

Dispersive analysis of $K \to 3\pi$ and cusps*

Martin Zdráhal^{1,2}, Karol Kampf^{1,3}

 1 IPNP, Charles University, Czech Republic 2 Faculty of Physics, University of Vienna, Austria 3 PSI, Switzerland

 $\underline{\mathsf{martin.zdrahal}} {\in} \mathsf{univie.ac.at}, \ \mathsf{karol.kampf} {\in} \mathsf{psi.ch}$

Durham, September 2008

*Work in progress in collaboration with M. Knecht and J. Novotný

Outline:

- What is the cusp?
- Theoretical approaches overview of existing approaches
- Dispersive approach
 - introduction to dispersive analysis
 - first iteration results at $O(p^4)$
 - sketch of second iteration $(O(p^6))$
- Conclusions

What is the cusp?

Decay $K^+ \to \pi^+ \pi^0 \pi^0$ - $6 \cdot 10^8$ reconstructed events at NA48/2 x 10 2

Pictures taken from L. DiLella, Kaon 07

What is the cusp?

Decay $K^+ \to \pi^+ \pi^0 \pi^0$ - $6 \cdot 10^8$ reconstructed events at NA48/2 x 10² x 10² 2500 3000 Events / bin 2000 2250 2000 1500 Events 1500 2000 1250 1500 1000 750 1000 500 4m_2 250 4m_2 500 0.074 0.076 $0.078 \quad 0.08 \\ M_{00}^{2} (GeV^{2})$ 0.082 0.084 0

Pictures taken from L. DiLella, Kaon 07

0.08

0.11

0.12

0.13

0.09 0.1 M₀₀² (GeV²)

Theory – Why is the cusp?

Cabibbo '04

Amplitude for $K^+ \to \pi^+ \pi^0 \pi^0$: $\mathcal{M}_0 + \mathcal{M}_1$, schematically:

Theory – Why is the cusp?

Cabibbo '04

Amplitude for $K^+ \to \pi^+ \pi^0 \pi^0$: $\mathcal{M}_0 + \mathcal{M}_1$, schematically:

•
$$\bar{J}_m(s) \sim 2 + v \log \frac{v-1}{v+1} = \frac{1}{\log v} \approx i\pi v + \text{regul.} \implies \mathcal{M}_1 \sim i\pi v$$

 \bullet thus we have square root singularity at $4m_+^2$ above physical threshold $4m_0^2$ and

$$|\mathcal{M}|^2 = \begin{cases} (\mathcal{M}_0)^2 + (\mathcal{M}_1)^2 + 2\mathcal{M}_0\mathcal{M}_1 &: s < 4m_+^2 \\ (\mathcal{M}_0)^2 + (i\mathcal{M}_1)^2 &: s > 4m_+^2 \end{cases}$$

ullet depends on the scattering length of $\pi\pi$ Meißner, Müller, Steininger '97

Where is the cusp?

The same should appear for the $K_L \to \pi^0 \pi^0 \pi^0$

This second cusp is much weaker – roughly:

(Cabibbo, Isidori '05, DiLella – Kaon07)

• Decay $K^+ \to \pi^+ \pi^0 \pi^0$

$$\frac{\text{"cusp effect"}}{\text{"size of amplitude"}} \sim \left. \frac{A_{+;+-}A_{+;00} + A_{+;+-}A_{+;00}}{|A_{+;00}|^2} \right|_{\text{"branch. point}}$$

 ≈ 6

• Decay $K_L \to \pi^0 \pi^0 \pi^0$

"size of amplitude"
$$\sim \frac{A_{L;+-}A_{L;00}}{|A_{L;00}|^2} \Big|_{\text{"branch, point"}} pprox 0.5$$

Where is the cusp?

The same should appear for the $K_L \to \pi^0 \pi^0 \pi^0$

This second cusp is much weaker

Decay $K_L o \pi^0 \pi^0 \pi^0$ - $9 \cdot 10^8$ reconstructed events at NA48/2

Pictures taken from L. DiLella, Kaon07

Where is the cusp?

The same should appear for the $K_L \to \pi^0 \pi^0 \pi^0$

This second cusp is much weaker

Decay $K_L o \pi^0 \pi^0 \pi^0$ - $9 \cdot 10^8$ reconstructed events at NA48/2

However, it is **seen** both at KTeV and NA48/2!!

