Annual Workshop of the European Flavour Physics Network FLAVIAnet IPPP, Durham, 22-26 September 2008

Review of B-Physics: Experiment (The Last Year)

Eli Ben-Haïm LPNHE-IN2P3-Universities of Paris VI, Paris VII

Outline

- Introduction
- News about angles of the unitarity triangle:
 - $sin(2\beta)$ from b \rightarrow s penguins
 - Recent results on γ
- A few other highlights from the last 12 months:
 - New physics in B \rightarrow K π Direct CP asymmetries ?
 - New physics in B_S mixing? ($B_S \rightarrow J/\psi \phi$ decays)
 - Results on $B \rightarrow \tau \nu$
 - Observation of the bottomonium ground state η_b
- Summary, conclusion and perspectives

Quick Reminder of Basics

 $V_{CKM} \text{ Unitarity} \Rightarrow V_{ud} V_{ub}^* + V_{cd} V_{cb}^* + V_{td} V_{tb}^* = 0$ $\sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} \sum_{\alpha \lambda^3}^{\infty \lambda^3} V_{cb}^* = 0$

In other unitarity conditions (triangles) sides are very different. Second and third columns: flat triangle for B_S

CP Violation is possible in the Standard Model only if V_{CKM} is complex $\Leftrightarrow \eta \neq 0 \Leftrightarrow$ Unitarity Triangle is not flat

We want to determine ρ and η experimentally

Eli Ben-Haim

How to Get ρ and η from Experiments?

The Actual Individual Constraints

From UTfit Collaboration (M. Bona et al.), http://www.utfit.org

Putting it All Together...

• To get a global fit: consistency check of the CKM picture and state of the art of the actual knowledge.

J

0.5

0

-0.5

-1

β

V V_{cb}

-0.5

FLAVIAnet Workshop, Sept23rd 2008

UT_{fit}

∆m_d

 $\overline{\rho} = 0.147 \pm 0.029$ $\overline{\eta} = 0.342 \pm 0.016$ From UTfit Collaboration (M. Bona *et al.*), http://www.utfit.org

0

γ

Δm,

 Δm_{s}

 $sin(2\beta+\gamma)$

0.5

α

1

ρ

0

Why Study All This?

CP violation is one of the necessary conditions to explain matter-antimatter asymmetry in the universe Sakharov, JETP Lett. 5, 24 (1967)

 \rightarrow But the CKM source of CP violation is too small to explain that.

- **Quantify CP violation by precision measurements of CKM angles and sides**
- Constrain the Standard Model (SM) by measuring its free parameters.
 Flavor sector was one of its less known parts before B-Factories
- Test the SM and eventually challenge it by showing discrepancies between several measurements of the same parameters

→ a window for discovery of New Physics (NP)

- **Constrain NP models**
- LHC Era: flavor physics would provide clues for interpretation of discoveries at the high energy frontier

sin(2 β) From b \rightarrow s Penguins (I)

- $sin(2\beta)$ can be extracted from time dependent CP 205 asymmetry (interference between decay and mixing).
- For example, in the "Golden Mode" ($B^0 \rightarrow J/\psi K_s^0$):

Direct decay

B

f_{CP}

sin(2 β) From b \rightarrow s Penguins (II)

- When penguin contributions are significant, new physics in the loop may cause deviation in the value of S.
- The SM penguin contributes $S=sin(2\beta)$

