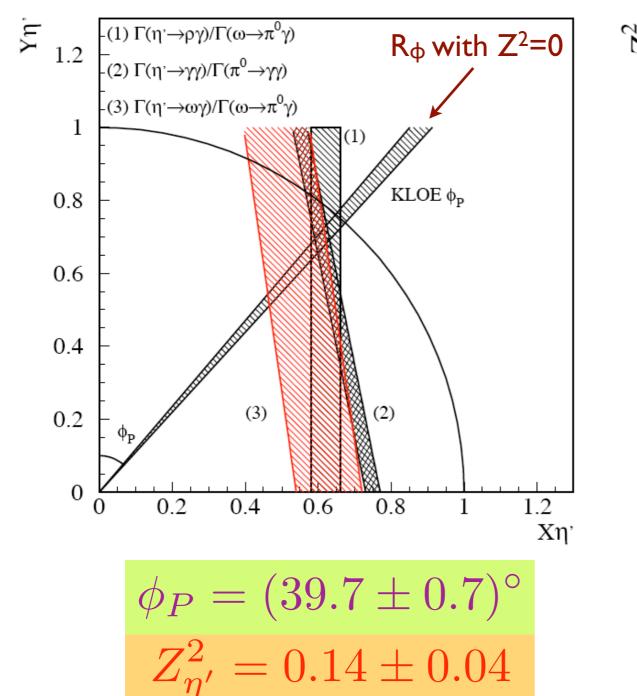
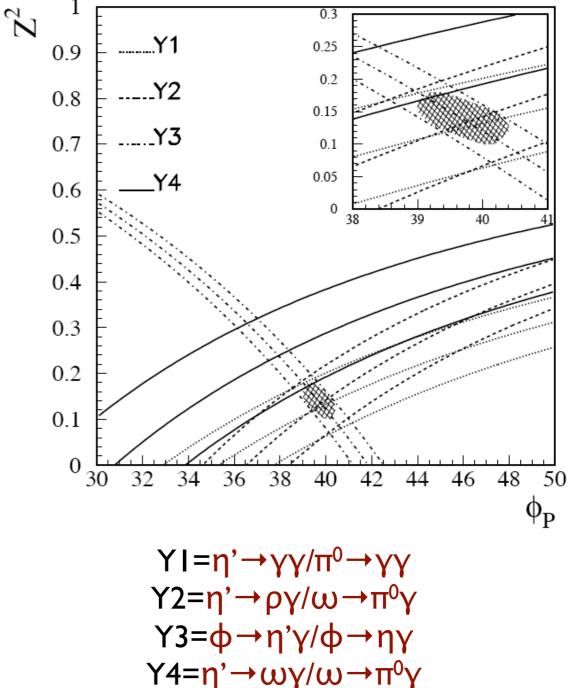


n' gluonic content from $V \rightarrow P_{\gamma}$ and $J/\psi \rightarrow VP$ decays

Rafel Escribano Grup de Física Teòrica & IFAE (UAB)