- NA48/2: not published yet
- KTeV: arXiv:0806.3535

Pictures taken from L. DiLella, Kaon07

Theoretical approaches - Overview

- a direct computation from χPT (with weak part)
 - Bijnens, Borg '04, '04, '05
 - up to now just NLO
 - includes isospin breaking and elmag. corrections

b use of analyticity and unitarity

- Cabibbo '04
- Cabibbo, Isidori '05
- Gámiz, Prades, Scimemi '06
- full dispersive approach ← this talk

c Nonrelativistic QFT

- Colangelo, Gasser, Kubis, Rusetsky, Bissegger, Fuhrer '06, '07, '08
 - nonrelativistic approach
 - double expansion in velocities and scattering lengths
 - possible to add photons (cf. Gevorkyan, (Madigozhin), Tarasov, Voskresenskaya '06, '07)
 - interesting alternative approach

Theoretical approaches - Overview

- a direct computation from χPT (with weak part)
 - Bijnens, Borg '04, '04, '05
 - up to now just NLO
 - includes isospin breaking and elmag. corrections

b use of analyticity and unitarity

- Cabibbo '04
- Cabibbo, Isidori '05
- Gámiz, Prades, Scimemi '06
- full dispersive approach ← this talk

c Nonrelativistic QFT

- Colangelo, Gasser, Kubis, Rusetsky, Bissegger, Fuhrer '06, '07, '08
 - nonrelativistic approach
 - double expansion in velocities and scattering lengths
 - possible to add photons (cf. Gevorkyan, (Madigozhin), Tarasov, Voskresenskaya '06, '07)
 - interesting alternative approach

Theoretical approaches - Use of analyticity and unitarity

	Cabibbo 04	Cabibbo, Isidori 05	Gámiz, Prades, Scimemi 06	Dispersive approach 08
Order	$\frac{1}{2}$ NLO	NNLO	NNLO	NNLO
Ass'tions (inputs)	$O(p^2)K o 3\pi =$ first order polynomial	real part of $A_{+;00} \approx$ second order polynomial	real part of $A_{+;00} \approx$ isospin symm. result of $\chi {\rm PT}$	$O(p^2)$ amplitudes = first order polynomial
Parametri- zation	$A_{+;00} = \begin{cases} A + Bv(s) & s > 4m_{+}^{2}, \\ A + iBv(s) & s < 4m_{+}^{2}, \end{cases} v(s) = \sqrt{\frac{ s - 4m_{+}^{2} }{s}}$			$A_{+;00} = \mathrm{Re} + \mathrm{Im}$
Method of computation	direct computation: $\pi\pi$ - scattering \rightarrow toy model Lagrangian	imaginary part of the amplitude - given by unitarity relations		discontinuity (~im.part) - given by (generalised) unitarity relations the full amplitude - given by reconstruction theorem from discontinuity
Problem of method	omits diagram	assumes simple analytic structure of the amplitude \Rightarrow some contributions are missed out		the correct analytic structure of amplitudes and the correct integration contours taken into account → complicated

Theoretical approaches - Use of analyticity and unitarity

Our dispersive approach

- discontinuity (\sim imaginary part) of $A_{+;00}$ given by (generalised) unitarity relations
- the full amplitude given by reconstruction theorem from this discontinuity
- includes second order rescattering
- the correct analytic structure of the amplitudes and correct integration contours taken into account
- does not take explicitly into account photons
- \Rightarrow full-featured approach based just on the unitarity, analyticity (subtracted dispersion relations), crossing symmetry and chiral power-counting

Dispersive approach

- for now we ignore photons, CP violation
- instead of computing $K\to\pi\pi\pi$ amplitudes directly, we use crossing symmetry (analytic continuation) of the $K\pi\to\pi\pi$ amplitudes to the decay region
- partial wave decomposition: $A(s,t,u) = 16\pi (f_0(s) + 3f_1(s)\cos\theta) + A_{\ell \geq 2}$, $\operatorname{Re} A_{\ell \geq 2} \sim O(p^4)$, $\operatorname{Im} A_{\ell \geq 2} \sim O(p^8)$, $\operatorname{Re} f_{0,1}(s) \sim O(p^2)$, $\operatorname{Im} f_{0,1}(s) \sim O(p^4)$.