New physics contribution might shift S

 $\Delta S = sin2\beta(q\overline{q}s) - sin2\beta(c\overline{c}s)$

		Ay	ear	ago):		
	siı	$n(2\beta^{eff})$)≡	sin(2	2 φ ₁	eff LP 200 PRELIMIN	G 7 ARY
b→ccs	World Av	erage				0.68 ±	0.03
	BaBar					$0.21 \pm 0.26 \pm$	0.11
ž	Belle			<u> </u>		0.50 \pm 0.21 \pm	0.06
-	Average			± -		0.39 ±	0.17
0	BaBar			- 🛃		$0.58\pm0.10\pm$	0.03
ž	Belle			Å.	-	0.64 \pm 0.10 \pm	0.04
ľ	Average			2		0.61 ±	0.07
×	BaBar			G		0.71 \pm 0.24 \pm	0.04
×	Selle		-	<u> </u>	2	$0.30 \pm 0.32 \pm$	80.0
~	Average			<u> </u>	-	0.58 ±	0.20
	BaBar			5-5		$0.40\pm0.23\pm$	0.03
×	Belle		-			$0.33 \pm 0.35 \pm$	80.0
я	Average			보유		0.38 ±	0.19
×	^{oo} BaBar				2-17	$0.61 ^{+0.22}_{-0.24} \pm 0.09 \pm$	80.0
~	Average			<u> </u>		0.61	+0.25
	BaBar			5 b	—	0.62 +0.25 -0.30 ±	0.02
×.	Belle	-		- <mark><</mark>		$0.11 \pm 0.46 \pm$	0.07
8	Average			<u> 王</u> -		0.48 ±	0.24
	BaBar		÷	5 6 -		$0.25\pm0.26\pm$	0.10
ž	Belle		-	<mark>⊈ २</mark> -		$0.18 \pm 0.23 \pm$	0.11
+	Average					0.21 ±	0.19
×	BaBar	5 6				-0.72 \pm 0.71 \pm	80.0
°	Belle		-+-			-0.43 \pm 0.49 \pm	0.09
°	Average	- I	-			-0.52 ±	0.41
<u>~</u>	BaBar					0.76 ± 0.11	+0.07
Y	Belle				8	0.68 ± 0.15 ± 0.03	+0.21
÷ +	Average				2	0.73 ±	0.10
-2		1	0			1	2
Te	ensior	ns bet	we	en s	in	2β froi	n

 $b \rightarrow c\bar{c}s$ and $b \rightarrow q\bar{q}s$

FLAVIAnet Workshop, Sept23rd 2008

sin(2 β) From b \rightarrow s Penguins (III)

The situation today is quite different

• Fresh sin(2β) world averages from HFAG:

b \rightarrow ccs: 0.067 \pm 0.02

 $b \rightarrow q\overline{q}s: 0.062 \pm 0.04$ (naïve !)

- Many of the results in the compilation are new (ICHEP, CKM).
- Big effort from B factories to clarify hints of trends/deviations in previous measurements
- Improvement: several results from (Time Dependent) Dalitz Plot analyses

See talk by Jelena Ilic: "Hadronic Charmless Three-body B decays at BaBar"

 Still... for most of the modes the theoretical SM prediction is ΔS > 0

 \rightarrow More data needed...

b→ccs	World Av	erage			0.67 ± 0.02
	BaBar				$0.26 \pm 0.26 \pm 0.03$
Y Y	Belle			-	0.67 +0.22
	Average				0.44 +0.17
0	BaBar		-44		$0.58 \pm 0.08 \pm 0.02$
× ×	Belle			-	$0.64 \pm 0.10 \pm 0.04$
<u>م</u>	Average				0.60 ± 0.07
X	BaBar			8	0.90 +0.18 +0.03 -0.20 -0.04
× s	Belle		÷ +	<u>्</u>	$0.30 \pm 0.32 \pm 0.08$
	Average		÷ 🕴		0.74 ± 0.17
• •	BaBar				$0.55 \pm 0.20 \pm 0.03$
×	Belle				• 0.67 ± 0.31 ± 0.08
я	Average				0.57 ± 0.17
γ	BaBar				$0.61 {}^{+0.22}_{-0.24} \pm 0.09 \pm 0.08$
X	Belle				0.64 ^{+0.19} ± 0.09 ± 0.10
ے ا	Average			5	0.63 +0.17
S	BaBar		- - 8	-	0.55 $^{+0.26}_{-0.29} \pm 0.02$
X	Belle		<u> </u>		$0.11 \pm 0.46 \pm 0.07$
3	Average		1 2		0.45 ± 0.24
S	BaBar			-	0.64 +0.15
X	Belle			l.	0.60 +0.16
, ,	Average				0.62 +0.11
×	BaBar	() 8	4		$-0.72 \pm 0.71 \pm 0.08$
β	Belle		÷		$-0.43 \pm 0.49 \pm 0.09$
o do	Average	<u> </u>			-0.52 ± 0.41
T Y	BaBar		·	2	0.97 +0.03
٦	Average		;	= 00	0.97 ^{+0.03}
X ÷	BaBar				$0.86 \pm 0.08 \pm 0.03$
×	Belle		· -		$0.68 \pm 0.15 \pm 0.03 \substack{+0.21 \\ -0.13}$
+	Average		:		0.82 ± 0.07
-2	- '	1	0		1 2