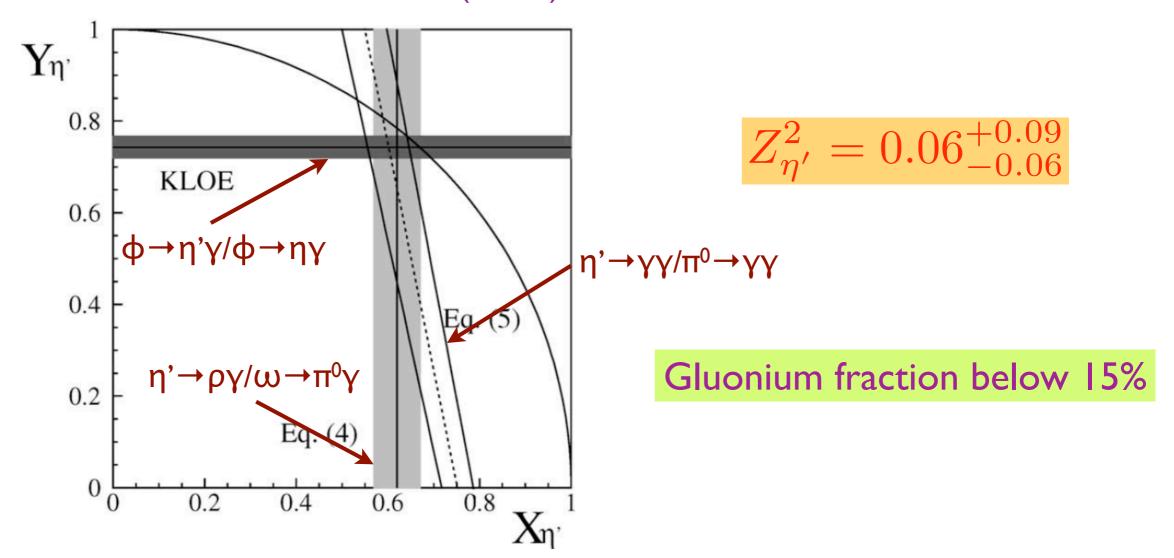
EUROFLAVOUR 08


Annual Workshop and Mid-Term Review Meeting of Lavi A

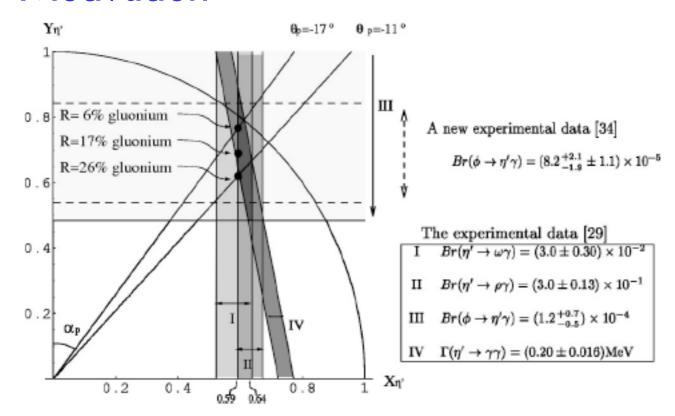


September 23, 2008 IPPP, Durham (UK)

Motivation

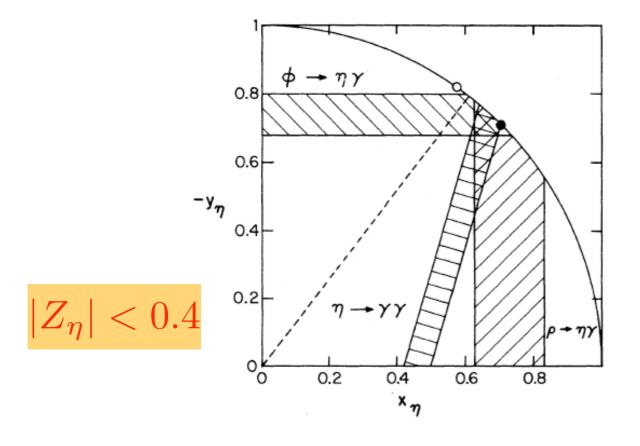

KLOE Collaboration, Phys. Lett. B648 (2007) 267

Motivation


KLOE Collaboration, PLB 541 (2002) 45

What are the differences between the two analyses?

- improvement in the precision of the new measurements
- the use of the overlapping parameters relating the pseudoscalar and vector wave functions


Motivation

E. Kou, Phys. Rev. D63 (2001) 054027

$$R = \frac{Z_{\eta'}}{X_{\eta'} + Y_{\eta'} + Z_{\eta'}} = (13 \pm 13)\%$$

J. L. Rosner, Phys. Rev. D27 (1983) 1101

Purpose: to perform a phenomenological analysis of $V \rightarrow P\gamma$ and $J/\psi \rightarrow VP$ decays, with $V=\rho$, K^* , ω , φ and $P=\pi$, K, η , η' , aimed at determining the gluonic content of the η and η' wave functions

Why? to confirm or not the gluonic content of the η ' wave function

Feasible? yes, because we have at our disposal all the needed experimental information

Outline:

- Notation
- $V \rightarrow P\gamma$ analysis
- $J/\psi \rightarrow VP$ analysis
- Results
- Conclusions

Notation

We work in a basis consisting of the states

$$|\eta_q\rangle \equiv \frac{1}{\sqrt{2}}|u\bar{u} + d\bar{d}\rangle \qquad |\eta_s\rangle = |s\bar{s}\rangle \qquad |G\rangle \equiv |\text{gluonium}\rangle$$

The physical states η and η are assumed to be the linear combinations

$$|\eta\rangle = X_{\eta}|\eta_{q}\rangle + Y_{\eta}|\eta_{s}\rangle + Z_{\eta}|G\rangle ,$$

$$|\eta'\rangle = X_{\eta'}|\eta_{q}\rangle + Y_{\eta'}|\eta_{s}\rangle + Z_{\eta'}|G\rangle ,$$

with
$$X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 + Z_{\eta(\eta')}^2 = 1$$
 and thus $X_{\eta(\eta')}^2 + Y_{\eta(\eta')}^2 \leq 1$

A significant gluonic admixture in a state is possible only if

$$Z_{\eta(\eta')}^2 = 1 - X_{\eta(\eta')}^2 - Y_{\eta(\eta')}^2 > 0$$

Assumptions:

- no mixing with Π^0 (isospin symmetry)
- no mixing with η_c states
- no mixing with radial excitations

Notation

In absence of gluonium (standard picture)

$$Z_{\eta(\eta')} \equiv 0$$

$$|\eta\rangle = \cos\phi_P |\eta_q\rangle - \sin\phi_P |\eta_s\rangle$$

$$|\eta'\rangle = \sin\phi_P |\eta_q\rangle + \cos\phi_P |\eta_s\rangle$$

with
$$X_\eta=Y_{\eta'}\equiv\cos\phi_P$$
 and $X_{\eta(\eta')}^2+Y_{\eta(\eta')}^2=1$
$$X_{\eta'}=-Y_\eta\equiv\sin\phi_P$$

where ϕ_P is the η - η ' mixing angle in the quark-flavour basis related to its octet-singlet analog through

$$\theta_P = \phi_P - \arctan \sqrt{2} \simeq \phi_P - 54.7^{\circ}$$

Similarly, for the vector states ω and φ the mixing is given by

$$|\omega\rangle = \cos\phi_V |\omega_q\rangle - \sin\phi_V |\phi_s\rangle$$
$$|\phi\rangle = \sin\phi_V |\omega_q\rangle + \cos\phi_V |\phi_s\rangle$$

where ω_q and φ_s are the analog non-strange and strange states of η_q and η_s , respectively.