Reconstruction theorem

Assuming validity of (subtracted) DR's (and further conditions), we can reconstruct the amplitude of the process $AB \to CD$: Stern, Sazdjian, Fuchs '93

M.Z., Novotný '08

$$S(s,t;u) = R + \Phi_0(s) + [s(t-u) + (m_A^2 - m_B^2)(m_C^2 - m_D^2)]\Phi_1(s) + \text{crossed channels} + O(p^8),$$

R - third order polynomial in s,t,u with same symmetries as S(s,t;u),

$$\Phi_0(s) = 16s^3 \int_{\Sigma}^{\infty} \frac{dx}{x^3} \frac{\operatorname{Im} f_0(x)}{x - s},$$

$$\Phi_1(s) = 48s^3 \int_{\Sigma}^{\infty} \frac{dx}{x^3} \frac{\operatorname{Im} f_1(x)}{(x - s)\lambda_{AD}^{1/2}(x)\lambda_{CD}^{1/2}(x)},$$

and similar for the t- and u- crossed channel $\left[\lambda_{XY}(s)=\left(s-(m_X+m_Y)^2\right)\left(s-(m_X-m_Y)^2\right)\right]$

Dispersive approach

Unitarity relation

Assuming T-invariance and the real analyticity of the amplitude, the unitarity relation gives for the partial waves

$$\begin{split} & \text{Im} \ f_{\ell}^{i \to f}(s) = \sum_{(1,2)} \frac{1}{S} \frac{\lambda^{1/2}(s, m_1^2, m_2^2)}{s} f_{\ell}^{i \to (k_1, k_2)}(s) \left[f_{\ell}^{f \to (k_1, k_2)}(s) \right]^* \theta(s - (m_1 + m_2)^2) \\ & S = \mathbf{1(2)} \ \text{for (un)} \\ & \text{distinguishable states} \ k_1, \ k_2 \end{split}$$

- in the low-energy region the intermediate states other than those containing pairs of pseudoscalar mesons are suppressed up to ${\cal O}(p^8)$
- intermediate states other than $\pi\pi$ induce singularities far from the central region of Dalitz plot of $K\to\pi\pi\pi$ processes \Rightarrow can be expanded in series and included into the polynomial

Application of the dispersive approach

Application of the dispersive approach

Application of the dispersive approach

First iteration - illustration on $K_L \to \pi^0 \pi^0 \pi^0$

 The reconstruction theorem and crossing symmetry says that amplitude looks like

$$\begin{split} \mathcal{A}_{L;00}(s,t,u) &= \mathrm{P}_{L;00} + \Phi_0^{L;00}(s) + \Phi_0^{L;00}(t) + \Phi_0^{L;00}(u) + O(p^8) \\ \text{with the polynomial } \left[s_0^L = 1/3 M_K^2 + m_0^2, \quad C_F = -\frac{3}{5} V_{us}^* V_{ud} \frac{G_F}{\sqrt{2}} \right] \\ \mathrm{P}_{L;00} &= C_F \left(A_{00}^L M_K^2 + \left\{ C_{00}^L [(s-s_0^L)^2] + E_{00}^L [(s-s_0^L)^3] \right\} + \left\{ s \leftrightarrow t \right\} + \left\{ s \leftrightarrow u \right\} \right). \end{split}$$

First iteration - illustration on $K_L \to \pi^0 \pi^0 \pi^0$

 The reconstruction theorem and crossing symmetry says that amplitude looks like

$$\begin{split} \mathcal{A}_{L;00}(s,t,u) &= \mathrm{P}_{L;00} + \Phi_0^{L;00}(s) + \Phi_0^{L;00}(t) + \Phi_0^{L;00}(u) + O(p^8) \\ \text{with the polynomial } \left[s_0^L = 1/3M_K^2 + m_0^2, \quad C_F = -\frac{3}{5}V_{us}^*V_{ud}\frac{G_F}{\sqrt{2}} \right] \\ \mathrm{P}_{L;00} &= C_F \left(A_{00}^L M_K^2 + \left\{ C_{00}^L [(s-s_0^L)^2] + E_{00}^L [(s-s_0^L)^3] \right\} + \left\{ s \leftrightarrow t \right\} + \left\{ s \leftrightarrow u \right\} \right). \end{split}$$

