Low Energy Probes of CP Violation in a Flavor Blind MSSM

Wolfgang Altmannshofer

Euroflavour 08 September 22 - 26, 2008 Durham

Outline

based on:

WA, Andrzej Buras and Paride Paradisi

in preparation

- 2 The Flavor Blind MSSM
- Phenomenology of CP Violation in the FBMSSM

4 Summary

CP violation in the SM

Apart from the QCD θ term, the only source for CP violation in the SM is the phase in the CKM matrix.

CP violation from the CKM matrix can be visualized by Unitarity Triangles e.g.

$$V_{ub}V_{ud}^* + V_{cb}V_{cd}^* + V_{tb}V_{td}^* = 0$$

CP violation in the SM

Apart from the QCD θ term, the only source for CP violation in the SM is the phase in the CKM matrix.

CP violation from the CKM matrix can be visualized by Unitarity Triangles e.g.

$$V_{ub} V_{ud}^* + V_{cb} V_{cd}^* + V_{tb} V_{td}^* = 0$$

Impressive confirmation of the CKM picture for CP violation

1 CP Asymmetry in $B \rightarrow \psi K_S$ and $\sin 2\beta$

► Tree level decay → sensitivity to the phase of the mixing amplitude without NP in the decay amplitude

• in SM:
$$\operatorname{Arg}(M_{12}^d) = \operatorname{Arg}(V_{td}^2) = 2\beta$$

 $\sin 2eta \stackrel{ ext{SM}}{=} S^{ ext{exp.}}_{\psi extsf{K}_{ extsf{S}}} = 0.680 \pm 0.025$

1 CP Asymmetry in $B \rightarrow \psi K_S$ and $\sin 2\beta$

► Tree level decay → sensitivity to the phase of the mixing amplitude without NP in the decay amplitude

• in SM:
$$\operatorname{Arg}(M_{12}^d) = \operatorname{Arg}(V_{td}^2) = 2\beta$$

$$\sin 2eta \stackrel{ ext{SM}}{=} S^{ ext{exp.}}_{\psi extsf{K}_{ extsf{S}}} = 0.680 \pm 0.025$$

▶ In the SM also loop induced modes like $B \to \phi K_S$ and $B \to \eta' K_S$ give the same value

$$\mathbf{S}^{\mathrm{SM}}_{\boldsymbol{\phi}\mathrm{K}_{\mathrm{S}}}=\mathbf{S}^{\mathrm{SM}}_{\boldsymbol{\eta}'\mathrm{K}_{\mathrm{S}}}=\mathbf{S}^{\mathrm{SM}}_{\boldsymbol{\psi}\mathrm{K}_{\mathrm{S}}}=\sin 2\beta$$

1 CP Asymmetry in $B \rightarrow \psi K_S$ and $\sin 2\beta$

► Tree level decay → sensitivity to the phase of the mixing amplitude without NP in the decay amplitude

• in SM:
$$\operatorname{Arg}(M_{12}^d) = \operatorname{Arg}(V_{td}^2) = 2\beta$$

 $\sin 2eta \stackrel{ ext{SM}}{=} S^{ ext{exp.}}_{\psi extsf{K}_{ extsf{S}}} = 0.680 \pm 0.025$

► In the SM also loop induced modes like $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$ give the same value

$$S^{SM}_{\phi K_{\rm S}} = S^{SM}_{\eta' K_{\rm S}} = S^{SM}_{\psi K_{\rm S}} = \sin 2\beta$$

 $S_{\phi K_{\rm S}}^{\rm exp.} = 0.39 \pm 0.17$ $S_{\eta' K_{\rm S}}^{\rm exp.} = 0.61 \pm 0.07$ $\Rightarrow \text{New Phases in decays?}$

2 Tensions in the Unitarity Triangle

perform UT fit including only ϵ_K and $\Delta M_d / \Delta M_s$ using

- ▶ non perturbative parameter $B_{K} = 0.72 \pm 0.013 \pm 0.037$ (Antonio et al. '07)
- ► additional effective suppression factor in ϵ_{κ} : $\kappa_{\epsilon} = 0.92$ (Buras, Guadagnoli '08)

2 Tensions in the Unitarity Triangle

perform UT fit including only ϵ_K and $\Delta M_d / \Delta M_s$ using

- ▶ non perturbative parameter $B_{K} = 0.72 \pm 0.013 \pm 0.037$ (Antonio et al. '07)
- ► additional effective suppression factor in ϵ_{κ} : $\kappa_{\epsilon} = 0.92$ (Buras, Guadagnoli '08)

 \Rightarrow NP phase in B_d mixing?

