











NA48 (1997-2001): Direct CP-Violation in neutral K >  $Re(\epsilon'/\epsilon) = (14.7 \pm 2.2) \cdot 10^{-4}$ 

NA48/1 (2002):

Rare K<sub>S</sub> decays

- > BR(K<sub>5</sub> ->  $\pi^{0}e^{+}e^{-}$ ) = (5.8<sup>+2.8</sup><sub>-2.3</sub> ± 0.8)·10<sup>-9</sup>
- > BR(K<sub>S</sub> ->  $\pi^{0}\mu^{+}\mu^{-}$ ) = (2.8<sup>+1.5</sup><sub>-1.2</sub> ± 0.2)·10<sup>-9</sup>

NA48/2 (2003-2004): Direct CP-Violation in charged K >  $A_g(K^{\pm} \rightarrow \pi^{\pm}\pi^{-}) = (-1.5 \pm 2.1) \cdot 10^{-4}$ 

>  $A_g(K^{\pm} \rightarrow \pi^{\pm}\pi^0\pi^0) = (1.8 \pm 1.8) \cdot 10^{-4}$ 

**P326 / NA62 (2006-2012):** Very Rare K Decays

> K⁺ -> π⁺νν

| 1997      | ε'/ε                            | K <sub>L</sub> & K <sub>S</sub> |  |  |
|-----------|---------------------------------|---------------------------------|--|--|
| 1998      | K <sub>L</sub> & K <sub>S</sub> |                                 |  |  |
| 1999      | K <sub>L</sub> & K <sub>S</sub> | K <sub>S</sub> HI               |  |  |
| 2000      | K <sub>L</sub> Only             | K <sub>s</sub> HI               |  |  |
| 2001      | K <sub>L</sub> & K <sub>S</sub> | K <sub>s</sub> HI               |  |  |
| 2002      | K <sub>s</sub> & Hyperons HI    |                                 |  |  |
| 2003-2004 | K⁺ & K⁻                         |                                 |  |  |
| 2006-2010 | Design & Construction           |                                 |  |  |
| 2007-2008 | $K_{e2}/K_{\mu 2}$              | Tests                           |  |  |
| 2011-2012 | <b>Κ</b> ⁺ → π⁺νν               |                                 |  |  |



Simone Bifani







#### Magnetic Spectrometer (4 DCHs):

- > 4 view / DCH -> high efficiency
- >  $\sigma_P/P = 1.0\% + 0.044\% P [GeV/c]$

### Hodoscope:

- > Fast trigger
- >  $\sigma_{t}$  = 150ps

#### Electromagnetic Calorimeter (LKr):

- > High granularity, quasi-homogeneous
- >  $\sigma_{\rm E}/{\rm E}$  = 3.2%/ $J{\rm E}$  + 9%/E + 0.42% [GeV]

#### Hadron Calorimeter, Muon and Photon Vetoes

#### Trigger:

- > Fast hardware trigger (L1): hodoscope & DCHs multiplicity
- > Level 2 trigger (L2): on-line processing of DCHs & LKr information









Run periods: > 2003: ~ 50 days > 2004: ~ 60 days Total collected statistics: >  $K^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$ : ~ 4.10<sup>9</sup> >  $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}\pi^{0}$ : ~ 1.10<sup>8</sup>

>200 TB of data recorded



A view of the NA48/2 beam line

Rare K<sup>±</sup> decays can be measured down to BR ~  $10^{-9}$ 

Simone Bifani



# Motivation and Theory (I)

In the Chiral Perturbation Theory framework the differential rate of the K<sup>±</sup>(p) ->  $\pi^{\pm}(p_3) \gamma(q_1) \gamma(q_2)$  process (no  $O(p^2)$  contribution) is:

$$\frac{\partial^{2}\Gamma}{\partial y \partial z} = \frac{m_{K^{\pm}}}{\left(8\pi\right)^{3}} \cdot \left[z^{2} \cdot \left(\left|A+B\right|^{2}+\left|C\right|^{2}\right) + \left(y^{2}-\frac{1}{4}\lambda\left(1,z,r_{\pi}^{2}\right)\right)^{2}\right) \cdot \left(\left|B\right|^{2}+\left|D\right|^{2}\right)\right] \qquad y = \frac{p \cdot (q_{1}-q_{2})}{m_{K^{\pm}}^{2}}$$

$$z = \frac{(q_{1}+q_{2})^{2}}{m_{K^{\pm}}^{2}} = \frac{m_{\gamma\gamma}^{2}}{m_{K^{\pm}}^{2}}$$
relevant only @ low m\_{\gamma\gamma}

