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Motivation

LQCD = − 1

2g2
0

tr{FµνFµν}+ ∑
f

ψf Dµγµψf + m ψbψb

l

LHQET = ψh

[
D0 + m︸ ︷︷ ︸
static limit

−ωkin

2m
D2 − ωspin

2m
σB

]
ψh + . . . ,

m : heavy quark mass

I systematic expansion in 1/m, accurate for m À ΛQCD ,
renormalizable & has a continuum limit

I matching {m, ωspin, · · · } ⇔ {QCD parameters} required to make
HQET an effective theory of QCD

I consider HQET as expansion of QCD in 1/z ≡ 1/(LM) and verify
that its large-z behaviour complies with HQET

lim
µ→∞

{
[2b0ḡ

2(µ)]−d0/(2b0)m(µ)
}

= M
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I tests may justify interpolations between
the charm region (slightly above of it)
and the static limit to the b-scale also
in large-volume physics applications, e.g.
to determine FB [Alpha:JHEP02(2008)078]:

I comparison to tests of quenched QCD
[Heitger etal:JHEP11(2004)048]
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Requirements
Finetuning

I line of constant physics; within our strategy to do a NP matching
between QCD and HQET, we are working at

ḡ2(L1) ≈ 4.484 L1ml ≈ 0 z ≡ L1M ≈ const

M : renormalization group invariant heavy quark mass

I mapping between bare & renormalized parameters of the theory
Ximprovement coefficients and renormalization constants
non-perturbatively [Della Morte etal:PoS(LATTICE 2007)246]

I computations in finite (small) volume at L1/a∈{20, 24, 32, 40}
I we choose z ≡ L1M ∈ {4, 6, 7, 9, 11, 13, 15, 18, 21} to cover a

wide range of masses ↔ M ∼ (1.5, . . . , 8.3)GeV
(reference scale L∗≈0.6fm [Alpha:JHEP07(2008)037] Ã L1≈0.48fm)
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Framework
The Schrödinger functional as finite renorm. scheme

C’,ζ , ζ’ ’

C,ζ, ζ0

3L

x

x0

0

= T

=

I periodic b.c. in space and Dirichlet in time

I mass independent renormalization scheme
Dµγµ has a gap Ã in the massless limit . . .

I . . . no infrared divergences
I . . . lattice simulations are possible

I fermion fields periodic in space up to a phase

ψ(x + k̂L) = eiθψ(x)

ψ(x + k̂L) = e−iθψ(x) , θ ∈ {0, 0.5, 1}

I multiplicative renormalization scheme where the kinematical
parameters L, T/L, θ fixes the renormalization prescription

I Nf = 2 degenerate massless sea quarks (ml ≡ mlight = 0, θ = 0.5)

I correlation functions are build from heavy-light valence quarks;
light quark mass is set to the sea-quark mass
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Finite volume observables
SF correlation functions ...

ζ l ζh

A  ,V  0 0

0

3L

x

x0

0

= T

=

ζ l ζh

ζ l
’ ζh

’

0x0=

= Tx0

3L

Boundary-to-bulk:

fA(x0, θ) = − a6

2L3 ∑
x,y,z

〈
ψl(x)γ0γ5ψh(x) ζh(y)γ5ζl(z)

〉
kV(x0, θ) = − a6

6L3 ∑
x,y,z,k

〈
ψl(x)γkψh(x) ζh(y)γkζl(z)

〉

Boundary-to-boundary:

f1(θ) = − a12

2L6 ∑
u,v,y,z

〈
ζl
′(u)γ5ζh

′(v) ζh(y)γ5ζl(z)
〉

k1(θ) = − a12

6L6 ∑
u,v,y,z,k

〈
ζl
′(u)γkζh

′(v) ζh(y)γkζl(z)
〉

and additionally fP, kT to improve fA, kV respectively
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Finite volume observables
... and derived quantities . . .

I provided that Aµ, Vµ denote renormalized currents,

YPS(L, M) ≡ +
fA(T/2)√

f1
, YV(L, M) ≡ −kV(T/2)√

k1
,

RA/V(L, M) ≡ − fA(T/2)
kV(T/2)

, RA/P(L, M) ≡ − fA(T/2)
fP(T/2)

,

Rspin(L, M) ≡ 1

4
ln

f1
k1

,

are finite quantities; our test observables

I interpretation of SF CFs in terms of matrix elements possible; e.g.