 \Rightarrow Additional CP violation in K mixing?

2 Tensions in the Unitarity Triangle

perform UT fit including only ϵ_K and $\Delta M_d / \Delta M_s$ using

- ▶ non perturbative parameter $B_{K} = 0.72 \pm 0.013 \pm 0.037$ (Antonio et al. '07)
- ► additional effective suppression factor in ϵ_{κ} : $\kappa_{\epsilon} = 0.92$ (Buras, Guadagnoli '08)

 \Rightarrow NP phase in B_d mixing?

 \Rightarrow Additional CP violation in K mixing?

$$\Phi_{\mathcal{B}_{S}}^{\textit{NP}} = (19.9^{\circ} \pm 5.6^{\circ}) \cup (68.2^{\circ} \pm 4.9^{\circ})$$

 \Rightarrow Large B_s mixing phase?

In the Unitarity Triangle

perform UT fit including only ϵ_K and $\Delta M_d / \Delta M_s$ using

- ▶ non perturbative parameter $B_{K} = 0.72 \pm 0.013 \pm 0.037$ (Antonio et al. '07)
- ► additional effective suppression factor in ϵ_{κ} : $\kappa_{\epsilon} = 0.92$ (Buras, Guadagnoli '08)

A Flavor Blind MSSM with CP Violating Phases

In a flavor blind MSSM (FBMSSM) there are no additional flavor structures apart from the CKM matrix. In particular, we assume universal squark masses and diagonal trilinear couplings.

 \Rightarrow no gluino contributions to FCNCs

Parameters of a flavor blind MSSM

- ► Higgs sector: $\tan \beta$, $M_{H^{\pm}}$
- ► Higgsino mass: µ
- ► Gaugino masses: *M*₁, *M*₂, *M*₃
- ▶ squark masses: m_Q^2 , m_U^2 , m_D^2
- ► trilinear couplings: A_d , A_s , A_b , A_u , A_c , A_t

The Higgsino and Gaugino masses as well as the trilinear couplings can in general be complex.

Observables only depend on particular combinations of complex parameters.

A Flavor Blind MSSM with CP Violating Phases

Main role is played by one complex parameter combination

 μA_t

 \rightarrow Interesting correlated effects in CP violating observables

WA, Buras, Paradisi '08

$$\mathcal{BR}[B o X_{
m S} \gamma]^{
m exp.} = (3.52 \pm 0.25) imes 10^{-4}$$
 HFAG '08 $\mathcal{BR}[B o X_{
m S} \gamma]^{
m SM} = (3.15 \pm 0.23) imes 10^{-4}$ Misiak et al. '06

- $b \rightarrow s\gamma$ amplitude is helicity suppressed
- typically large NP effects, even in a FBMSSM with low $\tan \beta$

$$\mathcal{BR}[B o X_{s}\gamma]^{ ext{exp.}}=(3.52\pm0.25) imes10^{-4}$$
 HFAG '08 $\mathcal{BR}[B o X_{s}\gamma]^{ ext{SM}}=(3.15\pm0.23) imes10^{-4}$ Misiak et al. '06

- $b \rightarrow s\gamma$ amplitude is helicity suppressed
- typically large NP effects, even in a FBMSSM with low $\tan \beta$

$$\mathcal{BR}[B o X_{
m s}\gamma]^{
m exp.}=(3.52\pm0.25) imes10^{-4}$$
 HFAG '08 $\mathcal{BR}[B o X_{
m s}\gamma]^{
m SM}=(3.15\pm0.23) imes10^{-4}$ Misiak et al. '06