• Euler angles

In presence of gluonium,

$$\begin{array}{rcl} |\eta\rangle &=& X_{\eta}|\eta_{q}\rangle + Y_{\eta}|\eta_{s}\rangle + Z_{\eta}|G\rangle \\ \text{glueball-like state} &|\eta'\rangle &=& X_{\eta'}|\eta_{q}\rangle + Y_{\eta'}|\eta_{s}\rangle + Z_{\eta'}|G\rangle \\ |\iota\rangle &=& X_{\iota}|\eta_{q}\rangle + Y_{\iota}|\eta_{s}\rangle + Z_{\iota}|G\rangle \end{array}$$

Normalization:

$$X_{\eta}^{2} + Y_{\eta}^{2} + Z_{\eta}^{2} = 1$$
$$X_{\eta'}^{2} + Y_{\eta'}^{2} + Z_{\eta'}^{2} = 1$$
$$X_{\iota}^{2} + Y_{\iota}^{2} + Z_{\iota}^{2} = 1$$

Orthogonality:

$$X_{\eta} X_{\eta'} + Y_{\eta} Y_{\eta'} + Z_{\eta} Z_{\eta'} = 0$$
$$X_{\eta} X_{\iota} + Y_{\eta} Y_{\iota} + Z_{\eta} Z_{\iota} = 0$$
$$X_{\eta'} X_{\iota} + Y_{\eta'} Y_{\iota} + Z_{\eta'} Z_{\iota} = 0$$

3 independent parameters: ϕ_P , $\phi_{\eta G}$ and $\phi_{\eta' G}$

$$\begin{pmatrix} \eta \\ \eta' \\ \iota \end{pmatrix} = \begin{pmatrix} c\phi_{\eta\eta'}c\phi_{\eta G} & -s\phi_{\eta\eta'}c\phi_{\eta G} & -s\phi_{\eta G} \\ s\phi_{\eta\eta'}c\phi_{\eta'G} - c\phi_{\eta\eta'}s\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta\eta'}c\phi_{\eta'G} + s\phi_{\eta\eta'}s\phi_{\eta'G}s\phi_{\eta G} & -s\phi_{\eta'G}c\phi_{\eta G} \\ s\phi_{\eta\eta'}s\phi_{\eta'G} + c\phi_{\eta\eta'}c\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta\eta'}s\phi_{\eta'G} - s\phi_{\eta\eta'}c\phi_{\eta'G}s\phi_{\eta G} & c\phi_{\eta'G}c\phi_{\eta G} \end{pmatrix} \begin{pmatrix} \eta_q \\ \eta_s \\ G \end{pmatrix}$$

• Euler angles

$$\begin{split} X_{\eta} &= \cos \phi_P \cos \phi_{\eta G} \,, \quad X_{\eta'} = \sin \phi_P \cos \phi_{\eta' G} - \cos \phi_P \sin \phi_{\eta G} \sin \phi_{\eta' G} \,, \\ Y_{\eta} &= -\sin \phi_P \cos \phi_{\eta G} \,, \quad Y_{\eta'} = \cos \phi_P \cos \phi_{\eta' G} + \sin \phi_P \sin \phi_{\eta G} \sin \phi_{\eta' G} \,, \\ Z_{\eta} &= -\sin \phi_{\eta G} \,, \quad Z_{\eta'} = -\sin \phi_{\eta' G} \cos \phi_{\eta G} \,. \end{split}$$

In the limit $\phi_{\eta G}=0$:

$$X_{\eta} = \cos \phi_P , \qquad Y_{\eta} = -\sin \phi_P , \qquad Z_{\eta} = 0 ,$$
 $X_{\eta'} = \sin \phi_P \cos \phi_{\eta'G} , \quad Y_{\eta'} = \cos \phi_P \cos \phi_{\eta'G} , \quad Z_{\eta'} = -\sin \phi_{\eta'G} .$

• A model for VPγ M I transitions

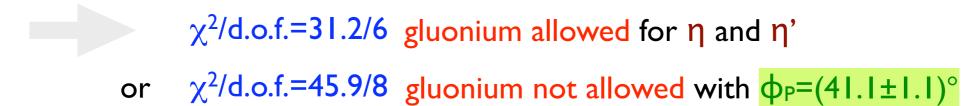
We will work in a conventional quark model context: P and V are simple quark-antiquark S-wave bound states

Ingredients of the model:

