$	$\Sigma_{MQG}(F) \equiv \frac{d-1}{2}F_{MQ} + F_{MG}$
= simple	= simple

The Renormalization Scale Problem

3 Scale Effective Charge

$$\widetilde{\alpha}(a,b,c) \equiv \frac{\widetilde{g}^2(a,b,c)}{4\pi}$$

(First suggested by H.J. Lu)

$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\alpha_{bare}} + \frac{1}{4\pi} \beta_0 \left(L(a,b,c) - \frac{1}{\varepsilon} + \cdots \right)$$
$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\widetilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 \left[L(a,b,c) - L(a_0,b_0,c_0) \right]$$

L(a,b,c) = 3-scale "log-like" function L(a,a,a) = log(a)

The Renormalization Scale Problem

IPPP September 5, 2008

$$L(a,b,c) \equiv \log(Q_{eff}^2(a,b,c)) + i \operatorname{Im} L(a,b,c)$$

Governs strength of the three-gluon vertex

$$\frac{1}{\widetilde{\alpha}(a,b,c)} = \frac{1}{\widetilde{\alpha}(a_0,b_0,c_0)} + \frac{1}{4\pi} \beta_0 [L(a,b,c) - L(a_0,b_0,c_0)]$$
$$\hat{\Gamma}_{\mu_1\mu_2\mu_3} \propto \sqrt{\widetilde{\alpha}(a,b,c)}$$

Generalization of BLM Scale to 3-Gluon Vertex

The Renormalization Scale Problem

IPPP September 5, 2008

3 Scale Log-Like Function

$$L(a,b,c) = \frac{1}{K} \left(\alpha \gamma \log a + \alpha \beta \log b + \beta \gamma \log c - abc \overline{J}(a,b,c) \right) + \Omega$$

$$\mathbf{K} = \alpha \beta + \beta \gamma + \gamma \alpha$$

$$\alpha = p_1 \cdot p_2 = \frac{1}{2}(c - a - b)$$

$$\beta = p_2 \cdot p_3 = \frac{1}{2} (a - b - c)$$

 $\gamma = p_3 \cdot p_1 = \frac{1}{2} (b - c - a)$

Master triangle integral can be

written in terms of Clausen functions

$$Cl_2(\theta) = \mathrm{Im}Li_2(e^{i\theta})$$

 $a = p_1^2$ $b = p_2^2$

 $c = p_{3}^{2}$

 $\Omega \approx 3.125$

The Renormalization Scale Problem

IPPP September 5, 2008

83

Properties of the Effective Scale

$$\begin{aligned} Q_{eff}^{2}(a,b,c) &= Q_{eff}^{2}(-a,-b,-c) \\ Q_{eff}^{2}(\lambda a,\lambda b,\lambda c) &= |\lambda| Q_{eff}^{2}(a,b,c) \\ Q_{eff}^{2}(a,a,a) &= |a| \\ Q_{eff}^{2}(a,-a,-a) &\approx 5.54 |a| \\ Q_{eff}^{2}(a,a,c) &\approx 3.08 |c| \quad \text{for } |a| >> |c| \\ Q_{eff}^{2}(a,-a,c) &\approx 22.8 |c| \quad \text{for } |a| >> |c| \\ Q_{eff}^{2}(a,b,c) &\approx 22.8 \frac{|bc|}{|a|} \quad \text{for } |a| >> |b|,|c| \end{aligned}$$

Surprising dependence on Invariants

The Renormalization Scale Problem

H. J. Lu

 $\mu_R^2 \simeq \frac{p_{min}^2 p_{med}^2}{p_{max}^2}$

The Renormalization Scale Problem 85

IPPP September 5, 2008

IPPP September 5, 2008

86

The Renormalization Scale Problem 87

IPPP September 5, 2008

The Effective Scale

The Renormalization Scale Problem

Mass Effects

Calculated for all form factors

SUSY relations $F_{MG} + 4F_{MQ} + (9-d)F_{MS} = 0$

FF of tree level tensor structure

Massive "log-like" function : I

Effective Charge
$$L_{MQ}\left(\frac{a}{M^2}, \frac{b}{M^2}, \frac{c}{M^2}\right)$$