- $b \rightarrow s\gamma$ amplitude is helicity suppressed
- typically large NP effects, even in a FBMSSM with low $\tan \beta$

$$\mathcal{C}_{7,8}^{\tilde{\chi}^{\pm}}(\mu_{\text{SUSY}}) \simeq \frac{m_t^2}{\bar{m}_t^4} A_t \mu \tan \beta \times f_{7,8} \left(\frac{|\mu|^2}{\bar{m}_t^2}\right) \qquad \qquad \underbrace{\overset{b_R}{\underset{t_L}{\overset{\mu}{\longrightarrow}}} \overset{\mu}{\underset{t_L}{\overset{\mu}{\longrightarrow}}} \overset{s_L}{\underset{t_R}{\overset{\nu}{\longrightarrow}}}}_{\overset{\gamma}{\xrightarrow{}}_{\mathcal{I}_{2\gamma}, q}}$$

 $\mathcal{BR}[B \to X_{\text{S}}\gamma] \propto |\mathcal{C}_7^{\text{SM}}(m_b) + \mathcal{C}_7^{\text{NP}}(m_b)|^2 \simeq |\mathcal{C}_7^{\text{SM}}(m_b)|^2 + 2\text{Re}(\mathcal{C}_7^{\text{SM}}(m_b)\mathcal{C}_7^{\text{NP}}(m_b))$

 \rightarrow Constraint on Re(μA_t)

Wolfgang Altmannshofer (TUM)

CP Violation in a Flavor Blind MSSM

► In the MSSM, EDMs can be induced already at the 1loop level → typically tight constraints on CP violating phases

- ► In the MSSM, EDMs can be induced already at the 1loop level → typically tight constraints on CP violating phases
- ► Example: Gluino contribution to the up-quark EDM

$$d_{u} \simeq rac{eg_{s}^{2}}{16\pi^{2}}m_{u}rac{\mathrm{Im}(M_{ ilde{g}}A_{u}^{*})}{ar{m}_{ ilde{u}}^{4}}F\left(rac{|M_{ ilde{g}}|^{2}}{ar{m}_{ ilde{u}}^{2}}
ight)$$

- ► In the MSSM, EDMs can be induced already at the 1loop level → typically tight constraints on CP violating phases
- ► Example: Gluino contribution to the up-quark EDM

Constraints can be avoided by e.g.

- ▶ hierarchical trilinear couplings $A_{u,c} \ll A_t$, $A_{d,s} \ll A_b$
- ▶ heavy 1st and 2nd generation of squarks

But: sizeable effects in flavor observables still possible, as 3rd generation squarks enter

Chang, Keung, Pilaftsis '98

2-loop Barr-Zee type diagrams generating both lepton and quark EDMs

- sensitive to 3rd generation of squarks
- decouple with $1/\max(M_{A^0}^2, m_{\tilde{t}}^2)$

 $d_f \propto \text{Im}(\mu A_t)$

Chang, Keung, Pilaftsis '98

2-loop Barr-Zee type diagrams generating both lepton and quark EDMs

- sensitive to 3rd generation of squarks
- decouple with $1/\max(M_{A^0}^2, m_{\tilde{t}}^2)$

 $d_f \propto \text{Im}(\mu A_t)$

 \rightarrow Constraint on Im(μA_t)

CP Asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$

Time dependent CP Asymmetries in decays of neutral B mesons to final CP Eigenstates

$$\begin{aligned} \mathcal{A}_{CP}(t,\phi K_{S}) &= \frac{\Gamma(\mathcal{B}(t) \to \phi K_{S}) - \Gamma(\bar{\mathcal{B}}(t) \to \phi K_{S})}{\Gamma(\mathcal{B}(t) \to \phi K_{S}) + \Gamma(\bar{\mathcal{B}}(t) \to \phi K_{S})} \\ &= C_{\phi K_{S}} \cos(\Delta M_{d} t) - S_{\phi K_{S}} \sin(\Delta M_{d} t) \end{aligned}$$

$$S_{\phi K_{\rm S}} = -\frac{2 {\rm Im}(\xi_{\phi K_{\rm S}})}{1+|\xi_{\phi K_{\rm S}}|^2} \ , \ \xi_{\phi K_{\rm S}} = {\rm e}^{-i {\rm Arg}(M_{\rm 12}^d)} \frac{{\rm A}(\bar{B} \to \phi K_{\rm S})}{{\rm A}(B \to \phi K_{\rm S})}$$