• To compute $O(p^4)$ $\Phi_0^{L;00}(s)$ from the unitarity relation we need $O(p^2)$ intermediate amplitude: $\left[s_\pm^L=1/3(M_K^2+m_0^2+2m_+^2)\right]$

First iteration - illustration on $K_L \to \pi^0 \pi^0 \pi^0$

 The reconstruction theorem and crossing symmetry says that amplitude looks like

$$\mathcal{A}_{L;00}(s,t,u) = P_{L;00} + \Phi_0^{L;00}(s) + \Phi_0^{L;00}(t) + \Phi_0^{L;00}(u) + O(p^8)$$
 with the polynomial $\left[s_0^L = 1/3M_K^2 + m_0^2, \quad C_F = -\frac{3}{5}V_{us}^*V_{ud}\frac{G_F}{\sqrt{2}}\right]$

The the polynomial $\begin{bmatrix} v_0 & 1/\sin R + m_0, & v_1 & v_2 \end{bmatrix}$

$$P_{L;00} = C_F \left(A_{00}^L M_K^2 + \left\{ C_{00}^L [(s - s_0^L)^2] + E_{00}^L [(s - s_0^L)^3] \right\} + \left\{ s \leftrightarrow t \right\} + \left\{ s \leftrightarrow u \right\} \right).$$

• The $O(p^4)$ result: $\left[s_{\pm}^L = 1/3(M_K^2 + m_0^2 + 2m_+^2)\right]$

$$\begin{split} \Phi_0^{L;00}(s) &= \frac{C_F}{2F_\pi^2} A_{00}^L M_K^2 \alpha_{00} m_0^2 \bar{J}_0(s) \\ &- \frac{C_F}{F_\pi^2} [\beta_{\pm 0} (s - \frac{2}{3} m_+^2 - \frac{2}{3} m_0^2) + \frac{1}{3} \alpha_{\pm 0} m_0^2] [A_{+-}^L M_K^2 + B_{+-}^L (s - s_{+-}^L)] \bar{J}_\pm(s) \\ &+ \text{polynomial} + O(p^6), \end{split}$$

$$\bar{J}_P(s) = \frac{1}{16\pi^2} \left(2 + \sigma_P \ln \frac{\sigma_P - 1}{\sigma_P + 1} \right), \qquad \sigma_P = \sqrt{1 - \frac{4m_P^2}{s}}.$$

First iteration - illustration on $K_L o \pi^0 \pi^0 \pi^0$ (scatt. lengths)

 The reconstruction theorem and crossing symmetry says that amplitude looks like

$$\begin{split} \mathcal{A}_{L;00}(s,t,u) &= \mathrm{P}_{L;00} + \Phi_0^{L;00}(s) + \Phi_0^{L;00}(t) + \Phi_0^{L;00}(u) + O(p^8) \\ \text{with the polynomial } \left[s_0^L = 1/3M_K^2 + m_0^2, \quad C_F = -\frac{3}{5}V_{us}^*V_{ud}\frac{G_F}{\sqrt{2}} \right] \\ \mathrm{P}_{L;00} &= C_F \left(A_{00}^L M_K^2 + \{ C_{00}^L [(s-s_0^L)^2] + E_{00}^L [(s-s_0^L)^3] \} + \{s \leftrightarrow t\} + \{s \leftrightarrow u\} \right). \end{split}$$

• Another choice of $\pi\pi$ parametrization - scattering lengths and effective range parameters (convergent proper's?, stability of fit?):

First iteration - illustration on $K_L \to \pi^0 \pi^0 \pi^0$ (scatt. lengths)

 The reconstruction theorem and crossing symmetry says that amplitude looks like

$$\begin{split} \mathcal{A}_{L;00}(s,t,u) &= \mathrm{P}_{L;00} + \Phi_0^{L;00}(s) + \Phi_0^{L;00}(t) + \Phi_0^{L;00}(u) + O(p^8) \\ \text{with the polynomial } \left[s_0^L = 1/3M_K^2 + m_0^2, \quad C_F = -\frac{3}{5}V_{us}^*V_{ud}\frac{G_F}{\sqrt{2}} \right] \\ \mathrm{P}_{L;00} &= C_F \left(A_{00}^L M_K^2 + \{C_{00}^L [(s-s_0^L)^2] + E_{00}^L [(s-s_0^L)^3] \} + \{s \leftrightarrow t\} + \{s \leftrightarrow u\} \right). \end{split}$$