 $sin(2\beta^{eff}) \equiv sin(2\phi_1^{eff})$

Eli Ben-Haim

Recent Results On γ (I)

Hardest angle of all to measure: ($\gamma = -\arg(Vub)$, and Vub is small)

- Direct CPV in $B \rightarrow D^{(*)0}K^{(*)}$ decays
 - 3-body Dalitz Decays (Giri, Grossman, Soffer, Zupan)
 - $D^0 \rightarrow K_S \pi^+ \pi^-$
 - CP eigenstates (Gronau,London,Wyler)
 - $D^0 \rightarrow \pi\pi, KK, \dots$
 - Doubly Cabibbo-suppressed (Atwood, Dunietz, Soni)
 - $D^0 \rightarrow K^+\pi^- \text{ vs } D^0 \rightarrow K^-\pi^+$
 - Several complementary techniques
 - Time-dependent CPV in $B^0 \rightarrow D^{(*)}\pi$, $D^{(*)}\rho$
 - Measures $sin(2\beta+\gamma)$

Key parameter: r_B , the ratio of $|A(b \rightarrow u)/A(b \rightarrow c)|$

Big progress has been made in the last year

Recent Results On γ (II)

• Combination of constraints (from CKM workshop talks) :

- **Good** achievement of B factories, but... limited by statistics (error ~20°)
- LHCb will improve the situation and possibly a SuperB factory

Eli Ben-Haim

$B \rightarrow K\pi$ Direct CP Asymmetries (I)

sensitive to γ

Tantalizing but not conclusive

& Mannel 2008

Eli Ben-Haim

$B \rightarrow K\pi$ Direct CP Asymmetries (II)

• To further examine this problem: measure \mathcal{A}_{CP} asymmetry in $B^0 \rightarrow K^0 \pi^0$ and compare with prediction of SU(3) symmetry derived sum rule:

$$\mathcal{A}_{CP}(K^{+}\pi^{-}) + \mathcal{A}_{CP}(K^{0}\pi^{+})\frac{\mathcal{B}(K^{0}\pi^{+})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} = \mathcal{A}_{CP}(K^{+}\pi^{0})\frac{2\mathcal{B}(K^{+}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\tau_{0}}{\tau_{+}} + \mathcal{A}_{CP}(K^{0}\pi^{0})\frac{2\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{+}\pi^{-})}\frac{\mathcal{B}(K^{0}\pi^{0})}{\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac{\mathcal{B}(K^{0}\pi^{0})}\mathcal{B}(K^{0}\pi^{0})}\frac$$

M. Gronau, PLB 627, 82 (2005); D. Atwood & A. Soni, Phys. Rev. D 58, 036005(1998)

Deviations \Rightarrow **New Physics**

Using $B^+ \rightarrow K^0 \pi^+$ world Average: $\mathcal{A}_{cp}(K^0\pi^+) = 0.009 \pm 0.025$ (Theoretical Prediction: $\mathcal{A}_{cp}(K^0\pi^+) \sim 0$) New results for $B^0 \rightarrow K^0 \pi^0$ Sum rule $\mathcal{A}_{CP} = -0.13 \pm 0.13 \pm 0.03$ $\mathcal{A}_{CP} = +0.14 \pm 0.13 \pm 0.06$

HFAG Average: -0.01 ± 0.10

Sum rule prediction: $A_{cp}(K^0\pi^0) = -0.151\pm0.043$

$B_S \rightarrow J/\psi \phi$ Decays (I)