CP Asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$

Time dependent CP Asymmetries in decays of neutral B mesons to final CP Eigenstates

$$A_{CP}(t,\phi K_{S}) = \frac{\Gamma(B(t) \to \phi K_{S}) - \Gamma(\bar{B}(t) \to \phi K_{S})}{\Gamma(B(t) \to \phi K_{S}) + \Gamma(\bar{B}(t) \to \phi K_{S})}$$
$$= C_{\phi K_{S}} \cos(\Delta M_{d} t) - S_{\phi K_{S}} \sin(\Delta M_{d} t)$$

$$S_{\phi K_{\rm S}} = -\frac{2 {\rm Im}(\xi_{\phi K_{\rm S}})}{1+|\xi_{\phi K_{\rm S}}|^2} \ , \ \xi_{\phi K_{\rm S}} = {\rm e}^{-i {\rm Arg}(M_{12}^d)} \frac{{\it A}(\bar{B} \to \phi K_{\rm S})}{{\it A}(B \to \phi K_{\rm S})}$$

▶ sizeable, correlated effects in $S_{\phi K_S}$ and $S_{\eta' K_S}$

▶ larger effects in $S_{\phi K_S}$ as indicated by the data

CP Asymmetries in $B \rightarrow \phi K_S$ and $B \rightarrow \eta' K_S$

Time dependent CP Asymmetries in decays of neutral B mesons to final CP Eigenstates

$$\begin{aligned} \mathcal{A}_{CP}(t,\phi\mathcal{K}_{S}) &= \frac{\Gamma(\mathcal{B}(t)\to\phi\mathcal{K}_{S}) - \Gamma(\bar{\mathcal{B}}(t)\to\phi\mathcal{K}_{S})}{\Gamma(\mathcal{B}(t)\to\phi\mathcal{K}_{S}) + \Gamma(\bar{\mathcal{B}}(t)\to\phi\mathcal{K}_{S})} \\ &= C_{\phi\mathcal{K}_{S}}\cos(\Delta\mathcal{M}_{d}t) - S_{\phi\mathcal{K}_{S}}\sin(\Delta\mathcal{M}_{d}t) \end{aligned}$$

$$S_{\phi K_{S}} = -rac{2 \text{Im}(\xi_{\phi K_{S}})}{1 + |\xi_{\phi K_{S}}|^{2}} \ , \ \xi_{\phi K_{S}} = e^{-i\text{Arg}(M_{12}^{d})} rac{A(ar{B} o \phi K_{S})}{A(B o \phi K_{S})}$$

- ▶ sizeable, correlated effects in $S_{\phi K_S}$ and $S_{\eta' K_S}$
- ▶ larger effects in $S_{\phi K_s}$ as indicated by the data
- For S_{φK_S} ≃ 0.4, lower bounds on the electron and neutron EDMs:

$$d_e\gtrsim 5 imes 10^{-28} ecm$$
 , $d_n\gtrsim 8 imes 10^{-28} ecm$

Direct CP Asymmetry in $b \rightarrow s\gamma$

Soares '91; Kagan, Neubert '98

$$A_{CP}^{bs\gamma} = \frac{\Gamma(\bar{B} \to X_s\gamma) - \Gamma(B \to X_{\bar{s}}\gamma)}{\Gamma(\bar{B} \to X_s\gamma) + \Gamma(B \to X_{\bar{s}}\gamma)}$$

- arises first at order α_s
- doubly Cabibbo and GIM suppressed in the SM
- sizeable value would be clear signal for New Physics

$$\begin{split} A_{CP}^{bs\gamma}(\text{SM}) &\simeq (0.44_{-0.14}^{+0.24})\% & \text{Hurth, Lunghi, Porod '03} \\ \\ A_{CP}^{bs\gamma}(\text{exp.}) &\simeq (0.4 \pm 3.6)\% & \text{HFAG} \\ \\ A_{CP}^{bs\gamma} &\simeq \frac{\alpha_8}{|C_7|^2} \left(b_{27} \text{Im}(C_2 C_7^*) + b_{87} \text{Im}(C_8 C_7^*) + b_{28} \text{Im}(C_2 C_8^*) \right) \end{split}$$

Direct CP Asymmetry in $b \rightarrow s\gamma$

Soares '91; Kagan, Neubert '98

$$A_{CP}^{bs\gamma} = \frac{\Gamma(\bar{B} \to X_s\gamma) - \Gamma(B \to X_{\bar{s}}\gamma)}{\Gamma(\bar{B} \to X_s\gamma) + \Gamma(B \to X_{\bar{s}}\gamma)}$$