- i) a VP γ magnetic dipole transition proceeding via quark or antiquark spin flip amplitude $\propto \mu_q = e_q/2m_q$
- ii) spin-flip $V \rightarrow P$ conversion amplitude corrected by the relative overlap between the P and V wave functions
- iii) OZI-rule reduces considerably the possible transitions and overlaps

$$C_{\pi} \equiv \langle \pi | \omega_{q} \rangle = \langle \pi | \rho \rangle \qquad C_{K} \equiv \langle K | K^{*} \rangle$$
 U(1)_A anomaly
$$C_{q} \equiv \langle \eta_{q} | \omega_{q} \rangle = \langle \eta_{q} | \rho \rangle \qquad C_{s} \equiv \langle \eta_{s} | \phi_{s} \rangle$$

A model for VPγ M I transitions


Amplitudes:

$$\begin{split} g_{\rho^0\pi^0\gamma} &= g_{\rho^+\pi^+\gamma} = \frac{1}{3}g \ , \quad g_{\omega\pi\gamma} = g\cos\phi_V \ , \quad g_{\phi\pi\gamma} = g\sin\phi_V \ , \\ g_{K^{*0}K^0\gamma} &= -\frac{1}{3}g\,z_K \left(1 + \frac{\bar{m}}{m_s}\right) \ , \quad g_{K^{*+}K^+\gamma} = \frac{1}{3}g\,z_K \left(2 - \frac{\bar{m}}{m_s}\right) \ , \\ g_{\rho\eta\gamma} &= g\,z_q\,X_\eta \ , \quad g_{\rho\eta'\gamma} = g\,z_q\,X_{\eta'} \ , \\ g_{\omega\eta\gamma} &= \frac{1}{3}g\left(z_q\,X_\eta\cos\phi_V + 2\frac{\bar{m}}{m_s}z_s\,Y_\eta\sin\phi_V\right) \ , \\ g_{\omega\eta'\gamma} &= \frac{1}{3}g\left(z_q\,X_{\eta'}\cos\phi_V + 2\frac{\bar{m}}{m_s}z_s\,Y_{\eta'}\sin\phi_V\right) \ , \\ g_{\phi\eta\gamma} &= \frac{1}{3}g\left(z_q\,X_\eta\sin\phi_V - 2\frac{\bar{m}}{m_s}z_s\,Y_\eta\cos\phi_V\right) \ , \\ g_{\phi\eta'\gamma} &= \frac{1}{3}g\left(z_q\,X_{\eta'}\sin\phi_V - 2\frac{\bar{m}}{m_s}z_s\,Y_{\eta'}\cos\phi_V\right) \ , \\ \end{split}$$
 with $g_{\omega\pi\gamma} = g\,\cos\phi_V = e\,C_\pi\cos\phi_V/\bar{m}$ and $z_q \equiv C_q/C_\pi \ , \quad z_s \equiv C_s/C_\pi \ , \quad z_K \equiv C_K/C_\pi$

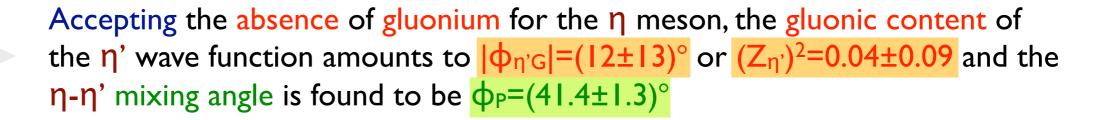
R. E. and J. Nadal, JHEP 05 (2007) 6

The overlapping parameters $z_{q,s}$ and the mixing parameters $X_{\eta(\eta')}$ and $Y_{\eta(\eta')}$ cannot be determined independently

Thus we start assuming
$$C_q=C_s=C_K=C_\pi=1$$
 $z_q=z_s=z_K=1$

Then we leave the overlapping parameters free

Three possibilities:


i)
$$Z_{\eta}=Z_{\eta'}=0$$
 gluonium not allowed for η or η' ii) $Z_{\eta}=0$ gluonium allowed only for η' iii) $Z_{\eta'}=0$ gluonium allowed only for η

i) assuming $Z_{\eta} = Z_{\eta'} = 0$ from the beginning, we get from $\chi^2/d.o.f. = 14.0/7$ to

$$g = 0.72 \pm 0.01 \text{ GeV}^{-1}$$
, $\phi_P = (41.5 \pm 1.2)^{\circ}$, $\phi_V = (3.2 \pm 0.1)^{\circ}$, $\chi^2/\text{d.o.f.}=4.4/5$ $\frac{m_s}{\bar{m}} = 1.24 \pm 0.07$, $z_K = 0.89 \pm 0.03$, $z_q = 0.86 \pm 0.03$, $z_s = 0.78 \pm 0.05$.