• Another choice of $\pi\pi$ parametrization - scattering lengths and effective range parameters (convergent proper's?, stability of fit?):

$$\Phi_0^{L;00}(s) = \frac{C_F}{2} A_{00}^L M_K^2 \mathbf{a}_{00} \bar{J}_0(s)$$

$$+ C_F [\mathbf{a}_x - \frac{\beta_{\pm 0}}{F_\pi^2} (s - 4m_+^2)] [A_{+-}^L M_K^2 + B_{+-}^L (s - s_{+-}^L)] \bar{J}_{\pm}(s)$$
+ polynomial + $O(p^6)$,

• Moreover, we can retain a_i physical interpretation up to two-loops (by adjustment of the polynomial of the $\pi\pi$ reconstruction theorem) - as in CGKR approach

• One particular choice of the parameters α_{00} , $\alpha_{\pm 0}$, $\beta_{\pm 0}$, A_{00}^L , A_{+-}^L , B_{+-}^L , C_{00}^L (giving similar pictures like Bijnens):

Examples of squared amplitudes along two curves: $\frac{u=t}{u=t}$ and $\sqrt{3}(s-s_0)=u-t$

This is prepared for fit.

• One particular choice of the parameters α_{00} , $\alpha_{\pm 0}$, $\beta_{\pm 0}$, A_{00}^L , A_{+-}^L , B_{+-}^L , C_{00}^L (giving similar pictures like Bijnens):

Examples of squared amplitudes along two curves: u=t and $\sqrt{3}(s-s_0)=u-t$

This is prepared for fit. However, integrated this curve we have

• One particular choice of the parameters α_{00} , $\alpha_{\pm 0}$, $\beta_{\pm 0}$, A_{00}^L , A_{+-}^L , B_{+-}^L , C_{00}^L (giving similar pictures like Bijnens):

Examples of squared amplitudes along two curves: u=t and $\sqrt{3}(s-s_0)=u-t$

This is prepared for fit. However, integrated this curve we have

• One particular choice of the parameters α_{00} , $\alpha_{\pm 0}$, $\beta_{\pm 0}$, A_{00}^L , $A_{\pm -}^L$, B_{+-}^{L} , C_{00}^{L} (giving similar pictures like Bijnens):

Examples of squared amplitudes along two curves: u = tand $\sqrt{3}(s-s_0) = u - t$

This is prepared for fit. However, integrated this curve we have

• We have such $O(p^4)$ results for all the other K decays

Second iteration → two-loop expression $O(p^4)$ amplitude S- and P- partial wave In this case for every intermediate state - complications appear Unitarity relation Im of the channel for every crossing channel $O(p^4)$ Polynomial Theorem $O(p^{8})$

Second iteration - complications - in isospin limit

- we need analytical continuation of unitarity relations to unphysical regions \Rightarrow analytical continuation of $O(p^4)$ partial waves needed
- obtained by careful deformation of integration contour in formula for partial wave projections:
 Barton; Bronzan; Kacser '61, '63

Anisovich; Anisovich, Ansel'm; Gribov '62, '66, '94

$$\varphi_l^{L,00}(s) = \frac{2}{\lambda_{L0}^{1/2}(s)\sigma_0} \int_{C(t_+,t_-)} dt \, \mathcal{A}_{L;00}(s,t,3s_0^L - s - t) \, P_l \left(\cos \theta = \frac{2t + s - 3s_0^L}{\lambda_{L0}^{1/2}(s)\sigma_0} \right),$$

• $C(t_+,t_-)$ has to avoid intersection with branch cut of $\mathcal{A}_{L;00}$ \Rightarrow prescription for the trajectories of the endpoints

$$t_{\pm}(s) = \frac{1}{2} \left(3s_0^L - s \pm \lambda_{L0}^{1/2} \sigma_0 \right) + i\varepsilon, \quad \operatorname{sign} \varepsilon = \operatorname{sign} \frac{\partial t_{\pm}(s)}{\partial M_K^2}.$$

Second iteration - complications - in isospin limit

⇒ Analytical structure of partial amplitudes:

• left cut - connected with the crossing channel

Second iteration - complications - in isospin limit

⇒ Analytical structure of partial amplitudes:

- left\cut connected with the crossing channel
- functions ϕ 's in the reconstruction theorem are analytical continuations having just right cuts
 - ⇒ theorem valid also in this case

Second iteration - complications - beyond isospin limit

1 point 'C' above the threshold

existence of Landau anomalous thresholds: cf. also Gasser at Euridice 06 for $K^+ \to \pi^+ \pi^0 \pi^0$, $K^+ \to \pi^+ \pi^- \pi^+$, $K_L \to \pi^+ \pi^- \pi^0$, e.g.:

The integration contour deformed avoiding the anomalous threshold.

