

Very preliminary start on the SLT tt cross-section analysis

Gareth Bird, Véronique Boisvert UK Top meeting September 17th 2008

Outline

Motivation

Selection

A few more words on the soft muon

From R. Bailey (Top 2008)

Month	Phase	Days physics	Efficiency factor	Peak Iuminosity	Delivered luminosity	
Jan	Cooldown					
Feb	and					
Mar						
Apr	Commissioning					
May	and					
June						
Jul	Machine checkout					
Aug						
Sep	Beam Commissioning					
Oct	Physics run					
Nov	r nysios ran	40	0.1	5 10 ³¹	20 pb ⁻¹	10 TeV
Dec						
Jan	Shutdown					
Feb						
Mar	Machine checkout					
Apr	75ns Commissioning					
May						
June						
Jul						
Aug	Physics run	150	0.2	10 ³³	2.5 fb ⁻¹	14 IeV
Sep						
Oct						
Nov						
Dec						

tt cross-section in L+J channel

- Realistically 2008-2009 will entirely be commissioning years
- Before we can claim new physics (including in the top sector), imperative to establish SM processes

Including Top signal

- Top requires a lot of understanding of the detector
 - Important to push for this to happen with the 10TeV run

tt Cross-section in L+J channel

- T6 CSC note
- Best selection:
 - \bigcirc 1 e or μ p_T>20 GeV
 - \odot ME_T > 20 GeV
 - $\bigcirc \ge 4$ jets p_T>20 GeV
 - \bigcirc ≥ 3 jets p_T>40 GeV
 - 1 of 3 |m_{jj}-M_W| < 10 GeV

W+jets:

- Scale from Z+jets
- For 100pb-1: 50% uncertainty
- With 1fb-1: 20%
- QCD: smaller than W+jets...

Electron	channel
----------	---------

Sample	default	W const	
tī	2555	1262	
hadronic tr	11	4	
W+jets	761	241	
single top	183	67	
$Z \rightarrow ll$ +jets	115	35	
W bb	44	15	
W cc	19	6	
WW	7	4	
WZ	4	1	
ZZ	0.5	0.2	
Signal	2555	1262	
Background	1144	374	
S/B	2.2	3.4	

	Likelihood fit		Counting method (elec	
Source	Electron	Muon	Default	W const.
Statistical	10.5	8.0	2.7	3.5
Lepton ID efficiency	1.0	1.0	1.0	1.0
Lepton trigger efficiency	1.0	1.0	1.0	1.0
50% more W+jets	1.0	0.6	14.7	9.5
20% more W+jets	0.3	0.3	5.9	3.8
Jet Energy Scale (5%)	2.3	0.9	13.3	9.7
PDFs	2.5	2.2	2.3	2.5
ISR/FSR	8.9	8.9	10.6	8.9
Shape of fit function	14.0	10.4	-	-

Likelihood method: $\Delta \sigma / \sigma = (7(\text{stat}) \pm 15(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$ Counting method: $\Delta \sigma / \sigma = (3(\text{stat}) \pm 16(\text{syst}) \pm 3(\text{pdf}) \pm 5(\text{lumi}))\%$

Cross-section using Soft muon tag (in

collaboration with QMUL)

- B-tagging: not as efficient as using silicon
 - OBut available from the beginning!
 - ONICE orthogonal sample
 - Starting point of other analyses:
 - QMUL: Mass, RHUL: Charge
- Back of the envelopes numbers:
 - 20pb-1 at 10 TeV = 400pb (20pb-1) = 8000 tops
 - Equivalent to 1fb-1 at the Tevatron
 - O Tevatron measurement with 2fb-1, scaling to 1fb-1: stat
 - = 18% syst = 10% and lumi = 7%

Quite decent measurement!

- 100pb-1 at 14TeV: equivalent to 10fb-1 at the Tevatron
- \bigcirc Scaling we get: stat = 6%, syst = 10%

Comparable to the other commissioning analysis!

Event Selection not including SLT

- L2_e25
 EF_e25
 29.39%
 29.3%
 23.53%
 23.5%
- 1 Elec >20Gev
- Et Miss > 20Gev
- 4 Jets >20Gev

17.64% 21.7%

Kerim's Cut Flow Our Cut Flow

- 15.90% 20.2%
- 8.38% 6.6%
- 3 Jets >40Gev
 5.94%
 3.1%
- Using v13 and 5200 sample

Electron definition

- Author = AuthorElectron || AuthorPhoton
 - AuthorElectron: standard egamma shower seeded reconstructins
 - OAuthorSofte: softe (track based) reconstruction
 - OAuthorPhoton: from conversion algorithm
- goodPID = egammaPID::ElectronMedium
 - O Definition changes according to release!
 - 12 calorimeter requirements + 3 track requirements
- Eta cut: < 2.5 and not in crack region</p>
- P_T > 20GeV/c
- Isolation E_T in cone with half opening angle of 0.2 (etcone20) < 6GeV

Out of 1000 events from 5200 sample

Electrons:
Reco: 257
Truth from W: 381
With pt and eta cuts: 286 (90%)

- Muons:
 - Reco: 355

• 30 from W->τ->μ

- 5 from b
- Truth from W: 433
 - With pt and eta cuts: 344 (93%)

About the soft muon...

 Very close to having an algorithm which finds all the truth muons coming from b jets

> Then can get useful information like pt, eta spectrum, etc.

Conclusions

Short term plans are:

get efficiencies using v13 and CSC samples

- migrate code to v14 and run on FDR2 (BSc project)
- run on new v14 10 TeV samples
- Medium term plans are:
 - Optimize soft muon selection
 - Background estimates!
 - Systematics
 - Run on data!!
- If you are interested in joining our group, we will have plenty of jobs to go around!

Contact us!