$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) \approx 5.125 \text{ for } M^{2} >> |a|, |b|, |c|$$
$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) \approx L(a, b, c) - \log M^{2} \text{ for } M^{2} << |a|, |b|, |c|$$

The Renormalization Scale Problem 89

IPPP September 5, 2008

Massive Log-Like Function

$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{b}{M^{2}}, \frac{c}{M^{2}}\right) = \frac{1}{K}\left(\alpha\gamma\Lambda(a) + \alpha\beta\Lambda(b) + \beta\gamma\Lambda(c) - abc\overline{J_{M}}(a, b, c)\right) + \Omega$$
$$+ 2M^{2}\left(\frac{\Lambda(a) - 2}{a} + \frac{\Lambda(b) - 2}{b} + \frac{\Lambda(c) - 2}{c} - \overline{J_{M}}(a, b, c)\right)$$
$$\Lambda(a) = \begin{cases} 2\nu \tanh^{-1}\left(\nu^{-1}\right) \\ 2\overline{\nu} \tan^{-1}\left(\overline{\nu^{-1}}\right) \\ 2\nu \tanh^{-1}(\nu) - i\nu\pi \end{cases} \quad \text{for } \begin{cases} a < 0 \\ 0 < a < 4M^{2} \\ a > 4M^{2} \end{cases}$$
$$\underset{\nu = \sqrt{1 - \frac{4M^{2}}{a}} \qquad \overline{\nu} = \sqrt{\frac{4M^{2}}{a} - 1} \end{cases}$$
$$\underset{(very complicated)}{\text{Massive Master Triangle Integral (very complicated)}}$$

The Renormalization Scale Problem

IPPP September 5, 2008

Symmetric Spacelike

The Renormalization Scale Problem

IPPP September 5, 2008

Effective Number of Flavors

$$N_F\left(\frac{a}{M^2}, \frac{b}{M^2}, \frac{c}{M^2}\right) = -\frac{d}{d\log M^2} L_{MQ}\left(\frac{a}{M^2}, \frac{b}{M^2}, \frac{c}{M^2}\right)$$

The Renormalization Scale Problem

Symmetric Timelike

$$L_{MQ}\left(\frac{a}{M^{2}}, \frac{a}{M^{2}}, \frac{a}{M^{2}}\right)$$
Singularities: anomalous thresholds

Related to three-beam scattering?

The Renormalization Scale Problem

IPPP September 5, 2008

25

20

15

Singularities: anomalous thresholds

Related to three-beam scattering?

Symmetric Mixed Signature

$$L_{MQ}\left(rac{a}{M^2},rac{a}{M^2},-rac{a}{M^2}
ight)$$

The Renormalization Scale Problem

IPPP September 5, 2008

Heavy Quark Hadro-production

- Preliminary calculation using (massless) results for tree level form factor
- Very low effective scale

much larger cross section than \overline{MS} with scale $\mu_R = M_{Q\overline{Q}}$ or M_Q

 Future : repeat analysis using the full massdependent results and include all form factors

Expect that this approach accounts for most of the one-loop corrections

The Renormalization Scale Problem

IPPP September 5, 2008

95

Production of four heavy-quark jets

The Renormalization Scale Problem

IPPP September 5, 2008

Future Directions

Gauge-invariant four gluon vertex

 $L_4(p_1, p_2, p_3, p_4)$

 $Q_{4\,eff}^2(p_1, p_2, p_3, p_4)$

Hundreds of form factors!