• Analogically to what we saw in for the CKM angle β : time dependent CP asymmetry in $B_S \rightarrow J/\psi \phi \rightarrow determine \beta_S$.

$$eta_s^{ ext{SM}} = rgigg(-rac{V_{ts}V_{tb}^*}{V_{cs}V_{cb}^*}igg)$$

• Expect βs to be small in SM ($|\beta s^{SM}| \approx 0.02$) - beyond current reach => Current interest: Search for enhanced CP violation through **new physics:**

CDF and D0 perform a time dependent analysis of B_S → J/ψ φ to get a correlated measurement of (β_S, ΔΓ_S)
 CDF, Phys.Rev.Lett.100:161802 (2008) ; D0, arXiv: 0802.2255, submitted to PRL

Eli Ben-Haim

$B_{S} \rightarrow J/\psi \phi$ Decays (II)

• After a few controversial "start up" problems...

CDF and D0 likelihood scans are now combinable. State of the art:

Results on
$$B \rightarrow \tau v (I)$$

the measurement of the leptonic decay $B \rightarrow \tau v$ is the first leptonic decay seen on B mesons. (modes with light leptons are suppressed)

In the SM:

$$\mathcal{B}(B \to \ell \nu) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

Using $|V_{ub}|$ = (44.3 ± 5.4) × 10⁻⁴ (HFAG) and f_B = 0.189 ± 0.027 GeV (LQCD) \Rightarrow expected BF: (1.2 ± 0.4) x 10⁻⁴

Previous results:

PDG: $\mathscr{B}(B \rightarrow \tau \nu) = (1.8 \pm 0.7) \times 10^{-4}$ Belle hadronic tag $\mathscr{B}(B \rightarrow \tau \nu) = (1.79 + 0.56 + 0.46 - 0.49 - 0.51) \times 10^{-4}$ 447 M BB excluding 0 with 3.5 σ

BaBar hadronic & semileptonic tags $\mathscr{B}(B \rightarrow \tau \nu) = (1.2 \pm 0.4 \pm 0.3 \pm 0.2) \times 10^{-4}$

383 M BB excluding 0 with 2.6σ

New results are available from BaBar and Belle

Eli Ben-Haim

Results on $B \rightarrow \tau v$ (II)

- New result from BaBar (CKM 2008):
 - Reconstruct the *tag B*⁻ from $B^- \rightarrow \overline{D}^0$ l⁻vX events (semileptonic tag)
 - $l = e \text{ or } \mu$; X = nothing, π^0 or γ from excited D
 - Reconstruct the *signal* $B^+ \rightarrow \tau_+ \nu$ using 4 exclusive τ decays

■ Combining this result with the latest hadronic tagged measurement: BaBar both tags: $\mathscr{B}(B \rightarrow \tau v) = (1.8 \pm 0.6) \times 10^{-4}$ Exclud

Excluding 0 with 3.3σ

larger than previous result !

Eli Ben-Haim

Results on $B \rightarrow \tau v$ (III)

- New result from Belle (ICHEP 2008):
 - Tag B on one side (both hadronic tag and $D^{(*)} l v tag$)
 - Look for τ signature with "extra" energy in the ECAL

Eli Ben-Haim

Results on $B \rightarrow \tau v$ (IV)

Observation of η_{b} (I)

30 years after the discovery of bottomonium, its ground state is observed by BaBar in a dedicated run at the $\Upsilon(3S)$ resonance pole

Observation of η_{b} (II)

Analysis Strategy

- Inclusive search of $e^+e^- \rightarrow \Upsilon(3S) \rightarrow \gamma \eta_b$ decays (BF prediction $\approx 10^{-4}$)
- Expecting monochromatic signal photon: $M(\eta_b)=9.4 \text{ GeV} \rightarrow E_{\gamma} = 911 \text{ MeV}$ \Rightarrow look for a "bump" in the E_{γ} distribution around 900 MeV
- Performing one dimensional fit to the E_{γ} distribution, containing: 1) Non-peaking continuum \rightarrow fitted to single component 2) Peaking, next to signal • $\Upsilon(3S) \rightarrow \gamma \chi_{bJ}(2P)$ then $\chi_{bJ}(2P) \rightarrow \gamma \Upsilon(1S)$: 770 MeV

Observation of η_{b} (III)

Among the many things I did not mention...