ii) assuming $Z_{\eta}=0$ from the beginning, we get

$$g=0.72\pm0.01~{
m GeV^{-1}}~,~~\frac{m_s}{\bar{m}}=1.24\pm0.07~,~~\phi_V=(3.2\pm0.1)^\circ~,~~$$

$$\phi_P=(41.4\pm1.3)^\circ),~~[\phi_{\eta'G}]=(12\pm13)^\circ),~~\chi^2/{
m d.o.f.}=4.2/4$$

$$z_K=0.89\pm0.03~,~~z_q=0.86\pm0.03~,~~z_s=0.79\pm0.05~,~~$$

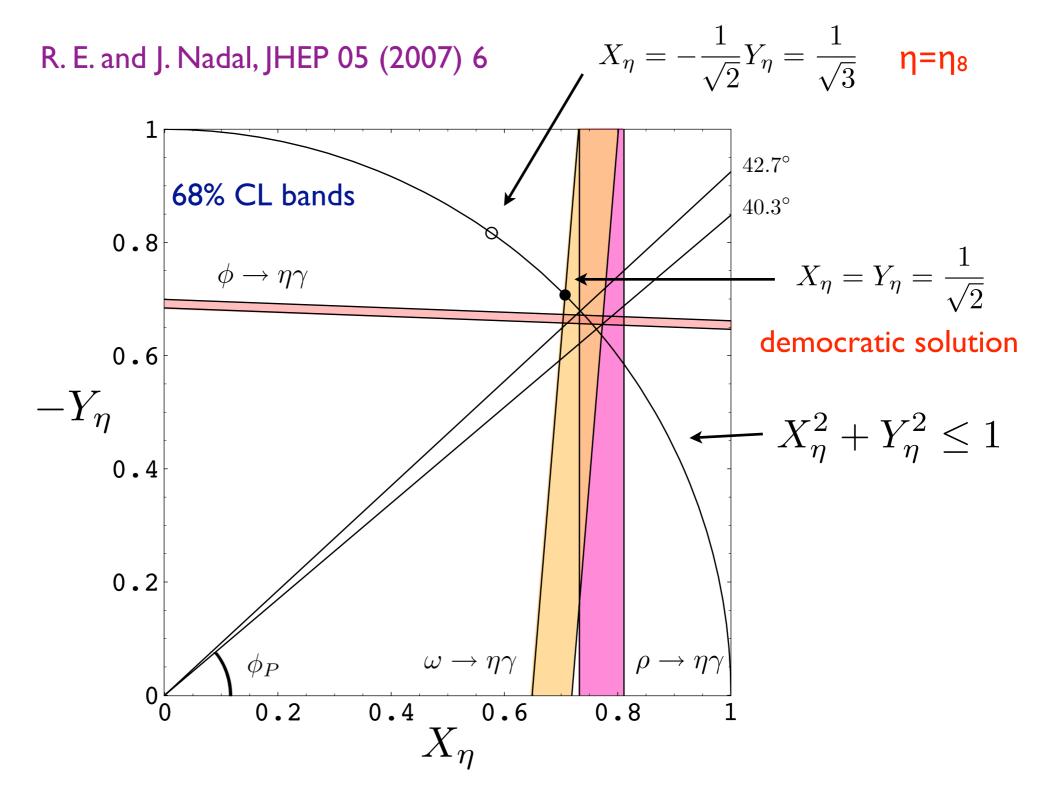
Transition	$g_{VP\gamma}^{\mathrm{exp}}(\mathrm{PDG})$	$g_{VP\gamma}^{ ext{th}}(ext{Fit 1})$	$g_{VP\gamma}^{ m th}({ m Fit}\ 2)$ no gluonium
$ ho^0 o \eta \gamma$	0.475 ± 0.024	0.461 ± 0.019	0.464 ± 0.030 gluonium
$\eta' ightarrow ho^0 \gamma$	0.41 ± 0.03	0.41 ± 0.02	0.40 ± 0.04
$\omega o \eta \gamma$	0.140 ± 0.007	0.142 ± 0.007	0.143 ± 0.010
$\eta' o \omega \gamma$	0.139 ± 0.015	0.149 ± 0.006	0.146 ± 0.014
$\phi \to \eta \gamma$	0.209 ± 0.002	0.209 ± 0.018	0.209 ± 0.013
$\phi o \eta' \gamma$	0.22 ± 0.01	0.22 ± 0.02	0.22 ± 0.02