The Renormalization Scale Problem

The Gauge-Invariant Family of Green's Functions

The Renormalization Scale Problem

PT Self-Energy at Two-Loops

- Finite terms give relation between $\alpha_{\rm PT}(Q^2) \ {\rm and} \ \alpha_{\rm \overline{MS}}(Q^2)$
- 3-loop beta function
- 2-loop longitudinal form factors of the three-gluon vertex (via the Ward ID)
- N=4 Supersymmetry gives a non-zero but UV finite contribution

PT Self-Energy at Two-Loops

The Renormalization Scale Problem

IPPP September 5, 2008

100

Stan Brodsky, SLAC/IPPP

54

Summary and Future

- Multi-scale analytic renormalization based on physical, gauge-invariant Green's functions
- Optimal improvement of perturbation theory with no scale-ambiguity since physical kinematic invariants are the arguments of the (multi-scale) couplings

Factorization scale

 μ factorization $\neq \mu$ renormalization

- Arbitrary separation of soft and hard physics
- Dependence on factorization scale not associated with beta function - present even in conformal theory
- Keep factorization scale separate from renormalization scale $\frac{d\mathcal{O}}{d\mu_{\text{factorization}}} = 0$
- Residual dependence when one works in fixed order in perturbation theory.

New Insights into Hard Inclusive Reactions in QCD

- Elimination of Renormalization Scale Ambiguity
- Heavy quark distributions: severely underestimated at high x_F -- intrinsic charm and bottom
- Higher-twist processes can dominate
- Off-shell effects: DGLAP modified at high x
- Anomalous nuclear effects: hidden color, factorization breaking
- Initial and final-State Interactions: SSA, Diffraction, shadowing, antishadowing, violation of Lam-Tung, breakdown of PQCD factorization formulae
- Hadronization at Amplitude Level: LFWFs, AdS/CFT

The Renormalization Scale Problem

The Renormalization Scale Problem

IPPP September 5, 2008

104

Fínal-State Interactions Produce Pseudo T-Odd (Sivers Effect)

- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite

The Renormalization Scale Problem

IPPP September 5, 2008

105

and produce a T-odd effect! (also need $L_z \neq 0$)

HERMES coll., A. Airapetian et al., Phys. Rev. Lett. 94 (2005) 012002. Sivers asymmetry from HERMES • Fi

- First evidence for non-zero Sivers function!
- ⇒ presence of non-zero quark
 orbital angular momentum!
- Positive for π⁺...
 Consistent with zero for π⁻...

Gamberg: Hermes data compatible with BHS model

Schmidt, Lu: Hermes charge pattern follow quark contributions to anomalous moment

The Renormalization Scale Problem

IPPP September 5, 2008

106

Predict Opposite Sign SSA in DY!

Collins; Hwang, Schmidt. sjb

Single Spin Asymmetry In the Drell Yan Process $\vec{S}_{n} \cdot \vec{n} \times \vec{a}_{n*}$

$$S_p \cdot p \times q_{\gamma^*}$$

Quarks Interact in the Initial State

Interference of Coulomb Phases for S and P states

Produce Single Spin Asymmetry [Siver's Effect]Proportional

to the Proton Anomalous Moment and α_s .

Opposite Sign to DIS! No Factorization

The Renormalization Scale Problem

IPPP September 5, 2008

DY $\cos 2\phi$ correlation at leading twist from double ISI

The Renormalization Scale Problem

IPPP September 5, 2008

108

 $\mathbf{DY}\cos 2\phi$ correlation at leading twist from double ISI

The Renormalization Scale Problem

IPPP September 5, 2008

109

Anomalous effect from Double ISI ín Massíve Lepton Productíon

Boer, Hwang, sjb

 $\cos 2\phi$ correlation

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semiinclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

Double Initial-State Interactions generate anomalous $\cos 2\phi$ Boer, Hwang, sjb **Drell-Yan planar correlations** $\frac{1}{\sigma}\frac{d\sigma}{d\Omega} \propto \left(1 + \lambda\cos^2\theta + \mu\sin2\theta\,\cos\phi + \frac{\nu}{2}\sin^2\theta\cos2\phi\right)$ PQCD Factorization (Lam Tung): $1 - \lambda - 2\nu = 0$ $\propto h_1^{\perp}(\pi) h_1^{\perp}(N)$ $\frac{\nu}{2}$ $\pi N \rightarrow \mu^+ \mu^- X$ NA10 P₂ 0.4 0.35 $\nu(Q_T)_{0.25}^{0.3}$ Iard gluon radiation 0.2 0.15 Q = 8 GeV0.1 Double ISI 0.05 $\overline{P_1}$ P_1 2 3 5 6 4 **Violates Lam-Tung relation!**