- The leading contribution @ O(p<sup>4</sup>) is given by A(z,ĉ) (loops) which is responsible for a cusp at m<sub>γγ</sub> = m<sub>2π</sub>
   C (WZW) corresponds to ~10% of A @ O(p<sup>4</sup>)
- > B, D = O @ O(p<sup>4</sup>)

G. Ecker, A. Pich, E. de Rafael, Nucl. Phys. B303 (1988), 665

> O(p<sup>6</sup>) unitarity corrections can increase the BR by 30÷40%

G. D'Ambrosio and J. Portoles, Nucl. Phys. B386 (1996), 403

lavi



Both decay spectrum and rate strongly depend on the single  $\hat{c}$  parameter (O(1)):

 $\mathsf{BR}(\mathsf{K}^+ \to \pi^+ \gamma \gamma) = (5.26 + 1.64 \cdot \hat{c} + 0.32 \cdot \hat{c}^2 + 0.49) \cdot 10^{-7} \ge 4 \cdot 10^{-7}$ 



cusp-like behaviour at  $2\pi$  threshold

Simone Bifani

EUROFLAVOUR08



**Κ± ->** π<sup>±</sup>γγ

Previous measurement by E787 (31 candidate, 5.1 ± 3.3 background events):

BR( $\pi^+\gamma\gamma$ ) = (1.10 ± 0.32) · 10<sup>-6</sup>

**Event Sample (**~40% of the full statistics):

- > K<sup>±</sup> ->  $\pi^{\pm}\pi^{0}$  as normalization
- > K flux:  $\Phi_{\rm K}$  = 2.06.10<sup>10</sup>
- > 1164 candidate events
- > 3.3% background (K<sup>±</sup> ->  $\pi^{\pm}\pi^{0}\gamma$ )

Shape Analysis:

- > MC O(p<sup>6</sup>) and ĉ = 2 for comparison
- > Data shape follows ChPT prediction
- Possibility of precise ĉ measurement but no quantitative result yet





BR(K<sup>±</sup> ->  $\pi^{\pm}\gamma\gamma$ )= (1.07 ± 0.04<sub>stat</sub> ± 0.08<sub>syst</sub>)·10<sup>-6</sup>

assuming O(p<sup>6</sup>) distribution and ĉ = 2

Simone Bifani

K± -> π±e⁺e⁻γ (I)



Never observed before. Naïve estimation of the BR:  $K^{\pm} \rightarrow \pi^{\pm}\gamma^{*}\gamma \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$  $BR(\pi^{\pm}e^{+}e^{-}\gamma) = BR(\pi^{\pm}\gamma\gamma) \cdot 2\alpha \sim 1.6 \cdot 10^{-8}$ Theoretical expectation: Gabbiani, PRL D59, 094022  $BR(\pi^{\pm}e^{+}e^{-}\gamma) = (0.9 \div 1.6) \cdot 10^{-8}$ Event Sample (full statistics): > K<sup>±</sup> ->  $\pi^{\pm}\pi^{0}_{D}$  as normalization > K flux:  $\Phi_{k}$  = 1.48.10<sup>11</sup> > 120 candidate events > 6.1% background (K<sup>±</sup> ->  $\pi^{\pm}\pi^{0}_{D}\gamma$ ) Model-Independent BR (m<sub>eev</sub> > 260 MeV/c<sup>2</sup>):





 $BR(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma) = (1.19 \pm 0.12_{stat} \pm 0.04_{syst}) \cdot 10^{-8}$ 