- arises first at order α_s
- doubly Cabibbo and GIM suppressed in the SM
- sizeable value would be clear signal for New Physics

$$\begin{split} A^{bs\gamma}_{CP}(\text{SM}) &\simeq (0.44^{+0.24}_{-0.14})\% & \text{Hurth, Lunghi, Porod '03} \\ \\ A^{bs\gamma}_{CP}(\text{exp.}) &\simeq (0.4 \pm 3.6)\% & \text{HFAG} \\ \\ A^{bs\gamma}_{CP} &\simeq \frac{\alpha_s}{|C_7|^2} \left(b_{27} \text{Im}(C_2 C_7^*) + b_{87} \text{Im}(C_8 C_7^*) + b_{28} \text{Im}(C_2 C_8^*) \right) \\ \\ \hline \end{split}$$

- ► For $S_{\phi K_S} < S_{\phi K_S}^{SM}$, $A_{CP}^{bs\gamma}$ is unambiguously positive
- ▶ values typically in the range 1% 6%

CP Violation in $\Delta F = 2$ transitions

- **1** Phases in the B_d and B_s mixing amplitudes
- Leading NP contributions to M^d₁₂ and M^s₁₂ turn out to be insensitive to the new phases of a flavor blind MSSM.

$$\operatorname{Arg}(M_{12}^{d,s}) \simeq \operatorname{Arg}(M_{12}^{d,s}(SM))$$

 $\rightarrow S_{\psi K_S}$ and $S_{\psi \phi}$ are SM like

10-29 10-255 10-25 10-27.5 10-27 10-255 10-26

ABP'08

CP Violation in $\Delta F = 2$ transitions

- Phases in the B_d and B_s mixing amplitudes
- Leading NP contributions to M^d₁₂ and M^s₁₂ turn out to be insensitive to the new phases of a flavor blind MSSM.

$$\operatorname{Arg}(M_{12}^{d,s}) \simeq \operatorname{Arg}(M_{12}^{d,s}(SM))$$

ightarrow $S_{\psi K_{
m S}}$ and $S_{\psi \phi}$ are SM like

- 2 CP violation in K mixing
- Also M_{12}^{K} has no sensitivity to the new phases
- Still, *ϵ_K* ∝ Im(*M*^K₁₂) can get a positive NP contribution up to 15%
- ▶ But only for a very light SUSY spectrum: μ , $m_{\tilde{t}_1} \simeq 200 {\rm GeV}$

- ▶ $S_{\psi \kappa_s}$ and $\Delta M_d / \Delta M_s$ basically NP free
- UT can be constructed from the angle β and the side R_t

$$\sin 2\beta = S_{\psi K_S} = 0.680 \pm 0.025$$

$$R_t = \xi \frac{1}{\lambda} \sqrt{\frac{m_{B_s}}{m_{B_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_s}} = 0.913 \pm 0.033$$

- ▶ $S_{\psi \kappa_s}$ and $\Delta M_d / \Delta M_s$ basically NP free
- UT can be constructed from the angle β and the side R_t

 $\sin 2\beta = S_{\psi \kappa_S} = 0.680 \pm 0.025$

$$R_t = \xi \frac{1}{\lambda} \sqrt{\frac{m_{B_s}}{m_{B_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_s}} = 0.913 \pm 0.033$$

Predictions for $|V_{ub}|$ and the angle γ $|V_{ub}| = (3.5 \pm 0.2) \times 10^{-3}$ $\gamma = 63.5^\circ \pm 4.7^\circ$

- ▶ $S_{\psi \kappa_s}$ and $\Delta M_d / \Delta M_s$ basically NP free
- UT can be constructed from the angle β and the side R_t

 $\sin 2\beta = S_{\psi K_{\rm S}} = 0.680 \pm 0.025$

$$R_t = \xi \frac{1}{\lambda} \sqrt{\frac{m_{\mathsf{B}_{\mathsf{S}}}}{m_{\mathsf{B}_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_{\mathsf{S}}}} = 0.913 \pm 0.033$$