Model: Boer,

The Renormalization Scale Problem

IPPP September 5, 2008

III

Problem for factorization when both ISI and FSI occur

The Renormalization Scale Problem

IPPP September 5, 2008

II2

Factorization is violated in production of high-transverse-momentum particles in hadron-hadron collisions

John Collins, Jian-Wei Qiu . ANL-HEP-PR-07-25, May 2007.

The exchange of two extra gluons, as in this graph, will tend to give non-factorization in unpolarized cross sections.

The Renormalization Scale Problem

IPPP September 5, 2008

113

Final-State Interaction Produces Diffractive DIS

Quark Rescattering

Hoyer, Marchal, Peigne, Sannino, SJB (BHM

Enberg, Hoyer, Ingelman, SJB

Hwang, Schmidt, SJB

Low-Nussinov model of Pomeron

The Renormalization Scale Problem

Integration over on-shell domain produces phase i

Need Imaginary Phase to Generate Pomeron

Need Imaginary Phase to Generate T-Odd Single-Spin Asymmetry

Physics of FSI not in Wavefunction of Target

The Renormalization Scale Problem

Final State Interactions in QCD

Feynman GaugeLight-Cone GaugeResult is Gauge Independent

The Renormalization Scale Problem

IPPP September 5, 2008

116

Hoyer, Marchal, Peigne, Sannino, sjb

QCD Mechanism for Rapidity Gaps

The Renormalization Scale Problem

IPPP September 5, 2008

Physics of Rescattering

- Diffractive DIS: New Insights into Final State Interactions in QCD
- Origin of Hard Pomeron
- Structure Functions not Probability Distributions!
- T-odd SSAs, Shadowing, Antishadowing
- Diffractive dijets/ trijets, doubly diffractive Higgs
- Novel Effects: Color Transparency, Color Opaqueness, Intrinsic Charm, Odderon

"Dangling Gluons"

- Diffractive DIS
- Non-Unitary Correction to DIS: Structure functions are not probability distributions
- Nuclear Shadowing, Antishadowing- Not in Target WF
- Single Spin Asymmetries -- opposite sign in DY and DIS
- DY $\cos 2\phi$ distribution at leading twist from double ISI-- not given by PQCD factorization -- breakdown of factorization!
- Wilson Line Effects not 1 even in LCG
- Must correct hard subprocesses for initial and final-state soft gluon attachments
- Corrections to Handbag Approximation in DVCS!

Hoyer, Marchal, Peigne, Sannino, sjb

The Renormalization Scale Problem

IPPP September 5, 2008

119

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via Light-Front Wavefunctions

The Renormalization Scale Problem

IPPP September 5, 2008

I20

Light-Front Wavefunctions

Invariant under boosts! Independent of P^µ

The Renormalization Scale Problem

IPPP September 5, 2008

New Perspectives for QCD from AdS/CFT

- LFWFs: Fundamental description of hadrons at amplitude level
- Holographic Model from AdS/CFT : Confinement at large distances and conformal behavior at short distances
- Model for LFWFs, meson and baryon spectra: many applications!
- New basis for diagonalizing Light-Front Hamiltonian
- Physics similar to MIT bag model, but covariant. No problem with support 0 < x < 1.
- Quark Interchange dominant force at short distances

The Renormalization Scale Problem

IPPP September 5, 2008

123

AdS/CFT Predictions for Meson LFWF $\psi(x,b_{\perp})$

Truncated Space

Harmonic Oscillator

The Renormalization Scale Problem

IPPP September 5, 2008

I24

The Renormalization Scale Problem

IPPP September 5, 2008

125

 $\pi N \rightarrow \mu^+ \mu^- X$ at high x_F In the limit where $(1-x_F)Q^2$ is fixed as $Q^2 \rightarrow \infty$