This generalization is straightforward for the process $K_L \to 3\pi^0$.

Second iteration - $O(p^6)$ result for $K_L \to \pi^0 \pi^0 \pi^0$

$$\mathcal{A}_{L;00}(s,t,u) = P_{L;00} + \Phi_0^{L;00}(s) + \Phi_0^{L;00}(t) + \Phi_0^{L;00}(u) + O(p^8),$$

$$P_{L;00} = C_F \left(A_{00}^L M_K^2 + \left\{ C_{00}^L [(s - s_0^L)^2] + E_{00}^L [(s - s_0^L)^3] \right\} + \left\{ s \leftrightarrow t \right\} + \left\{ s \leftrightarrow u \right\} \right).$$

• The $O(p^6)$ result:

$$\Phi_0^{L;00}(s) = 16s^3 \int\limits_{\Sigma}^{\infty} \frac{dx}{x^3} \frac{\text{Im } f_0^{L;00}(x)}{x - s},$$

where

$$\begin{split} \operatorname{Im} f_0^{L;00}(s) &= \frac{1}{2} \sigma_0 \ \theta(s - 4m_0^2) \frac{C_F}{F_\pi^4} \sum_k \left(p_k^{L;00;00}(s) + \frac{1}{s} q_k^{L;00;00}(s) \right) K_k^{L;00;00}(s) \\ &+ \sigma_+ \ \theta(s - 4m_+^2) \frac{C_F}{F_\pi^4} \sum_j \left(p_j^{L;+-;00}(s) + \frac{1}{s} q_j^{L;+-;00}(s) \right) K_j^{L;+-;00}(s) \end{split}$$

- K(s) functions of s (e.g. $\frac{1}{\sigma_0} \ln \frac{1-\sigma_0}{1+\sigma_0}$), $\#k \sim 13, \#j \sim 12$ (we are trying to categorize and integrate them analytically)
- p and q polynomials in s containing α_{00} , $\alpha_{\pm 0}$, $\beta_{\pm 0}$, λ_{00} , $\lambda_{\pm 0}^{(1)}$, $\lambda_{\pm 0}^{(2)}$, α_{+-} , β_{+-} and A_{00}^L , C_{00}^L , A_{+-}^L , B_{+-}^L , C_{+-}^L , D_{+-}^L

Summary, conclusions and outlook

- fully relativistic approach trying to include all possible nuances for $K \to 3\pi$ to two loops, based only on general principles: analyticity, unitarity, crossing symmetry, chiral counting
- from $K \to 3\pi$ experiments we can obtain some $\pi\pi$ characteristics beyond isospin limit $(a_{00}, a_x, \ldots, \text{subth. par's}) \to \text{test of ChPT}$
- two parameterizations possible in terms of
 - subthreshold parameters (stable) same parameterization as other projects isospin breaking in $\pi\pi$, πK , formfactors (Knecht, Bernard, Oertel, Passemar, Descotes-Genon, . . .)
 - scattering lengths as in existing analyses (CI, CGKR)
- in both cases # of param's reasonable: we can fit
- ullet so far 1^{st} iteration in both parameterizations finished
- ullet $2^{
 m nd}$ iter'n only for K_L (last integration performed, so far, only numerically we are trying to simplify it and get as most analytical information as possible)
- isospin violation only via pion mass difference; other EM effects not included

SPARES

Physical continuation

different regions in Dalitz plot: "physical" and "scattering"

Hwa PR '64, Aitchison, Pasquier PR '66: physical amplitude for decay process can be obtained from the scattering process by the continuation where both s and M^2 approach the real axis from above.

Two predictions of scattering lengths

CI = Cabibbo, Isidori CGKR = Colangelo, Gasser, Kubis, Rusetsky, (Bissegger, Fuhrer)

Taken from D. Madigozhin (NA48/2), Anacapri '08