Simone Bifani

b

lavi

U



**Shape Analysis:**  $\hat{c}$  has been extracted by fitting data to the absolute  $O(p^4)$  ChPT prediction

Gabbiani, Phys. Rev. Lett. D59 (1999), 094022











 $d\Gamma/dz \sim P(z) \cdot |W(z)|^2$ 

z = (m<sub>ee</sub>/m<sub>K</sub>)<sup>2</sup> P(z) = phase space factor

#### Form Factors:

- 1) Linear:  $W(z) = G_F \cdot m_K^2 \cdot f_0 \cdot (1 + \delta \cdot z)$
- 2) ChPT  $O(p^6)$ :  $W(z) = G_F \cdot m_K^2 \cdot (a_+ + b_+ \cdot z) + W^{\pi\pi}(z)$  D'Ambrosio et al. JHEP 8 (1998), 4
- 3) Dubna ChPT:  $W(z) = W(M_a, M_\rho, z)$  Dubnickova et al. hep-ph/0611175

 $(f_0, \delta)$  or  $(a_+, b_+)$  or  $(M_a, M_\rho)$  fully determine a Model-Dependent BR

#### Goals:

> Model-Independent BR(z > 0.08) in visible kinematic range

> Parameters of models and BRs in the full kinematic range



## Signal and Normalization

- Event Sample (full statistics):
- > K<sup>±</sup> ->  $\pi^{\pm}\pi^{0}{}_{D}$  as normalization
- > K flux:  $\Phi_{\rm K}$  = 1.70.10<sup>11</sup>
- > 7146 candidate events
- > 0.6% background/signal (K<sup>±</sup> ->  $\pi^{\pm}\pi^{0}_{D}$ , K<sup>±</sup> ->  $\pi^{0}_{D}e^{\pm}v$  + particle mis-ID)







z distribution is sensitive to the Form Factors and contains all the dynamical information



"Raw" values (no BKG/trigger correction, stat error only)  $\delta = 2.42 \pm 0.15$  $f_0 = 0.529 \pm 0.012$  $\rho(\delta, f_0) = -0.963$  $a_{+} = -0.576 \pm 0.012$  $b_{+} = -0.830 \pm 0.053$  $\rho(a_{+}, b_{+}) = -0.913$  $M_{a} = (0.951 \pm 0.028) [GeV]$  $M_o = (0.705 \pm 0.010) [GeV]$  $\rho(M_a, M_o) = 0.998$ 

Model-Independent  $BR_{MI}(z > 0.08)$  computed by integrating  $d\Gamma/dz$ 

Simone Bifani

**Results (II)** 

 $BR_{MI} \cdot 10^7 = 2.26 \pm 0.03_{stat} \pm 0.03_{syst} \pm 0.06_{ext} = 2.26 \pm 0.08$ 

 $\delta = 2.35 \pm 0.15_{stat} \pm 0.09_{syst} = 2.35 \pm 0.18$   $f_0 = 0.532 \pm 0.012_{stat} \pm 0.008_{syst} \pm 0.007_{ext} = 0.532 \pm 0.016$  $BR_1 \cdot 10^7 = 3.02 \pm 0.04_{stat} \pm 0.04_{syst} \pm 0.08_{ext} = 3.02 \pm 0.10$ 

 $a_{+} = -0.579 \pm 0.012_{stat} \pm 0.008_{syst} \pm 0.007_{ext} = -0.579 \pm 0.016$   $b_{+} = -0.798 \pm 0.053_{stat} \pm 0.037_{syst} \pm 0.017_{ext} = -0.798 \pm 0.067$  $BR_{2} \cdot 10^{7} = 3.11 \pm 0.04_{stat} \pm 0.04_{syst} \pm 0.08_{ext} = 3.11 \pm 0.10$ 

$$\begin{split} \mathsf{M}_{a} &= 0.965 \pm 0.028_{\text{stat}} \pm 0.018_{\text{syst}} \pm 0.002_{\text{ext}} = 0.965 \pm 0.033 \quad [\text{GeV/c}] \\ \mathsf{M}_{\rho} &= 0.711 \pm 0.010_{\text{stat}} \pm 0.007_{\text{syst}} \pm 0.002_{\text{ext}} = 0.711 \pm 0.013 \quad [\text{GeV/c}] \\ \mathsf{BR}_{3} \cdot 10^{7} &= 3.15 \pm 0.04_{\text{stat}} \pm 0.04_{\text{syst}} \pm 0.08_{\text{ext}} = 3.15 \pm 0.10 \end{split}$$