Berger and Brodsky, PRL 42 (1979) 940

The Renormalization Scale Problem

IPPP September 5, 2008

126

Berger, Lepage, sjb

The Renormalization Scale Problem

IPPP September 5, 2008

127

$$\pi^- N \rightarrow \mu^+ \mu^- X$$
 at 80 GeV/c

$$\frac{d\sigma}{d\Omega} \propto 1 + \lambda \cos^2\theta + \rho \sin 2\theta \cos\phi + \omega \sin^2\theta \cos 2\phi.$$

$$\frac{d^2\sigma}{dx_{\pi}d\cos\theta} \propto x_{\pi} \left[(1-x_{\pi})^2 (1+\cos^2\theta) + \frac{4}{9} \frac{\langle k_T^2 \rangle}{M^2} \sin^2\theta \right]$$

$$\langle k_T^2 \rangle = 0.62 \pm 0.16 \text{ GeV}^2/c^2$$

Dramatic change in angular distribution at large x_F

Example of a higher-twist direct subprocess

Chicago-Princeton Collaboration

Phys.Rev.Lett.55:2649,1985

The Renormalization Scale Problem

IPPP September 5, 2008

128

Baryon can be made directly within hard subprocess

The Renormalization Scale Problem

IPPP September 5, 2008

 $E\frac{d\sigma}{d^3p}(pp \to HX) = \frac{F(x_T, \theta_{CM})}{p_T^{n_{eff}}}$

S. S. Adler *et al.* PHENIX Collaboration *Phys. Rev. Lett.* **91**, 172301 (2003). *Particle ratio changes with centrality!*

Open (filled) points are for π^{\pm} (π^{\cup}), respectively.

Evidence for Dírect, Higher-Twist Subprocesses

- Anomalous power behavior at fixed x_T
- Protons more likely to come from direct subprocess than pions
- Protons less absorbed than pions in central nuclear collisions because of color transparency
- Predicts increasing proton to pion ratio in central collisions
- Exclusive-inclusive connection at $x_T = I$

Conventional renormalization scale-setting method:

- Guess arbitrary renormalization scale and take arbitrary range. Wrong for QED and Precision Electroweak.
- Prediction depends on choice of renormalization scheme
- Variation of result with respect to renormalization scale only sensitive to nonconformal terms; no information on genuine (conformal) higher order terms
- FAC and PMS give unphysical results.
- Renormalization scale not arbitrary: Analytic constraint from flavor thresholds

Features of BLM Scale Setting

On The Elimination Of Scale Ambiguities In Perturbative Quantum Chromodynamics.

Lepage, Mackenzie, sjb

Phys.Rev.D28:228,1983

- All terms associated with nonzero beta function summed into running coupling
- BLM Scale Q* sets the number of active flavors
- Only n_f dependence required to determine renormalization scale at NLO
- Result is scheme independent: Q* has exactly the correct dependence to compensate for change of scheme
- Correct Abelian limit
- Resulting series identical to conformal series!
- Renormalon n! growth of PQCD coefficients from beta function eliminated!
- In general, BLM scale depends on all invariants

The Renormalization Scale Problem

IPPP September 5, 2008

135

Use BLM!

- Satisfies Transitivity, all aspects of Renormalization Group; scheme independent
- Analytic at Flavor Thresholds
- Preserves Underlying Conformal Template
- Physical Interpretation of Scales; Multiple Scales
- Correct Abelian Limit (N_C =0)
- Eliminates unnecessary source of imprecision of PQCD predictions
- Commensurate Scale Relations: Fundamental Tests of QCD free of renormalization scale and scheme ambiguities
- BLM used in many applications, QED, LGTH, BFKL, ...

The Renormalization Scale Problem

IPPP September 5, 2008

136