• Lifetimes of B_S and Λ_B , Observation of Σ_B , Ξ_B from the TeVatron \Rightarrow see talk by Manfred Paulini (ICHEP 2008) *"Properties of Heavy B Hadrons"*

world averege $\tau(B_S^{0}) / \tau(B^{0}) = 0.95 \pm 0.02$

$\Lambda_{\rm b}$ Lifetime 2008

 Scan above the Y(4S) at BaBar
 ⇒ see talk by Paul Jackson (ICHEP 2008)
 "Bottomonium Spectroscopy: an Experimental Review"

Eli Ben-Haim

Summary, Conclusions and Perspectives (I)

• A summary of a big part of this talk (and much more...) is given by this:

- After many results from B-Factories and the TeVatron all the independent constraints superimpose in a small region of the (ρ,η) plane!
- Great success of the Standard Model and the CKM Picture!
- Some tantalizing "tensions", still need confirmation: more statistics, improve errors on lattice expectations...
- Measurements provide non-trivial constrains on NP. Many of them are still limited by statistics.

Summary, Conclusions and Perspectives (II)

- What we have today and in the short term:
 - Final dataset from BaBar (~500M B decays)
 - Belle continues operations to O(1000M decays)
 - Expect roughly to double the dataset at the TeVatron
- Measurements in the B system can continue to provide important insights and constraints on the flavor structure of physics within and beyond the Standard Model. High precision is needed...
 - Final, combined B Factory and Tevatron datasets
 - LHCb
 - In the planning stages: Super flavor factory

Eli Ben-Haim

The BaBar Detector

Intrumented flux return (IFR)

Magnet 1.5T

Identification of $\mu^{+/-}$

Electromagnetic calorimeter (EMC)

Detection of γ , e⁻ identification Reconstruction of $\pi^0 \rightarrow \gamma\gamma$, Energy measurement FLAVIAnet Workshop, Sept23rd 2008

Eli Ben-Haim

е

Silicon Vertex Tracker (SVT)

Identification of charged particles

Separation K/ π >2.5 σ up to 4 GeV/c

AS Prediction From Theory

Browder,Gershon,Pirjol,AS,Zupan,arXiv:0802.3201(RMP)

$QCDF^{\circ}$ $QCDF^{\circ}$ $SCET^{d}$	0.02 ± 0.01 0.02 ± 0.01	0.01 ± 0.01 0.01 ± 0.02 -0.019 ± 0.009	
$_{\rm P}{\rm QCD^{e}}$	0.02 ± 0.01	-0.010 ± 0.010	

TABLE VIII Expectations for ΔS_f in three cleanest modes.

Eli Ben-Haim

• Enhancement of large C with large strong phase to T ⇒ strong inter. !?

• Enhancement of large P_{EW} \Rightarrow New physics

 $B^+ \rightarrow K^0 \pi^+$

Penguin dominants. $\Rightarrow A_{cp}(K^0\pi^+) \sim 0$

Eli Ben-Haim

$$\frac{\mathrm{BR}~(\mathrm{B}~\rightarrow~\tau~\vee)}{\mathrm{Amd}}~=~\frac{3~\pi}{4}~\frac{\mathrm{M}\tau^2}{\mathrm{m} \mathrm{W}^2~\mathrm{S}~(\mathrm{xt})}~\left(1-\frac{\mathrm{M}\tau^2}{\mathrm{m} \mathrm{B}^2}\right)^2~\tau \mathrm{B}^+~\frac{1}{\mathrm{B}_{\mathrm{Ed}}}~\frac{1}{|\mathrm{Vud}|^2}~\left(\frac{\mathrm{sin}\beta}{\mathrm{sin}\gamma}\right)^2$$

Eli Ben-Haim