Including uncertainty due to the model dependence (full z range):

 $BR(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}) = (3.08 \pm 0.04_{stat} \pm 0.04_{syst} \pm 0.08_{ext} \pm 0.07_{model}) \cdot 10^{-7}$ 

CPV parameter (first measurement):

 $\Delta(K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}) = (BR^{+}-BR^{-}) / (BR^{+}+BR^{-}) = (-2.1 \pm 1.5_{stat} \pm 0.3_{syst})\%$ 

Simone Bifani



Simone Bifani







## > Precise study of the K<sup>±</sup> -> $\pi^{\pm}\gamma\gamma$ decay (BR ~ 10<sup>-6</sup>)

- > Clear evidence for a cusp at  $m_{\gamma\gamma} = m_{2\pi}$ , first possibility for shape study
- > Measured **BR** in agreement with ChPT
- > Shape analysis and a larger sample coming soon
- > First observation of the K<sup>±</sup> ->  $\pi^{\pm}e^{+}e^{-}\gamma$  decay (BR ~ 10<sup>-8</sup>)
- > An independent evidence for the cusp at  $m_{\gamma\gamma}$  =  $m_{2\pi}$
- > Measurement of *Shape* and the *BR* finalized

## > Precise study of the K<sup>±</sup> -> $\pi^{\pm}e^{+}e^{-}$ decay (BR ~ 10<sup>-7</sup>)

- > Sample & precision comparable to world's best ones
- > BR and Form Factors in agreement with ChPT and other measurements
- > First limit on the CPV Asymmetry obtained







In the Chiral Perturbation Theory framework the differential rate of the K<sup>±</sup>(p) ->  $\pi^{\pm}(p_3) \gamma(q_1) \gamma(q_2)$  process (no  $O(p^2)$  contribution) is:

$$\frac{d\Gamma}{dz} = \frac{m_{K^{\pm}}^{5}}{2(8\pi)^{3}} \cdot z^{2} \cdot \lambda^{1/2} (1, z, r_{\pi}^{2}) \cdot \left[ \left| A(z) \right|^{2} + \left| C(z) \right|^{2} \right]$$

$$z = \frac{\left(q_1 + q_2\right)^2}{m_{K^{\pm}}^2} = \frac{m_{\gamma\gamma}^2}{m_{K^{\pm}}^2}, \quad 0 < z < \left(1 - r_{\pi}\right)^2, \quad r_{\pi} = \frac{m_{\pi^{\pm}}}{m_{K^{\pm}}}, \quad \lambda(a,b,c) = a^2 + b^2 + c^2 - 2\left(ab + ac + bc\right)$$

The leading contribution @  $O(p^4)$  is given by:

tree level counterterm

Simone Bifani

b

Flavi 🖌

U

PASCOS08



Simone Bifani





 $BR(\pi^{\pm}\gamma\gamma) = \underbrace{1}_{\Phi_{flux}} X \quad \underbrace{(\#\pi^{\pm}\gamma\gamma)}_{Acc} - \underbrace{(\#bkg)}_{Flux}$ 

#### • Bad trigger conditions:

 Selected through neutral trigger: L1 required more than 2 clusters in e.m. calorimeter ⇒ 50% efficiency. L2 rejected K<sup>±</sup>→ π<sup>±</sup>π<sup>0</sup> decays (BR=20.92%!!) cutting on E<sup>CM</sup><sub>π</sub>: 80% efficient.