iii) assuming $Z_{\eta'} = 0$ from the beginning, we get

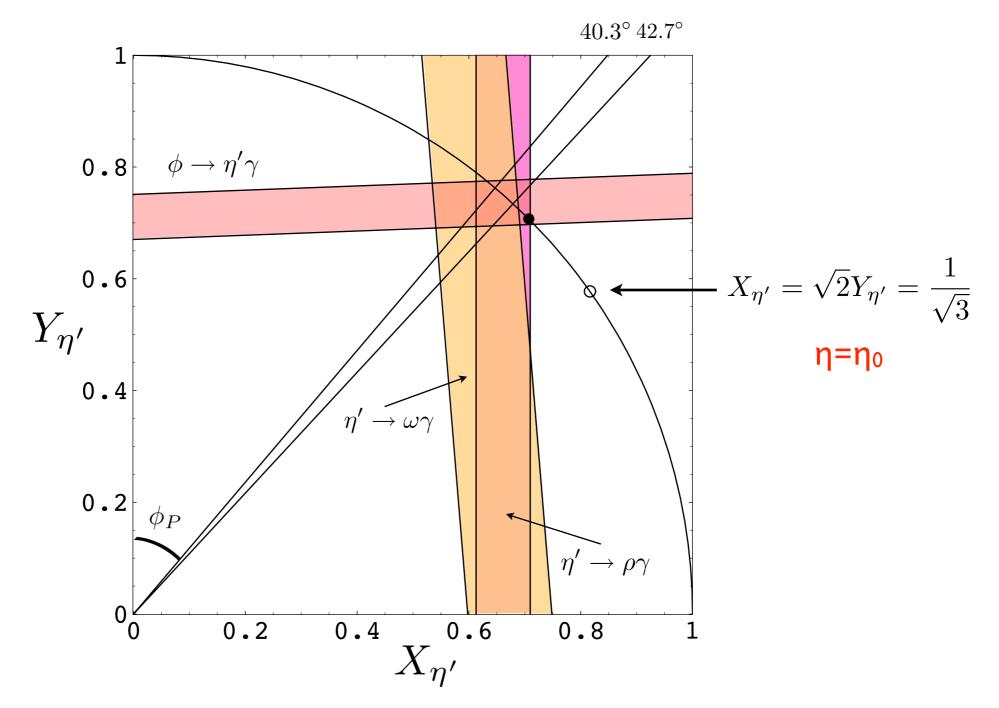
$$g = 0.72 \pm 0.01 \text{ GeV}^{-1}$$
, $\frac{m_s}{\bar{m}} = 1.24 \pm 0.07$, $\phi_V = (3.2 \pm 0.1)^\circ$, $\phi_P = (41.5 \pm 1.3)^\circ$) $|\phi_{\eta G}| \simeq 0^\circ$ $\chi^2/\text{d.o.f.}=4.4/4$ $z_q = 0.86 \pm 0.04$, $z_s = 0.78 \pm 0.06$, $z_K = 0.89 \pm 0.03$,

Accepting the absence of gluonium for the η ' meson, the gluonic content of the η wave function amounts to $|\phi_{\eta G}| \simeq 0^{\circ}$ or $(Z_{\eta})^2 = 0.00 \pm 0.12$ and the η - η ' mixing angle is found to be $|\phi_{P}| = (41.5 \pm 1.3)^{\circ}$

The current experimental data on VP γ transitions indicate within our model a negligible gluonic content for the η and η ' mesons


Using the latest experimental data on $(\rho, \omega, \phi) \rightarrow \eta \gamma$ (SND) and $\phi \rightarrow \eta' \gamma$ (KLOE), we get

$$\phi_P = (42.7 \pm 0.7)^{\circ}, \quad z_q = 0.83 \pm 0.03 \;, \quad z_s = 0.79 \pm 0.05 \;, \quad \chi^2/\text{d.o.f.} = 4.0/5$$
 $\phi_P = (42.6 \pm 1.1)^{\circ}, \quad |\phi_{\eta'G}| = (5 \pm 21)^{\circ}, \quad z_q = 0.83 \pm 0.03 \;, \quad z_s = 0.79 \pm 0.05 \;, \quad \chi^2/\text{d.o.f.} = 4.0/4$



confirmation of the null gluonic content of the η and η ' wave functions

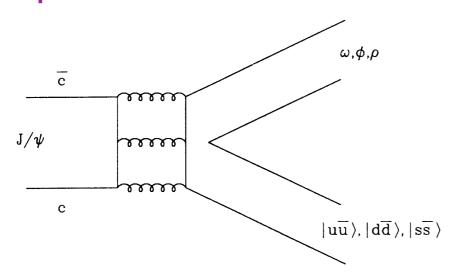
Transition	$g_{VP\gamma}^{ ext{exp}}(ext{latest})$	$g_{VP\gamma}^{ ext{th}}(ext{Fit} m{3})$	$g_{VP\gamma}^{ m th}({ m Fit}4)$ no gluonium
$ ho^0 o \eta \gamma$	0.429 ± 0.023	0.436 ± 0.017	0.437 ± 0.028 gluonium
$\eta' ightarrow ho^0 \gamma$	$0.41 \pm 0.03~(\mathrm{PDG})$	0.40 ± 0.02	0.40 ± 0.04
$\omega o \eta \gamma$	0.136 ± 0.007	0.134 ± 0.006	0.134 ± 0.009
$\eta' o \omega \gamma$	$0.139 \pm 0.015~\mathrm{(PDG)}$	0.146 ± 0.006	0.146 ± 0.013
$\phi o \eta \gamma$	0.214 ± 0.003	0.214 ± 0.017	0.214 ± 0.012
$\phi \to \eta' \gamma$	0.216 ± 0.005	0.216 ± 0.019	0.216 ± 0.018

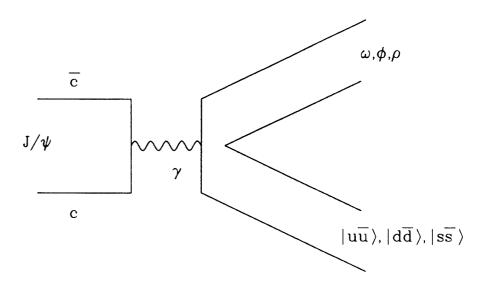
- \checkmark importance of φ→ηγ
- \checkmark importance of the slopes (ϕ_V)