YPS(L, M) ≡ 〈Ω(L)|A0|B(L)〉
|||Ω(L)〉|| · |||B(L)〉|| ,

{
|B(L)〉 = e−TH/2|φB(L)〉
|Ω(L)〉 = e−TH/2|φ0(L)〉
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Finite volume observables
... and derived quantities

I for the same purpose effective energies are defined by

ΓPS(L, M) ≡ − d
dx0

ln [ fA(x0) ]
∣∣∣∣
x0=T/2

= − f ′A(T/2)
fA(T/2)

,

ΓV(L, M) ≡ − d
dx0

ln [ kV(x0) ]
∣∣∣∣
x0=T/2

= −k ′V(T/2)
kV(T/2)

,

Γav(L, M) ≡ 1
4

[
ΓPS(L, M) + 3ΓV(L, M)

]
I meaning of the observables from their large-volume behaviour (up

to normalizations)

L → ∞ : YPS, YV → FPS, FV : heavy-light decay constant,

Rspin → mB∗0
−mB0 : mass splitting
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Effective theory predictions
at the classical level:

I current matrix elements expected to posses a power series expansion
in 1/z ≡ 1/(LM)

I leading term in expansion of CFs by replacing ψb → ψh & dropping
O(1/m) terms Ã static limit

fA → f stat
A

f stat
A (T/2)√

f stat
1

≡ X (L) = lim
z→∞

YPS(L, M)

= lim
z→∞

YV(L, M)

due to heavy quark spin-symmetry (Astat
0 ⇔ V stat

0 )
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Effective theory predictions
correspondence of HQET and QCD in quantum theory:

I scale dependent ren. of HQET implies logarithmic modifications

axial current renorm. XR (L, µ) = Z stat
A (µ)Xbare(L)

depends logarithmically on the chosen renorm. scale µ

I no scheme dependence when going over to renormalization group
invariants (RGI)

lim
µ→∞

{
[2b0ḡ

2(µ)]−γ0/(2b0)XR (L, µ)
}

= XRGI = ZRGIXbare(L)

where b0 = 11−2Nf/3
(4π)2 , γ0 = − 1

(4π)2 ,

are first order coeff.s of β and of the anomalous dimension of the
axial current, respectively

I large-mass behaviour of the QCD observables:
(RGIs of the eff. theory)×(logarithmically mass dependent functions C)
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Conversion to the matching scheme
translation to another renormalization scheme

Definition of the matching scheme: for arbitrary renormalized matrix
elements ΦR in QCD & the effective theory it should hold

ΦQCD
R = ΦHQET

R (µ)
∣∣∣
µ=m

+ O(1/m)

I in perturbative QCD, m typically can either be the pole mass mQ or
the MS mass m∗
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Matching coefficients CX(ΛMS/M)

more convenient choice of the argument of the conversion functions ĈX :

I change argument of ĈX to the ratio of RGIs, M/ΛMS
⇒ functions CX (M/ΛMS)

I M = RGI quark mass, advantage: fixed in lattice calculations
without perturbative uncertainties

one then expects the (heavy) quark mass dependence to obey

YX (L, M) M→∞∼ CX (M/ΛMS) XRGI(L)
(
1 + O(1/z)

)
,

X = PS,V,
z = ML ,

Rspin(L, M) M→∞∼ Cspin (M/ΛMS) X spin
RGI (L)

z

(
1 + O(1/z)

)
,

LΓav(L, M) M→∞∼ Cmass (M/ΛMS)× z + O(1) ,
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Matching coefficients CX(ΛMS/M)
CX : integrate perturbative RG equations (in the effective theory) in the
matching scheme, using 4-loop β(g), τ(g)

I 3-loop γMS
2 anomalous dimension (AD) from [Chetyrkin&Grozin,2003]
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Results
Continuum extrapolations with asymptotics

”Decay constants”

YPS/CPS ∝ XRGI

(
1 + O(1/z)

)
YV/CV ∝ XRGI

(
1 + O(1/z)

)
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Results
Continuum extrapolations with asymptotics

”Spin averaged mass & Spin splitting”

(LΓav)/(zCmass) ∝ 1 + O(1/z) zRspin/Cspin ∝ X spin
RGI

(
1 + O(1/z)

)
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Conclusions & perspectives
conclusions that can be drawn (maybe):

I nearly linear (1/z)-behaviour down to 1/z =0.1 ↔ M ∼ 4GeV for
all observables investigated so far

I small (1/z)2 corrections in spin splitting over the whole range of z
covered

I correlated fits for a reliable error estimate done
(all z ’s at constant L computed on the same gauge background)

I overall behaviour similar to quenched Ã NP matching of QCD and
HQET should also be as well behaved as in the quenched case

what still need to be done:

I apply more reasonable fits to CL at largest z

I remove tree-level cutoff effect before extrapolating to CL

I connect data of heavy-light decay constant to the one computed in
HQET [DellaMorte etal: JHEP 0702:079,2007]

I compute X spin
RGI in HQET
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Tree-level cutoff effect
preliminary

tree-level cutoff effects removed

tree-level cutoff effects removed
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PCAC mass in the SF
at L/a = 40