Due to low amount of statistics, trigger efficiencies not measured with K<sup>±</sup>→ π<sup>±</sup> γγ data.
 Solution: use background events
 & study dependencies on kinematic variables:

 $Eff^{L1}(p_{track}, d_{c1c2}), Eff^{L2}(p_{track}, z_{vertex}, r_{beampipe})$ 

**&** use MC  $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$  to "reshape" variables and integrate

 $\mathsf{Eff}^{L1,L2} = \underline{\Sigma}_{n} (\#\mathsf{MC}(v_{1},...v_{n}) \times \mathsf{Eff}^{L1,L2}(v_{1},...v_{n}))$  $\Sigma_{n} (\#\mathsf{MC}(v_{1},...v_{n}))$ 





 $K^{\pm} \rightarrow \pi^{\pm} \gamma \gamma$ 









#### Simone Bifani



**Κ± -> π±e⁺e⁻**γ



#### **Event** selection:

- > at least 3 tracks with Q<sub>tot</sub>=±1
  and compatible decay vertex
- > at least 1 cluster not associated to track
- > E/p > 0.94 for e<sup>±</sup>, E/p < 0.8 for π<sup>±</sup>
   > 54 GeV < E<sub>tot</sub> < 66 GeV</li>

### **BG** suppression:

- > many BG sources considered and evaluated with MC
- $m_{ee\gamma}$  > 260 MeV/c<sup>2</sup> (low BG area)
- > cut on  $\theta_{e\gamma}$  to reject K<sup>±</sup> ->  $\pi^{\pm}e^{\pm}e^{-}$
- > 480 MeV/c<sup>2</sup> < m<sub>πeeγ</sub> < 505 MeV/c<sup>2</sup> (K mass)

|                                                                                            | Background source                                                    | Branching ratio           | Expected events |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------|-----------------|
| $\mathbf{L} = \mathbf{L} \mathbf{K}^{+} \rightarrow \pi^{+} \mathbf{e}^{+} \mathbf{e}^{-}$ | $\overline{K^{\pm} \to \pi^{\pm} \pi^0_D \gamma \text{ (IB)}}$       | $3.3 \times 10^{-6}$      | $3.1 \pm 0.5$   |
| $K^+ \rightarrow \pi^+ e^+ e^- \gamma$                                                     | $K^{\pm} \rightarrow \pi^{\pm} \pi^0_D \gamma \text{ (DE)}$          | $5.3 \times 10^{-8}$      | $0.12 \pm 0.03$ |
|                                                                                            | $K^{\pm} \to \pi^{\pm} \pi^{\overleftarrow{0}} e^+ e^- \text{ (IB)}$ | $\sim 1.7 \times 10^{-6}$ | $1.6 \pm 0.9$   |
|                                                                                            | $K^{\pm} \to \pi^{\pm} \pi^0 e^+ e^- \text{ (DE)}$                   | $\sim 2.6 \times 10^{-8}$ | $0.02\pm0.01$   |
|                                                                                            | $K^{\pm} \rightarrow \pi^{\pm} e^+ e^-$                              | $2.9 \times 10^{-7}$      | $0.8\pm0.5$     |
|                                                                                            | $K^{\pm} \to \pi^{\pm} \pi^0 \pi^0_D$                                | $2.1 \times 10^{-4}$      | $0.7 \pm 0.7$   |
|                                                                                            | Accidentals                                                          | _                         | $1.0 \pm 1.0$   |
| -2 0 2<br>Smaller angle(ax) Angle(a a) [rad]                                               | Sum                                                                  |                           | $7.3 \pm 1.7$   |
| Sinaner angle(e,y) - Angle(e,e) [rad]                                                      |                                                                      |                           |                 |

Simone Bifani









The  $K^{\pm} \rightarrow \pi^{\pm}e^{+}e^{-}$  is measured normalizing to  $K^{\pm} \rightarrow \pi^{\pm}\pi^{0}{}_{D} \rightarrow \pi^{\pm}e^{+}e^{-}\gamma$ , thus particle ID efficiencies cancel in the first order

 $\begin{array}{l} \hline \textbf{Common selection criteria:}\\ 3-track vertex [consistent in space/time]\\ 1\,\pi\ candidate,\ 2\ opposite\ sign\ electron\ candidates\\ \hline \textbf{Electron\ (pion)\ ID\ based\ on\ E\ deposition\ :\ E/p\ >\ 0.95\ (E/p\ <\ 0.85) \end{array}$ 