✓ importance of constraining even more $\phi \rightarrow \eta' \gamma$

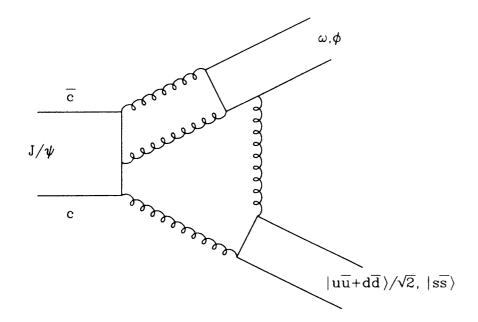
More refined data for this channel will contribute decisively to clarify this issue

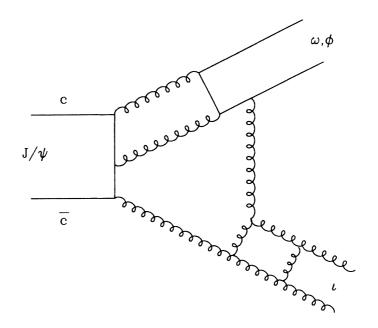
Table 1 $J/\psi \rightarrow VP$ analysis Experimental $J/\psi \rightarrow VP$ branching ratios from PDG [6] and results of our fits. BR's for all VP channels are in 10^{-3}


BR×10-3	PDG'97*	PDG'07	
$ ho\pi$ $K^{*+}K^- + \mathrm{c.c.}$	12.8 ± 1.0 5.0 ± 0.4	BABAR Coll., Phys. Rev. D70 (04) 072004 BES Coll., Phys. Rev. D70 (04) 012005	
$K^{*0}\bar{K}^0 + \text{c.c.}$ $\omega \eta$	4.2 ± 0.4 1.58 ± 0.16	= I.74±0.20 BABAR Coll., Phys. Rev. D73 (06) 052003	
$\omega\eta' \ \phi\eta$	0.167 ± 0.025 0.65 ± 0.07	0.182±0.021 BES Coll., Phys. Rev. D73 (06) 052007	
$\phi\eta' \ ho\eta$	0.33 ± 0.04 0.193 ± 0.023	0.40±0.07 BES Coll., Phys. Rev. D71 (05) 032003	
$ ho\eta^{\prime} \ \omega\pi^0$	0.105 ± 0.018 0.42 ± 0.06	= 0.45±0.05 BES Coll., Phys. Rev. D73 (06) 052007	
$\phi\pi^0$	*	<0.0064 C.L. 90% BES Coll., Phys. Rev. D71 (05) 032003 38 (88) 2695 1.0695 1.0695 1.0695 1.0695 1.075 ± 0.03	138
g s e	MARK III Coll., Phys. Rev. D3 DM2 Coll., Phys. Rev. D4	0.007 [0.021]	27
$egin{array}{c} heta_e \ r \end{array}$		1.29 ± 0.16 1.35 ± 0.16 -0.151 ± 0.00	6
X_{η}		0.794 ± 0.014 AUBERT,B 0.0786ABR 0.00 BAI 04H BES 6.0 BAI 04H BES 11.4	


listed in [6]; the upper limit for $BR(\phi\pi)$ has been established by [3]; and the nine remaining BR's, with relative experimental errors ranging from about 8 to 17 %, come from Refs. [3] and [4]. Altogether they constitute an excellent and exhaustive set of data

associated to "nnected to alently, "doubly of their contribution to the amplitude denoted by rg, with r < 1 being the results of the plant of the amplitude denoted by rg, with r < 1 being the results of the plant of the amplitude denoted by rg, with r < 1 being the results of the plant of t


• A model for $J/\psi \rightarrow VP$ transitions


Amplitudes:

strong singly disconnected (SOZI) \equiv g electromagnetic singly disconnected (eSOZI) \equiv e

strong doubly disconnected (DOZI) \equiv rg

DOZI for $J/\psi \rightarrow V + Glueball \equiv r'g$

• A model for $J/\psi \rightarrow VP$ transitions

Amplitudes:

TABLE VIII. General parametrization of amplitudes for $J/\psi \rightarrow P + V$.

Process	Amplitude	
$ ho^+\pi^-, ho^0\pi^0, ho^-\pi^+$	g + e	
K*+K-,K*-K+	$g(1-s)+e(1+s_e)$	
$K^{*0}\overline{K}^{0},\overline{K}^{*0}K^{0}$	$g(1-s)-e(2-s_e)$	
$\omega oldsymbol{\eta}$	$(g+e)X_{\eta} + \sqrt{2}rg[\sqrt{2}X_{\eta} + (1-s_{\rho})Y_{\eta}] + \sqrt{2}r'gZ_{\eta}$	
$\omega oldsymbol{\eta}'$	$(g+e)X_{\eta'} + \sqrt{2}rg[\sqrt{2}X_{\eta'} + (1-s_p)Y_{\eta'}] + \sqrt{2}r'gZ_{\eta'}$	
$b\eta$	$[g(1-2s)-2e(1-s_e)]Y_{\eta}+rg(1-s_v)[\sqrt{2}X_{\eta}+(1-s_p)Y_{\eta}]+r'g(1-s_p)Y_{\eta}$	
$b\eta'$	$[g(1-2s)-2e(1-s_e)]Y_{\eta'}+rg(1-s_v)[\sqrt{2}X_{\eta'}+(1-s_p)Y_{\eta'}]+r'g(1-s_p)Y_{\eta'}]$	
$p^0 \eta$	$3eX_n$	
$p^0 oldsymbol{\eta'}$	$3eX_{n'}$	
$\omega \pi^0$	$3e^{7}$	
$\phi\pi^0$	0	