Predictions for $|V_{ub}|$ and the angle γ $|V_{ub}|=(3.5\pm0.2) imes10^{-3}$ $\gamma=63.5^\circ\pm4.7^\circ$

 ϵ_{κ} constraint ($B_{\kappa} = 0.75 \pm 0.07$)

- ▶ $S_{\psi \kappa_s}$ and $\Delta M_d / \Delta M_s$ basically NP free
- UT can be constructed from the angle β and the side R_t

 $\sin 2\beta = S_{\psi \kappa_S} = 0.680 \pm 0.025$

$$R_t = \xi \frac{1}{\lambda} \sqrt{\frac{m_{\mathsf{B}_{\mathsf{S}}}}{m_{\mathsf{B}_d}}} \sqrt{\frac{\Delta M_d}{\Delta M_{\mathsf{S}}}} = 0.913 \pm 0.033$$

Predictions for $|V_{ub}|$ and the angle γ $|V_{ub}| = (3.5 \pm 0.2) \times 10^{-3}$ $\gamma = 63.5^\circ \pm 4.7^\circ$

 ϵ_{K} constraint ($B_{K} = 0.75 \pm 0.07$) and with +10% NP corrections

Implications for direct searches of SUSY particles

- \blacktriangleright $S_{\phi K_{
 m S}} \simeq$ 0.4 implies $\mu \lesssim$ 600GeV and $m_{ ilde{t}_{
 m I}} \lesssim$ 700GeV
- ▶ similarly, large non standard effects in $A_{CP}^{bs\gamma} \gtrsim 2\%$ imply $\mu \lesssim 600$ GeV and $m_{\tilde{t}_1} \lesssim 800$ GeV

Summary

In the flavor blind MSSM sizeable, correlated effects in $S_{\phi K_s}$ and $S_{n'K_s}$ are possible. Such effects imply:

► lower bounds on the electron and neutron EDMs at the level of d_{e,n} ≥ 10⁻²⁸ ecm

► a positive, sizeable direct CP asymmetry $A_{CP}^{bs\gamma} \simeq 1\% - 6\%$

Summary

In the flavor blind MSSM sizeable, correlated effects in $S_{\phi K_s}$ and $S_{n'K_s}$ are possible. Such effects imply:

- ► lower bounds on the electron and neutron EDMs at the level of d_{e,n} ≥ 10⁻²⁸ ecm
- ▶ a positive, sizeable direct CP asymmetry $A_{CP}^{bs\gamma} \simeq 1\% 6\%$

In addition, within the framework of the FBMSSM, there are

- ▶ small effects in $S_{\psi\phi} \simeq 0.03 0.05$
- ▶ small effects in $S_{\psi K_s}$ and in $\Delta M_d / \Delta M_s$ ⇒ The Unitarity Triangle can be constructed from the side R_t and the angle β . Predictions: $|V_{ub}| = (3.5 \pm 0.2) \times 10^{-3}$ and $\gamma = 63.5^\circ \pm 4.7^\circ$.
- ▶ positive NP effects in ϵ_K up to 15%

Back Up

The Anomalous Magnetic Moment of the Muon

$$a_{\mu}^{ ext{exp.}} = ext{1165920.80(63)} imes ext{10}^{-9}$$
 Muon (g-2) collaboration

$$a_{\mu}^{
m SM} =$$
 1165917.85(61) $imes$ 10⁻⁹

$$\Delta \pmb{a}_{\mu}=\pmb{a}_{\mu}^{ extsf{exp.}}-\pmb{a}_{\mu}^{ extsf{SM}}\simeq(3\pm1) imes10^{-9}$$

Miller et al. '07

 $\simeq 3\sigma$ discrepancy

A very rough formula for SUSY contributions to a_{μ}

$$a_{\mu}^{
m SUSY} \simeq 1.5 \left(rac{ aneta}{10}
ight) \left(rac{300 {
m GeV}}{m_{ ilde{\ell}}}
ight)^2 {
m sign}({
m Re}(\mu)) imes 10^{-9}$$

with common SUSY mass $m_{\tilde{\ell}}$

 $S_{\phi K_S} \simeq 0.4$ naturally leads to $a_{\mu}^{
m SUSY} \simeq {
m few} imes 10^{-9}$

Wolfgang Altmannshofer (TUM)