Signal selection: Kinematic suppression of  $\pi^{\pm}\pi^{0}{}_{D}$ background:  $m_{ee} > 140 \text{ MeV/c}^{2}$ . Limitations on reconstructed  $\pi^{\pm}e^{\pm}e^{\pm}$  invariant mass, total & transverse momentum

Normalization selection: Selection of good  $\gamma$  candidate. Limitations on reconstructed  $e^+e^-\gamma$  and  $\pi^\pm e^+e^-\gamma$  masses, total & transverse momentum





No dynamical information from the angle between (e<sup>+</sup>,  $\pi^{\pm}$ ) in (e<sup>+</sup>, e<sup>-</sup>) frame

$$\frac{d\Gamma}{d\vartheta} \sim \sin^2 \vartheta = \left(1 - \cos^2 \vartheta\right)$$

z distribution is sensitive to the Form Factors and contains all the dynamical information



Simone Bifani

EUROFLAVOUR08

|                                                          | Corrections and Uncertainties |                            |                          |                             |                         |                      |                   |  |  |
|----------------------------------------------------------|-------------------------------|----------------------------|--------------------------|-----------------------------|-------------------------|----------------------|-------------------|--|--|
|                                                          |                               |                            |                          |                             |                         |                      |                   |  |  |
| Parameter                                                | Electron<br>ID                | Beam<br>Simulation         | Radiative<br>Corrections | Background<br>to K±->π±e⁺e⁻ | Trigger<br>Inefficiency | Fitting<br>Procedure | External<br>(PDG) |  |  |
| $BR_{MI} \cdot 10^7$                                     | 0.02                          | 0.01                       | 0.01                     | -0.01±0.01                  | -0.01±0.01              | -                    | 0.06              |  |  |
| Model (1): Linear                                        |                               |                            |                          |                             |                         |                      |                   |  |  |
| δ                                                        | 0.01                          | 0.04                       | 0.05                     | -0.04±0.04                  | -0.03±0.03              | 0.03                 | -                 |  |  |
| f <sub>o</sub>                                           | 0.001                         | 0.006                      | 0.004                    | +0.002±0.002                | +0.001±0.001            | 0.003                | 0.007             |  |  |
| $BR_1 \cdot 10^7$                                        | 0.02                          | 0.02                       | 0.01                     | -0.01±0.01                  | -0.01±0.01              | 0.02                 | 0.08              |  |  |
|                                                          | Model (                       | 2): O(p <sup>6</sup> ) ChP | 'T [D'Ambrosi            | o, Ecker, Isidori,          | Portoles, hep-ph        | /9808289]            |                   |  |  |
| ۵                                                        | 0.001                         | 0.005                      | 0.004                    | -0.001±0.001                | -0.002±0.002            | 0.004                | 0.007             |  |  |
| b₊                                                       | 0.009                         | 0.015                      | 0.022                    | +0.017±0.017                | +0.015±0.015            | 0.010                | 0.017             |  |  |
| BR <sub>2</sub> ·10 <sup>7</sup>                         | 0.02                          | 0.02                       | 0.01                     | -0.01±0.01                  | -0.01±0.01              | 0.02                 | 0.08              |  |  |
| Model (3): Dubna ChPT [Pervushin et al., hep-ph/0611175] |                               |                            |                          |                             |                         |                      |                   |  |  |
| M <sub>a</sub> /GeV                                      | 0.004                         | 0.009                      | 0.009                    | +0.008±0.008                | +0.006±0.006            | 0.006                | 0.002             |  |  |
| M <sub>p</sub> /GeV                                      | 0.002                         | 0.003                      | 0.004                    | +0.003±0.003                | +0.003±0.003            | 0.002                | 0.002             |  |  |
| BR <sub>3</sub> ·10 <sup>7</sup>                         | 0.02                          | 0.02                       | 0.01                     | -0.01±0.01                  | -0.01±0.01              | 0.02                 | 0.08              |  |  |
|                                                          |                               |                            |                          |                             |                         |                      |                   |  |  |
| Simone Bifani EURUFLAVOUR08 31                           |                               |                            |                          |                             |                         |                      |                   |  |  |