A. Seiden et al., Phys. Rev. D38 (1988) 824

s, s_e , s_p and s_v are SU(3)-breaking parameters

Simplifications of our analysis:

- i) second order SU(3)-breaking contributions s_p and s_v are neglected
- ii) $x = 1-s_e = m/m_s$ with $m_s/m = 1.24\pm0.07$ and $\phi_V = (3.2\pm0.1)^\circ$
- iii) Z_{η} =0 from $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays R. E. and J. Nadal, JHEP 05 (2007) 6

R. E., arXiv:0807.4201 [hep-ph]

a) gluonium not allowed for η ' $Z_{\eta'}=0$

i) x=1 and
$$\phi_V=0^\circ$$
 $\chi^2/d.o.f.=3.4/4$ with $\phi_P=(40.2\pm 2.4)^\circ$

ii)
$$x=0.81\pm0.05$$
 and $\phi_V=(3.2\pm0.1)^\circ$ $\chi^2/d.o.f.=4.2/4$ with $\phi_P=(40.5\pm2.4)^\circ$

with $s=(29\pm3)\%$ and $|r|=(37\pm1)\%$ in i)

b) gluonium allowed for η' $Z_{\eta'}\neq 0$

i)
$$x=1$$
 and $\phi_V=0^\circ$ $\chi^2/d.o.f.=1.9/2$ with $\phi_P=(45.0\pm4.3)^\circ$ and $(Z_{\eta'})^2=0.30\pm0.15\pm0.38$

ii) as before
$$\chi^2/d.o.f.=3.0/2$$
 with $\varphi_P=(44.5\pm4.3)^\circ$ and $(Z_{\eta'})^2=0.28\pm0.16-0.44$

with $s=(27\pm3)\%$, $|r|=(36\pm8)\%$ and $|r'|=(12\pm22)\%$ in i)

Remarks:

- the effect of second order SU(3)-breaking contributions s_p and s_v is negligible
- the same fits with the pion modes removed are slightly better
- the same fits with the old data are worse, $\chi^2/d.o.f.=7.3/4$ vs. $\chi^2/d.o.f.=3.4/4$ for instance

• Summary of the $V \rightarrow P\gamma$ analysis and conclusions

We have performed a phenomenological analysis of radiative $V \rightarrow P\gamma$ and $P \rightarrow V\gamma$ decays with the purpose of determining the gluon content of the η and η ' mesons

I) The current experimental data on VP γ transitions indicate within our model a negligible gluonic content for the η and η ' mesons,

$$Z_{\eta}^2 = 0.00 \pm 0.12$$
 and $Z_{\eta'}^2 = 0.04 \pm 0.09$

- 2) Accepting the absence of gluonium for the η meson, the gluonic content of the η ' wave function amounts to $|\phi_{\eta'G}| = (12\pm13)^{\circ}$ or $(Z_{\eta'})^2 = 0.04\pm0.09$ and the η - η ' mixing angle is found to be $\phi_P = (41.4\pm1.3)^{\circ}$
- 3) The use of these different overlapping parameters (a specific feature of our analysis) is shown to be of primary importance in order to reach a good agreement
- 4) The latest experimental data on $(\rho, \omega, \phi) \rightarrow \eta \gamma$ and $\phi \rightarrow \eta' \gamma$ decays confirm the null gluonic content of the η and η' wave functions
- 5) More refined experimental data, particularly for the $\phi \rightarrow \eta' \gamma$ channel, will contribute decisively to clarify this issue

• Summary of the J/ ψ \rightarrow VP analysis and conclusions

We have performed an updated phenomenological analysis of an accurate and exhaustive set of $J/\psi \rightarrow VP$ decays with the purpose of determining the quark and gluon content of the η and η ' mesons

- I) The current experimental data on $J/\psi \rightarrow VP$ decays are described in terms of one mixing angle in a consistent way
- 2) Accepting the absence of gluonium for the η ' meson, the η - η ' mixing angle is found to be $\Phi_P = (40.2 \pm 2.4)^\circ$ or $\Theta_P = (-14.5 \pm 2.4)^\circ$, in agreement with recent phenomenological estimates
- 3) The values found for $(Z_{\eta'})^2=0.30+0.15-0.38$ or $\varphi_{\eta'G}=(33+10-24)^\circ$ suggest within the model some small gluonic component of the η'
- The inclusion of the vector mixing angle (not included in previous analyses)
 is irrelevant
- 5) The recent values of BR(J/ $\psi \rightarrow \rho \pi$) by BABAR and BES Coll. are crucial in order to get a consistent description of data